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Abstract:

Objective:

Glioblastomas multiforme (GBM) is the most malignant brain cancer, which presented vast genomic variation with complicated
pathologic mechanism.

Method:

MicroRNA is a delicate post-transcriptional tuner of gene expression in the organisms by targeting and regulating protein coding
genes. MiR-9 was reported as a significant biomarker for GBM patient prognosis and a key factor in regulation of GBM cancer stem
cells.  To explore the effect  of miR-9 on GBM cell  growth,  we over expressed miR-9 in U87 and U251 cells.  The cell  viability
decreased and apoptosis increased after miR-9 overexpression in these cells. To identify the target of miR-9, we scanned miR-9
binding  site  in  the  3’UTRs  region  of  expression  SMC1A  (structural  maintenance  of  chromosomes  1A)  genes  and  designed  a
fluorescent reporter assay to measure miR-9 binding to this region. Our results revealed that miR-9 binds to the 3’sUTR region of
SMC1A and down-regulated SMC1A expression.

Result:

Our results indicated that miR-9 was a potential therapeutic target for GBM through triggering apoptosis of cancer cells.
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1. INTRODUCTION

Glioblastoma multiforme (GBM) is a grade IV astrocytoma which is the most common and malignant subset of
brain tumors [1]. Treatment for glioblastoma patients is mainly surgery in combination with fractionation radiotherapy
with  concomitant  and  adjuvant  administration  of  chemotherapy,  like  temozolomide  [2].  GBM  patients  receive
combining  treatment  of  radiotherapy  presented  a  better  prognosis  than  the  group  receiving  radiotherapy  only  after
surgery, and the median survival is 14.6 months [2, 3]. Unfortunately, nearly half of all glioblastoma patients carry an
unmethylated MGMT promoter which responded poorly to temozolomide chemotherapy [4]. Thus, revealing the new
target in cellular survival and apoptosis resistance will benefit drug development for improving the treatment. Although
much is known about the mechanism on GBM survival signaling, there is limited knowledge of apoptotic mechanism of
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GBM from bench to bedside. Generally, specific signaling pathways cause apoptosis which are often deregulated in
cancer. An apoptotic regulation protein BCL-2L12 was found to be overexpressed in nearly all GBMs, and a bunch of
X-linked inhibitor of apoptosis (XIAP) are emerging as potential therapeutic targets for GBM [5, 6]. Besides coding
genes, non-coding genes as microRNAs are also highly valued target for cancer therapy.

MiRNAs (microRNAs) are small non-coding RNAs (19–25 nucleotides) and negative post-transcriptional regulator
of gene expression [7]. Computational research revealed that 149 microRNAs were involved in GBM tumorgenicity via
RNA-RNA interaction with  expression genes  [8].  Further  study proved that  miR-21 was  a  vital  negative  apoptotic
factor in GBM by suppressing caspase pathway, which made it a plausible therapeutic target [9]. High throughput gene
expression screening of clinical samples demonstrated that miR-9 is an important marker in the prognosis of GBM
which presents highly expressed in advanced WHO grades in glioma patients group than in poor prognosis group [10].
Accumulating research in cancer cells demonstrated that miR-9 was a tumor suppressor in gastric, ovarian and breast
cancer  while  targeting  various  mRNA  [11,  12].  In  GBM  cells  with  EGFR  mutation,  which  is  occurring  in  large
proportion of patients, miR-9 is identified as a tumor suppressor which is regulated by FOXP1 [13]. Recently, Efroni et
al. reported that the hsa-miR-9 induced decrease in migration and invasion of GBM cells, is directly mediated through
MAPKAP signaling [14]. These findings strongly indicated that miR-9 is an interesting therapeutic target for GBM and
it suppressed cancer cell growth through multiple pathways.

In previous study, we demonstrated that down-regulation of SMC1A inhibited GBM cell growth by G2/M arresting
[15]. Accumulating evidences proved that SMC1A was also involved in various cellular functions including growth,
migration and apoptosis. Sun et al. found down-regulation of SMC1A inhibited lung adenocarcinoma cells A549 and
H1299  cells  by  G0/G1  arrest,  meanwhile,  the  apoptotic  pathway  was  also  activated  [16].  Moreover,  SMC1A  was
proved to play an important role in colorectal cancer metastasis by stimulating inflammatory mediators [17]. Integrated
computational analysis suggested that SMC1A was a potential target of miR-9 [18 - 20]. Here we reported that miR-9
overexpression triggered the apoptosis of GBM cell lines and SMC1A was a direct target of miR-9.

