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Abstract: Hepatocellular Carcinoma (HCC) is one of the most common malignant tumours in the world. It is a heterogeneous group
of  a  tumour  that  vary  in  risk  factor  and  genetic  and  epigenetic  alteration  event.  Mortality  due  to  HCC in  last  fifteen  years  has
increased.  Multiple  factors  including  viruses,  chemicals,  and  inborn  and  acquired  metabolic  diseases  are  responsible  for  its
development. HCC is closely associated with hepatitis B virus, and at least in some regions of the world with hepatitis C virus. Liver
injury caused by viral factor affects many cellular processes such as cell signalling, apoptosis, transcription, DNA repair which in
turn induce important effects on cell survival, growth, transformation and maintenance. Molecular mechanisms of hepatocellular
carcinogenesis may vary depending on different factors and this is probably why a large set of mechanisms have been associated
with these tumours. Various biomarkers including α-fetoprotein, des-γ-carboxyprothrombin, glypican-3, golgi protein-73, squamous
cell carcinoma antigen, circulating miRNAs and altered DNA methylation pattern have shown diagnostic significance. This review
article  covers  up  key  molecular  pathway  alterations,  biomarkers  for  diagnosis  of  HCC,  anti-HCC  drugs  and  relevance  of  key
molecule/pathway/receptor as a drug target.
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1. INTRODUCTION

Liver cancer is one of the leading causes of cancer deaths worldwide. In recent years, the annual death toll with
700,000 has been recorded around the globe [1]. Hepatocellular Carcinoma (HCC) is the major form of liver cancer.
Risk factors for HCC include chronic HBV (hepatitis B virus) and HCV (hepatitis C virus) infections, autoimmune
hepatitis, chronic alcohol use, obesity and diabetes mellitus etc [2]. Between 1990 and 2013, about 63% increase in total
deaths has been reported globally because of viral hepatitis. Hepatitis B and C infections accounted for most of the
morbidity and mortality since it leads to progressive hepatic damage in patients and ultimately causing cirrhosis and
hepatocellular carcinoma [3].

In areas of high incidence, HCC has been reported in children of even two years of age. However, the incidence
increases with age in all populations and shows a slight decline in the elderly population. HCC shows a strong male
preference. In low incidence regions, it is four times more common in males while in high prevalence areas, it is about
eight times more common. This report may be partially ascribed to the collective effect of other factors including higher
levels of alcohol intake and smoking coupled with a higher incidence of cirrhosis in males. Animal experiments have
suggested  the  role  of  sex  hormones  and/or  hormone  receptors.  Orchidectomy  reduces  the  carcinogenic  effects  of
chemicals in male rats to the level found in females. A similar effect has been observed with stilbesterol or estradiol
pellets’ implantation but the effect was comparatively less [4].

In western countries, inborn errors of metabolism and congenital abnormalities have also contributed towards HCC
in some cases [5]. The current review describes the varied causes, molecular mechanism, biomarkers and drug targets
for the diagnosis and prognosis of hepatocellular carcinoma.
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2. GENETIC AND CONGENITAL ABNORMALITIES

Inbred strains of mice have shown genetic susceptibility to cirrhosis and liver cancer. However, in man, it has not
been documented. Chinese and Alaskan inhabitants display familial clustering of HCC [6, 7]. The occurrence of HCC is
rarely reported in congenital hepatic fibrosis, ataxia telangiectasia, familial polyposis coli, familial cholestatic cirrhosis,
fetal  alcohol  syndrome,  situs  inversus  and  neurofibromatosis  [7].  Hereditary  tyrosinemia,  an  inborn  error  of
metabolism, is associated with the maximum risk of liver carcinoma [8]. Within a short span of time, these patients
exhibited faster development of macro-nodular cirrhosis from micronodular cirrhosis, followed by dysplasia and finally
HCC.  Adenomas  may  be  associated  with  type  I  glycogen  storage  disease  but  the  occurrence  of  carcinoma  is  rare.
Carcinogenic  properties  have  been  attributed  to  iron  through  free  radical  production  [9].  An  autosomal  recessive
disorder, Wilson’s disease, has a tendency to affect male population usually and causes cirrhosis via copper build up in
the  hepatic  cells.  Deficiency of  alpha-1-antitrypsin,  a  protease  inhibitor,  is  related  to  jaundice  and cirrhosis  during
infancy, as well as with pulmonary emphysema and cirrhosis in adults [10].

