RESEARCH ARTICLE


Modelling the Dynamics of Masonry Structures with Discrete Elements



José V. Lemos*
National Laboratory for Civil Engineering, Av. Brasil 101, 1700-066 Lisboa, Portugal


Article Metrics

CrossRef Citations:
9
Total Statistics:

Full-Text HTML Views: 4270
Abstract HTML Views: 2248
PDF Downloads: 1042
ePub Downloads: 882
Total Views/Downloads: 8442
Unique Statistics:

Full-Text HTML Views: 1819
Abstract HTML Views: 1080
PDF Downloads: 756
ePub Downloads: 642
Total Views/Downloads: 4297



Creative Commons License
© José V. Lemos; Licensee Bentham Open.

open-access license: This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/legalcode), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

Correspondence: Address correspondence to this author at the National Laboratory for Civil Engineering, Av. Brasil 101, 1700-066 Lisboa, Portugal; E-mail: vlemos@lnec.pt


Abstract

Block models have been shown to provide a realistic representation of the behavior of many types of masonry structures under static and dynamic loads. When the strength of the units is such that movements along the joints govern the behavior, it is acceptable to make the simplifying assumption that blocks act as rigid bodies. This assumption is particularly useful when dealing with seismic problems, for which the computational times for time domain analysis may be substantial.

In this paper, the application of discrete element models for dynamic analysis of masonry structures is addressed. The emphasis is on the seismic behavior of block stone masonry, but the treatment is general to cover other types of masonry. First, the assumptions involved in the choice of a block representation are discussed, stressing in particular the case of rigid block models. Numerical issues are examined, including contact models, calculation of natural frequencies, time stepping algorithms, damping and boundary conditions.

A review is presented of modeling examples published in the literature for various types of masonry structures. The choice of numerical representation and its main features are discussed for each case.

Keywords: Discrete elements, Dynamics, Masonry, Numerical modeling, Seismic analysis.