2. MATERIALS AND METHODS

2.1. Cell Culture

The human glioblastoma cell  lines U87 and U251, were purchased from the American Type Culture Collection
(ATCC), and cultured in α-MEM media (containing L-glutamine), supplemented with 10% fetal bovine serum (FBS)
and 1% Antibiotic-Antimycotic (AA). All cultured cells were maintained at 37oC in a humidified atmosphere containing
5% CO2.

2.2. Construction of miR-9 Expression Lentivirus Vectors

To generate lentivirus expressing mature miRNA of miR-9 the pre-miRNA sequence (AGT ATG TCG ATC TAT
TGG TTT CT) and universal control (a sequence which does not match any human genes) were synthesized and linked
into a vector. The sequences were cloned into the HpaI and XhoI sites of the pLKD-GFP (Neuronbiotech, Shanghai,
China)  to  generate  pLKD-  GFP-miR-9  or  pLKD-GFP-Ctr,  respectively.  Viral  shRNA  of  SMC1A  was  obtained  as
previously described [15].

2.3. Lentivirus Production

To produce lentiviral vector, the plasmids encoding miR-9, SMC1A shRNA or control were individually mixed
with plasmids, pHelper1.0 and pHelper 2.0 (virus packaging helper plasmid) and co-transfected into HEK293T cells
with lipofectamine 3000,  according to  the manufacture’s  instruction (Invitrogen).  After  48h incubation,  the culture
supernatants  containing  virus  were  harvested  and  ultra-centrifuged.  The  virus  titers  of  each  preparation  were
determined.  To  perform  lentiviral  infections,  the  U87  and  U251  cells  were  plated  at  40%  -  50%  confluence  and
incubated overnight (16 h). On the day of infections, the culture medium was replaced by the appropriate addition of
virus  and  incubated  at  37oC  for  12~16h,  followed  by  a  medium  replacement.  24~36  hours  later,  infected  cell
populations were observed under fluorescent microscopy. After 5 days of selection, shRNA knockdown efficiency was
determined by quantitative real-time RT-PCR and western blot analysis.

2.4. RNA Extraction and Quantitative Real-Time PCR

To analyze miR-9 and SMC1A expression level, approximately 1.0×106 U87 or U251 cells (uninfected or infected
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cells) were seeded into 6-well culture plates, respectively. Cells of each group were harvested after cultured for 72 h.
Small  RNAs  (~200  nt)  were  isolated  with  mirVanaTM PARIS  TM Kit  (Ambion)  according  to  the  manufacturer’s
instructions. For RT reactions, 1 µg of small RNA was used for reverse transcription with RT primers at 37 oC for 60
min and a final incubation at 95oC for 5 min. MicroRNA qRT-PCR was carried out by using the miScript SYBR Green
PCR kit (Qiagen) on an Applied Biosystems 7000 real-time PCR machine (ABI). The PCR reaction was conducted at
95oC for 15 min, followed by 40 cycles of incubation at 94oC for 15s, 55oC for 30s, and 70oC for 30s. Expression level
of each miRNA was normalized by against the U6 snRNA levels. Total RNA was extracted from cells with TRIzol
reagent (Invitrogen) according to the manufacturer’s instructions. Expression of SMC1A mRNA was detected by qRT-
PCR using the standard SYBR Green RT-PCR Kit (Takara) according to the manufacturer’s instruction. Briefly, the
cDNA was synthesized using the RevertAid First-Strand cDNA Synthesis Kit (Fermentas, Lithuania), according to the
manufacturer’s protocol. The cDNA was used as the template in an iQTM SYBR Green Supermix (Bio-Rad, Her-cules,
CA) and in  triplicate  subjected  to  denaturation  at  94oC for  1  min  and 30  cycles  of  94oC for  40  sand 60oC for  40s,
followed by extension at  72oC for 6 min.  The relative levels  of  SMC1A mRNA transcripts  were normalized to the
control GAPDH. Relative gene expression was quantified using the GraphPad Prism 5 software (GraphPad Software,
San  Diego,  CA)  and  expressed  as  %  of  the  control.  Primers  used  in  microRNA  reverse  transcription  and  specific
amplification are listed in (Table 1).