3. HEPATITIS VIRUS

The hepatitis viruses are unrelated human pathogens and are referred to as types A, B, C, D and E. HCC is one
among ten most widespread cancers globally, is strongly related with HBV, and in some regions with HCV. HBV is a
small  encapsulated  DNA  virus  having  unusual  reverse  transcriptase  activity  [11,  12].  It  belongs  to  family
hepadnaviridae  and  has  eight  genotypes,  A  to  H  which  have  separate  geographic  distribution.  It  contains  four
overlapping transcription units encoding the nucleocapsid or core proteins consisting of the hepatitis B core antigen
(HBcAg),  the envelope proteins  consisting of  the Hepatitis  B surface Antigen (HBsAg),  the polymerase and the X
protein (HBx) which has transcriptional trans-activating potential. The infectious viral particle, also known as Dane
particle, is a spherical, double walled structure (diameter 42 nm) having a lipid envelope with HBsAg surrounding an
inner nucleocapsid consisting of hepatitis B core antigen (HBcAg) complexed with a virally encoded polymerase and
the viral DNA (Fig. 1) HBV genome is 3.2 kb in size and made up of a partially double-stranded circular DNA. The 5′
terminus of the minus strand is covalently attached to the viral polymerase.

Fig. (1). Structure of HBV.

Hepatitis C Virus (HCV) is also a member of hepadnaviridae family. It contains a positive, single-stranded RNA
genome having two untranslated regions at the 5' and 3' ends, and a large open reading frame encoding for a 3,010 to
3,030 amino acid polyprotein [13].

3.1. Mode of Transmission and Replication Cycle

Contaminated food or water acts as a source for spreading Hepatitis A and E. Transmission of hepatitis B, C and D
generally takes place through the infected body fluids. These viruses are usually transmitted through transfusion of
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infected blood, use of contaminated equipment during surgery, and sexual contact. HBV is also transmitted from mother
to  child  during  parturition.  Acute  infection  may  be  symptomatic  or  non-symptomatic.  Symptoms  include  yellow
colouration of eyes, skin and urine, intense weakness, abdominal pain, nausea, and vomiting [14]. The HBV infection
involves an initial step that is attachments of mature virion to the host cell surface, with the help of preS domain of the
surface protein [15].  Various factors have been suggested to act  as receptors for viruses in the cell.  However,  only
carboxypeptidase D mediated viral entry has been revealed during duck HBV infection [16]. Disassembly of the virus
and mechanism of intracellular nuclear transport for the viral genome are not clearly understood and nucleocapsid core
protein  modification  has  been  implicated  in  the  process  [17].  After  nuclear  import  viral  DNA  is  converted  to  the
covalently closed circular DNA (cccDNA) (Fig. 2) [18]. The cccDNA transcripts do not undergo splicing and have a
polyadenylated  structure  with  a  5'  cap.  Two different  5'  ends  are  present  in  the  genomic  transcripts  (3.5kb)  which
consist of two species i.e., the pregenomic RNA (pgRNA) and the precore RNA. The pgRNA serves as messenger RNA
for core and polymerase as well as the template for reverse transcription. The pre-core RNA is translated into the pre-
core gene products. Through ribosomal scanning mechanism of the pgRNA, the pol start codon initiates the polymerase
translation [19]. The 2.4kb subgenomic RNA produces large HBsAg protein, 2.1kb RNAs produce the middle HBsAg
(M-HBsAg) and small HBsAg (S-HBsAg) proteins, and 0.7kb RNA is translated to the HBxAg protein.

Fig. (2). Replication cycle of HBV.

4. MOLECULAR MECHANISM OF HEPATOCELLULAR CARCINOMA

HCC  is  the  outcome  of  many  variable  etiological  factors  such  as  HBV,  HCV,  alcohol,  aflatoxins,  inborn  and
acquired  metabolic  diseases.  The  carcinoma  might  originate  in  mature  liver  cells  or  progenitor  cell.  Hence,  the
molecular basis of HCC progression may differ depending on diverse factors and therefore, a number of mechanisms
might be involved [20]. Some important mechanisms associated with the hepatocellular carcinogenesis are described
below.