Table1. Primers used in miR-9 and SMC1A RT-PCR test.

Gene Primer Sequence
GAPDH GAPDHF AAGGTCGGAGTCAACGGATT

GAPDHR CTCCTGGAAGATGGTGATGG
SMC1A SMC1A-QF TCGGA CCATT TCAGA GGTTCA

SMC1A-QR TCCTC AGAGT AGACC ATGCT G
miR-9 Mi9RT (for reverse transcription) CTCAACTGGTGTCGTGGAGTCGG

CAATTCAGTTGAG tca tacag
mi9F ACACTCCAGCTGGG tcttt ggtta tctag
mi9R TGGTGTCGTGGAGTCG

U6 U6F CTCGCTTCGGCAGCACA
U6R AACGCTTCACGAATTTGCGT

2.5. Western Blotting

Cells cultured in 35 mm dishes were lysed in 0.2 ml lysis buffer (0.1% SDS, 1% NP-40, 50 mM HEPES, pH 7.4, 2
mM EDTA, 100 mM NaCl, 5 mM sodium orthovanadate, 40 μM p-nitrophenyl phosphate, and 1% protease inhibitor
mixture set I; Calbiochem). Cell lysates were centrifuged at 12,000 rpm for 15 min. The supernatant was collected and
denatured. Proteins were separated in 10% SDS-PAGE gel and blotted onto polypropylene difluoride membrane. The
blot was blocked for 1.5 h at room temperature in 5% BSA, followed by overnight incubation at 4°C with indicated
antibodies.  Membranes were rinsed and incubated for  1 h with the correspondent  peroxidase-conjugated secondary
antibodies. Chemiluminescent detection was performed with the ECL kit (Pierce).

2.6. MTT Assay

Cell viability and proliferation were evaluated by the MTT method. Cell viability of U251 with miR-9, SMC1A
shRNA or control was assessed by the MTT assay performing at four time points (on day 1, 2, 3 and 4) after successful
infection. Briefly, quantification of mitochondrial dehydrogenase activity was achieved via the enzymatic conversion of
MTT [3-(4,5-dimethyldiazol-2-yl)-2,5- diphenyltetrazolium bromide] (Sigma-Aldrich) to a colored formazan product.
The test cells in exponential growth were plated at a final concentration of 2 × 103 cells/ well in 96-well culture plates
for different culture time (1 day, 2 day, 3 day, and 4 day, respectively). MTT (10 μl, 10 mg/ml) was then added. After
an  additional  4  h  of  incubation,  the  reaction  was  terminated  by  removal  of  the  supernatant  and  addition  of  100  μl
DMSO to dissolve the formazan product. After 0.5 h, the optical density (OD) of each well was measured at 570nm
using an ELISA reader (ELx808 Bio-Tek Instruments, USA).

2.7. Wound Healing Assay

Lentivirus infected U251 cells were seeded in 12-well plates until they reached 60–70% confluence. After 12 hours,
cell monolayer was scraped in a straight line to create a “scratch” with a pipet tip. The cells were washed with growth
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medium to remove debris and to smooth the edge of the scratch followed by a medium replacement with 1 mL growth
medium and incubation for 24 h at 37°C in 5% CO2. Images were taken at 0 and 24 hours by placing the 12-well plate
under the microscope (Nikon Ti-S automated Inverted) using an automated program to ensure the same area is aligned
and photographed.

Flow Cytometry Test

For  flow cytometry  determination,  U251  cells  were  harvested  with  trypsin  and  fixed  with  30min  70% ethanol.
Afterwards, cells were treated with RNase for 30min, then incubated with Annexin V-PE in darkness for 30min. Flow
cytometry was performed by BD FACS Calibur and data was recorded by FlowJo 7.6.1 and analyzed by GraphPad
Prism 5 software.

3'UTR Reporter Assay

UTR  binding  reporter  assays  were  performed  in  HEK293T  cells.  pMIR-  REPORT  vectors  harboring  1200bp
fragment of SMC1A-3'UTR behind initiated from stop codon with wild type (WT) miR-9 binding sites (2146-2153) or
mutated (MUT) miR-9 binding sites were produced by cloning the synthesized fragments into the HindIII and SpeI
restriction  sites  of  pMIRREPORT:  Cells  were  infected  with  miR-9  or  negative-control  lentiviral  vectors  under
appropriate MOI condition, with pMIRREPORT vectors containing WT or MUT miR-9 binding sites (400 ng) and
pRL-SV40  (Promega)  expressing  Renilla  luciferase  (400  ng)  for  normalization.  Cells  were  grown  in  high-glucose
DMEM supplemented with 10% fetal bovine serum, and luciferase activity measurements were performed 48 hours
post-transfection using the Dual-Luciferase Reporter Assay System (Promega).

Statistical Analysis

Data were expressed as mean ± SD. Statistical analysis was performed using SPSS software (Release 11.0, SPSS
Inc.). The difference between two groups was analyzed by the Student’s t-test. A value of p < 0.05 was considered as
statistical significance.

Fig. (1). Lentivirus infection of U87 and U251 cells. U87 and U251 cells is infected with Negative Control (NC), miR-9 expression
and SMC1A shRNA lentivirus at MOI=10. After 48~72h above 80% of infected cells presented GFP expression. Scale bar represents
400µm.
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RESULTS

MiR-9 Overexpression Reduced SMC1A Expression in U87 and U251 Cells

To determine the impact of miR-9 on SMC1A expression level, we firstly constructed lentivirus harbored mature
miR-9 sequence. We infected U87 and U251 cells with this lentivirus vector at MOI of 10 and performed qPCR and
western  blotting  analysis  in  the  infected  U87  and  U251  cells  (Fig.  1).  The  relative  miR-9  expression  level  was
normalized to a housekeeping gene U6 in the qPCR test. Results showed that it increased 7 folds in U87 cells and 30
folds in U251 cells after the lentivirus infection. With these high overexpression levels of miR-9, the mRNA level of
SMC1A in  GBM cells  was  significantly  decreased  to  15% which  is  similar  to  cells  infected  by  lentiviral  SMC1A
shRNA. To confirm the down-regulation of SMC1A by miR-9 overexpression, we further performed western blotting
analysis. The results showed that SMC1A protein expression decreased dramatically by either miR-9 overexpression or
gene knockdown with the SMC1A shRNA in GBM cells (Fig. 2).

Fig. (2). miR-9 and SMC1A expression levels in lentivirus infected U87 and U251 cells.(A) miR-9 level was significantly increased
after the lentivirus vector infection in both cell lines. SMC1A level was significantly decreased by either miR-9 overexpression or the
gene knockdown with RNAi of SMC1A (SMC1A KD, KD for knock down). The result is average of three independent replicates.
**indicates  significance  at  p<0.01.  ***indicates  p<0.005;  (B)  Western  blot  analysis  of  SMC1A  protein  levels  either  in  miR-9
overexpression or in the gene knockdown with RNAi of SMC1A.

Inhibition of Cell Growth and Increase in Apoptosis by Overexpression of miR-9

To investigate the effect of miR-9 in GBM cells, U251 cells or U87 cells were infected by negative control, miR-9
and  SMC1A  shRNA  lentivirus  vectors  respectively.  MTT  and  wound  healing  assays  were  used  to  determine  the
proliferation  and  migration  of  the  cells.  Results  showed  that  both  miR-9  overexpression  and  SMC1A  knockdown
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significantly decreased the cell growth rate and migration of U251 cells (Fig. 3).  Furthermore, we applied the flow
cytometry  method  to  determine  the  apoptosis  rate  of  both  U87  and  U251  cells.  Results  showed  that  miR-9
overexpression promotes the apoptosis of GBM cells, which is similar to that in the SMC1A knockdown group (Fig. 4).

Fig. (3). Cell viability of U251 cells. (A) MTT test of cells illustrated growth of GBM cells inhibited by SMC1A RNAi and miR-9
overexpression; (B) miR-9 overexpression and SMC1A RNAi decreased the wound healing ability of U251 cells.