4.1. Loss of Cell Cycle Control

Loss  of  cell  cycle  control  is  a  general  feature  observed  in  all  cancerous  cells.  This  leads  to  an  increased
multiplicative tendency, hyperplasia,  and subsequent tumour formation.  Normal liver cells  primarily live in the G0
phase (quiescent phase) of the cell cycle and renewed slowly. However, they possess the strong regenerative ability and
after getting mitogenic signals, they enter the cell cycle and proceed to cell division [21]. Advancement through the
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eukaryotic  cell  cycle  phases  is  governed  by  the  combined  actions  of  cyclins  and  cyclin-dependent  kinases  (Cdk).
Cytokines and growth factors promote de-novo expression of cyclin D1 gene which is responsible for the transition of
quiescent hepatocytes into the cell cycle [22, 23]. Many regulatory checkpoints apply the brake on free proliferation and
avert quiescent hepatocytes from entry in the cell cycle (Fig. 3). As depicted in Fig. (3), retinoblastoma (pRb) and other
proteins bind to and seize E2F transcription factors and thereby repress its activity [24]. Entry into the cell cycle is also
prevented  by  the  Ink4  family  of  Cdk  inhibitors  (p15/16/18/19)  by  binding  to  Cdk4/6  kinases  and  inhibiting  the
formation  of  cyclin  D-Cdk4/6  complex  [25].  Binding  of  CDK  interacting  protein  (Cip)/Kinase  inhibitory  protein
(Kip)family inhibitory proteins p21/27/57 with Cdk/cyclin complexes inactivates it and inhibits cell cycle advancement
[26]. A “proliferation cluster” has been identified in gene expression profiles of HCC samples which accounted for
increased expression of proliferation-associated genes [27, 28]. Abnormalities that decrease the expression levels of
p16/pRb genes or hamper their protein functions eventually cause tumorigenesis because p16/pRb pathway manages
entry into cell cycle. Altered expression of the pRb is a universal phenomenon in HCC [29]. It has been reported that
the expression levels of CIP/KIP family member proteins p21/27 are frequently reduced in HCC samples [30].

Fig.  (3).  The downward  arrows  indicate  decreased  expression  of  Ink4  family  of  Cdk inhibitor  (p16)  and  Cip/Kinase  inhibitory
protein (Kip) family inhibitor (p21/27) during hepatocarcinogenesis. Release of E2F transcription factor leads to G1 to S transition.

4.2. Loss of Senescence Control

Senescence  is  a  type  of  irreversible  growth  inhibition  of  cells  in  cell  culture  showing  distinct  morphological
alterations [31]. In hepatocytes, mechanism of senescence is not clearly understood. Replicative senescence controls
partial proliferative ability of liver cells by a gradual decrease in the telomeric segment [32]. Telomere-independent
mechanisms have also been suggested for hepatocyte senescence monitored in severe chronic liver diseases and these
include free radical and oncogene-dependent senescence The resulting DNA damage activates ATM/Chk/p53 pathway
and arrests cells at G1 phase. Alternatively, the p16/pRb pathway also performs the same function. Anomalies in DNA
damage checkpoint and cell cycle regulatory pathway paved a way for the unlimited proliferation of genetically altered
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hepatic cells at the senescent phase and subsequently to malignant transformation. (Fig. 4).

Fig. (4). The proposed model of hepatocellular carcinoma development.

In human HCC, the p53 pathway has an effect on many levels i.e., (a) about 50% aflatoxin-mediated HCC cases
exhibit p53 mutations while 20–30% cases of non-aflatoxin mediated HCC show p53 mutations; (b) microdeletions of
p14ARF rarely occurs in HCC with p53 mutation while it is reported in 15-20% of human HCC; (c) human HCC also
shows elevated Mdm2 expression; (d) over expression of gankyrin, an oncoprotein, is commonly observed in human
HCC, which imposes restriction on the pRb and p53 [33].

pRb pathway anomalies (p16, p15 or RB1 genes) are observed in more than 80% of human HCC. The anomalies
include  p16/15  promoter  methylation  and  deletion  or  mutation  of  RB1  gene.  Promoter  methylation  causing  p16
repression is the most common anomaly [34]. Telomerase activation occurs during the transformation of precancerous
lesions to HCC. Telomere-dependent senescence arrest in hepatocytes is frequently observed in cirrhosis. Reactivation
of Telomerase Reverse Transcriptase (TERT) acts as a bypass for HCC growth. TERT is absent in normal hepatocytes,
hence 90% human HCC show telomerase activation, a rate-limiting step for the commencement of cell immortality
[35].  Deregulation  of  TERT  expression  by  integration  of  HBV  DNA  into  TERT  gene  is  a  rare  phenomenon  [29].
Besides, HBV surface proteins (viral X and PreS2) and HCV core protein may increase the activity of telomerase [36].
The  above-mentioned  facts  indicate  the  cooperation  between  the  anomalies  in  telomerase  activity  and  senescence
controlling genes (p53) during the hepatocarcinogenesis.

4.3. Dysregulation of Apoptosis

Cell death resulting from liver injury may be either accidental (necrotic), programmed (apoptotic), or uncontrolled.
Extrinsic or intrinsic pathways initiate apoptosis by activating caspases 3, 6 and 7 [22, 37]. Death receptors mediate
resistance towards apoptosis in HCC cells. The majority of the HCCs show one or more alterations in the Fas pathway
molecules, which inhibit Fas-mediated apoptosis. HCC cells or tissues become unresponsive to Fas by downregulating
Fas  expression  resulting  in  reduced  expression  of  FADD  or  FLICE  or  increased  expression  of  cellular
FLICE/caspase-8-inhibitory protein (cFLIP), or by upregulation of nuclear factor-kappa B (NF-κB), Bcl-2 or Bcl-XL and
Mcl-1 [38 - 40]. Pro-apoptotic proteins (Bax or Bcl-XS) are downregulated in HCC. The TGF-β pathway is regularly
stimulated  at  the  cirrhosis  stage  and  promotes  apoptosis  by  activating  Smad3  mediated  Bcl2  downregulation  and
thereby reducing the susceptibility towards HCC development [41]. Insulin-receptor signalling and activation of the
PI3K-Akt  pathway  might  also  be  involved  in  resistance  towards  apoptosis  [42].  The  insulin-like  growth  factor  2
receptor (IGF2R) reduces cell division by stimulating TGF- signalling and breakdown of the IGF2 mitogen [43]. During
the initial phase of human hepatocarcinogenesis heterozygosity in IGF2R locus is frequently lost [44]. In human HCCs
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loss of IGF2R and overexpression of IGF2 growth factor are common features. Stimulation of the Akt signalling and
reduced expression of a negative regulator of Akt i.e., phosphatase and tensin homolog (PTEN) have been described in
40-60% HCC cases [45].

4.4. Liver Inflammation and Hepatocarcinogenesis

Most of the studies suggest that liver injury in viral hepatitis does not result from the direct cytopathic effects of
viruses but caused by the viral protein-mediated host immune response [46]. Animal studies have provided ample proof
that viral hepatitis is triggered by an antigen-specific intrahepatic cellular response that set in motion a series of antigen-
nonspecific cellular and molecular effector systems. Cellular and humoral limbs of the immune system work towards
viral clearance by three different mechanisms: firstly, the virus-specific T-cell mediated direct destruction of infected
hepatocytes; secondly, the removal of free viral particles from the circulation by the antibody response; and thirdly,
non-cytopathic  viral  inactivation  in  infected  hepatocytes  by  some  inflammatory  cytokines  produced  by  activated
mononuclear cells [47]. Recent evidence suggests that NF-κB signalling mediated inflammation plays an essential role
in commencement, promotion and development of tumours [48].

4.4.1. Cytokines

Various inflammatory cytokines viz., interleukin-1α (IL-1α), IL-1β, IL-6, IL-8 and tumour necrosis factor-α (TNF-
α), participate in chronic hepatic inflammation. Among these, IL-6 is the most important and is produced by activated
kupffer cells in chronic hepatitis. It results in local inflammatory response and activates hepatocyte proliferation leading
to cancerous hepatocytes [49]. In chronic liver diseases such as HBV and HCV induced hepatitis, alcoholic hepatitis
and non-alcoholic steatohepatitis increased serum IL-6 levels have been observed. These reports highlight the vital role
played  by  IL-6  in  human  hepatocarcinogenesis.  IL-6  knockout  mice  exhibited  a  significant  reduction  of
diethylnitrosamine  (DENA)-initiated  HCC  development,  suggesting  a  direct  involvement  of  IL-6  signalling  in
experimental  hepatocarcinogenesis.  Role  of  innate  immune  response  in  the  hepatocarcinogenesis  has  also  been
demonstrated by IL-6 production via stimulation of Toll-Like Receptor (TLR) mediated through MyD88in rodents [50].