Fig. (4). Apoptosis of U251 cells. miR-9 and SMC1AshRNA significantly promoted apoptosis of U251 cells. ** indicate significant
variation among miR-9, SMC1A and NC group with p<0.01.
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SMC1A Expression was Reduced by Binding of miR-9 to SMC1A 3'UTR

To validate the regulation mechanism of miR-9 on SMC1A expression, we employed a luciferase reporter assay that
linked the 3’UTR region of SMC1A to the luciferase gene. The combining sites of SMC1A 3’UTR with miR-9 were
predicted by TargetScan [21],  PicTar [22],  and TargetRank [23].  A sequential  modification of 8 nucleotides ‘seed’
region in the 3’UTR of SMC1A was used for mutant vector as a negative control. The HEK293T cells were infected by
miR-9  or  negative  control  lentivirus  vector  at  MOI  of  1  prior  to  the  luciferase  reporter  vector  transfection.  The
luciferase intensity decreased significantly miR-9 overexpression, while the mutant group showed no obvious change,
indicating that the binding of miR-9 to the wild type SMC1A 3’UTR group is required for the SMC1A transcription and
expression. This result also validated the predicted binding site of miR-9 in the 3’UTR region of SMC1A (Fig. 5).

Fig.  (5).  Validation of  SMC1A 3’UTR and miR-9 combination.  (A)  The seed sequence for  combination of  miR-9 and SMC1A
3’UTR. (B)  miR-9 overexpression showed significant suppression of Luciferase expression which linked to wildtype 3’UTR of
SMC1A. **indicates significant variation between miR-9 group versus NC group, p<0.05.

DISCUSSION

MiR-9 is an important anti-oncogene in GBM and other cancers such as leukemia, breast cancer, nasopharyngeal
carcinoma and hepatocellular carcinoma (HCC). It inhibits various processes as proliferation, metastasis and vascular
formation [24 - 29]. Increase in miR-9 expression in EGFR mutation bearing cell line leads to tumor suppression via
direct regulation of FOXP1 [13]. Moreover, miR-9 overexpression also suppressed migration and invasion of GBM
cells  by  inhibiting  MAPK  signaling  activity  [14].  In  breast  cancer  cells,  MiR-9  targeted  ZEB1  gene,  inhibited
endothelial  differentiation  pathway  and  HCC  proliferation  by  suppressing  TAZ  gene  expression.  However,  our
knowledge  of  effect  of  miR-9  on  cancer  apoptosis  is  limited.

As we previously indicated, when knocking down SMC1A expression in U87 and U251, cell proliferation and clone
formation  ability  were  dramatically  declined  [15].  In  addition,  in  vivo  experiment  indicated  that  block  of  SMC1A
impaired tumorgenesis of prostate cancer cells. SMC1A was originally identified as an essential factor for chromosome
segregation and DNA repair. Recently, accumulating evidence indicated that cohesin participated in other processes that
involved DNA looping, especially, transcriptional regulation [16, 30 - 33]. Moreover, down regulation of SMC1A in
lung adenocarcinoma cells and colorectal cancer cells induced apoptosis [16, 34]. It implied that SMC1A may play a
role in apoptosis of GBM cell lines.

In  this  study,  we  indicated  that  miR-9  overexpression  induced  apoptosis  of  GBM  cells.  As  a  computationally
predicted target of miR-9, SMC1A was also verified as an apoptotic inhibitor to GBM cell lines. We then performed
luciferase reporter assay to examine the directly binding of miR-9 to the 3”UTR region and its effects upon SMC1A
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expression in  HEK293T cells.  We found that  both  shRNA and miR-9 down regulated  SMC1A expression through
binding to the 3’UTR region of SMC1A gene, which further blocked cell growth and triggered the apoptosis of the
GBM  cell  lines.  Therefore,  miR-9  is  a  potential  therapeutic  target  for  development  of  a  new  GBM  therapy  via
promoting cancer cell apoptosis. Both artificial oligonucleotides and viral gene therapy that increase miR-9 level in
GBM cells could be considered as useful therapeutic approaches.

CONCLUSION

Taken together, the results obtained in the present study demonstrate that the microRNA miR-9 negatively regulates
SMC1A expression in GBM cells which reduces cancer cell growth and increases apoptosis. The mechanism of action
is that miR-9 binds to the 3’UTR region and inhibits the transcription and expression of SMC1A. The results indicate
that miR-9 is a potential therapeutic target for development of new therapeutics to treat GBM.
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