4.4.2. NF-κB Pathway

NF-κB, a transcription factor, plays a key role in innate immunity and liver inflammatory signalling pathways [51,
52]. It is activated by cytokines or interleukins such as TNF-α, IL-6 and IL-1β, viral and bacterial DNA and RNA and
pathogen-derived lipopolysaccharides. NF-κB dimer formed after activation undergoes nuclear translocation, attaches
with  particular  DNA  segment,  and  triggers  transcription  of  genes  related  to  immune  responses,  inflammation,
proliferation and survival of cells [53, 54]. In all chronic liver diseases viz., alcoholic/non-alcoholic/biliary liver disease
and viral hepatitis NF-κB gets activated [55]. It has been demonstrated that inducible IκB super-repressor mediated NF-
κB inhibition reduced hepatic tumour development in chronic inflammation induced Mdr2 knockout mouse, the animal
HCC model [56, 57]. The liver tumour-promoting activity of NF-κB has been validated in another inflammatory HCC
model  i.e.,  hepatocyte-specific  lymphotoxin  αβ  transgenic  mouse  model.  In  this  model,  NF-κB  was  inhibited  by
hepatocyte-specific deletion of IKK-β which resulted in entirely reduced HCC progression [58].

5. Characterisation of Hepatocellular Carcinoma: Biomarkers

With the vast input of knowledge about tumour biology, curiosity for identifying HCC related molecular markers
has increased. During the new era of “omics”, the emergence of a number of cutting-edge technologies such as next-
generation sequencing and microarray has advanced the search for biomarkers [59 - 61]. These technologies have given
an advantage in examining the tumour genome (single nucleotide polymorphism, variations in copy number, aneuploidy
and loss of heterogeneity), transcriptome, proteome, epigenome, metabolome, and miRNA profile [62 - 64]. Currently,
several markers in blood and tissue have been identified [65, 66]. A detailed account of various HCC markers is given
below.

5.1. Metabolic Biomarkers

5.1.1. α-Fetoprotein

Since the discovery of α-fetoprotein (AFP) in the serum of HCC patients, AFP is considered as the most important
biomarker  for  assessment  of  HCC  [67].  It  is  a  glycoprotein  (MW  70  kDa)  responsible  for  transport  of  several
compounds viz., steroids, bilirubin, retinoid, fatty acids, flavonoids, heavy metals, dioxin, dyes, phytoestrogens, drugs



HCC: Mechanism of Progression and Biomarkers Current Chemical Genomics and Translational Medicine, 2018, Volume 12   15

etc [68]. It is produced by the fetal liver, yolk sac and intestine during development [69]. During 12-16 weeks of fetal
development, AFP in serum reaches the highest concentration (3 g/L). Subsequently, there is a rapid decline in the
levels and only traces are detectable in serum [70]. Unusually elevated serum AFP levels find a correlation with the
malignant diseases including HCC [71, 72]. AFP is found in three glycoforms based on lectin binding pattern i.e., the
non-binding fraction AFP-L1, the weak binding fraction AFP-L2, and the binding fraction AFP-L3. Liver cirrhosis and
chronic hepatitis show elevated levels of AFP-L1, whereas in HCC AFP-L3 is notably increased. Only cancer cells
produce AFP-L3 hence, it is regarded as specific HCC biomarker [73, 74].

5.1.2. Des-γ-Carboxyprothrombin (DCP)

Des-γ-carboxyprothrombin (DCP) is  an abnormal form of  prothrombin and also called prothrombin induced by
vitamin K absence-II (PIVKA II). The production of DCP stems from a defective vitamin K-dependent posttranslational
carboxylation system, which induces the malignant transformation of HCC cells [75]. Normal prothrombin function of
DCP  is  lost  and  it  supports  malignant  growth  in  HCC.  Serum  DCP  levels  in  patients  (benign  and  malignant  liver
diseases)  varies  considerably.  Its  sensitivity  as  a  diagnostic  agent  might  be  better  than AFP.  This  result  still  needs
validation [76].

5.1.3. Glypican-3

Glypican-3 (GPC3) belongs to the glypican family of heparan sulfate proteoglycans. Glycosyl-phosphatidylinositol
anchor links it to the cell membrane [77]. GPC3 is responsible for cell proliferation, survival, and tumour suppression,
but  is  normally  absent  in  healthy  and  non-malignant  hepatocytes.  GPC3 acts  as  a  biomarker  for  different  types  of
cancers.  It  is  upregulated in  HCC whereas  it  is  downregulated in  lung adenocarcinoma,  ovarian cancer,  and breast
cancer [78, 79]. In HCC, it has been suggested to act as growth stimulator by upregulating autocrine/paracrine canonical
Wnt signalling [80].

5.1.4. Golgi Protein-73 (GP73)

GP73 (MW 73kDa) is present in the Golgi complex as a transmembrane glycoprotein. It is expressed in normal
biliary epithelial cells whereas it is not expressed in normal hepatocytes. In hepatic diseases such as HCC, its expression
is considerably enhanced [81]. It has been reported that serum GP73 in HCC patients was appreciably greater than in
normal healthy persons and HBV carriers [82].

5.1.5. Squamous Cell Carcinoma Antigen (SCCA)

Squamous Cell Carcinoma Antigen (SCCA) belongs to the family of serine protease inhibitors found in squamous
epithelium  and  in  cervical  carcinoma.  Epithelial  tumours  exhibit  higher  expression  of  SCCA  and  act  as  an  anti-
apoptotic  agent  [83].  Dedifferentiation  results  in  SCCA  expression  and  it  is  considered  as  a  prospective  HCC
biomarker. It has been reported that HCC patients showed higher serum SCCA levels than patients with cirrhosis [84].
An  alternative  prospective  marker  is  the  SCCA  complexed  with  IgM  (SCCA-IgM).  During  the  early  phase  of
hepatocarcinogenesis,  its  expression  is  increased.  Reports  based  on  serum  samples  collected  from  HCC/cirrhosis
patients and healthy volunteers, SCCA-IgM got a higher sensitivity value than AFP, but a lower specificity in HCC
diagnosis. Therefore, SCCA-IgM may be an important serum biomarker for early detection of HCC [85].

5.2. Genetic and Epigenetic Events in HCC

HCC initiation and progression is associated with genetic alteration. The permanent genetic abnormalities build up
in  hepatocytes  and  cause  disrupted  gene  expression  which  ultimately  leads  to  cancerous  transformation.  Genetic
alterations include large chromosomal translocation, amplification, single nucleotide variation, small fraction loss and
deletion. The genetic changes frequently cause the loss of function or activation of oncogenes or tumour suppressor
genes.  Contrary  to  genetic  alterations,  no  change  in  the  genome sequence  is  found  in  epigenetic  regulations  but  it
influences the chromatin structure and transcription of the gene. Gene products are affected at transcriptional and post-
transcriptional levels during epigenetic regulations which include DNA methylation, histone modification, and lncRNA.
This provides greater diversity to the gene regulation [86].

5.2.1. Chromosomal Instability

In HCC, chromosomal instability is the most frequently observed genetic changes. It could be promoted by either
error during mitosis or disruption in DNA replication and repair processes. The chromosome abnormalities include
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amplification/deletion of small chromosomal segments or gain/loss of whole chromosome arms. Comparative genomic
hybridization  data  in  HCC  represent  frequent  amplification  of  chromosome  1q  and  8q,  while  the  frequent  loss  of
chromosome 1p, 4q, 6q, 9p, 16p, 16q, and 17p (Table 1) [87]. Chromosome 1q amplification in HCC is a characteristic
feature of chromosome abnormalities.  In a large number of HCC patients,  the chromosome 1q21 region containing
CHD1L (an  oncogene)  was  reported  to  be  amplified  [110].  CHD1L is  associated  with  oncogenic  functions  during
hepatocarcinogenesis  such  as  anti-apoptotic,  mitosis  regulation,  and  stimulating  cell  epithelial-to-mesenchymal
transition [88, 111]. In HCC chromosome, 8q24 region is another highly amplified region which contains oncogenes
including c-Myc and PTK2 [98, 99, 112]. SGK3A, a serine/threonine kinase, having similarity with AKT is commonly
amplified in HCC which provides AKT independent oncogenic roles [100]. Segmental loss of chromosome 1p35-36
region containing many tumour suppressors (14-3-3 σ and Rb-interacting zinc finger 1) is also commonly found in
HCC. Short arm loss of chromosome 8 (a minimal region of 8p21-22 containing DLC-1) is a common feature in HCC.
Because  of  promoter  hypermethylation  and  allele  loss,  DLC-1  is  recurrently  deleted  in  HCC tissues  [113].  DLC-1
expression restoration in hepatoma cells could induce cell apoptosis, and inhibit tumour growth [114].

Table 1. Chromosomal aberration in hepatocellular carcinoma.

Chromosome Candidate target gene and their location Aberration type Reference

1q

CSK1B(1q21.2)

Gain [88, 89]
CHD1L(1q21.1)

JTB(1q21)
MDM4(1q32.1)

1p
p18(1p32)

Loss [90 - 92]p73(1p36.3)
RIZ(1p36.13-p36.23)

3q Gankyrin (3q28) Gain [33]

3p
ROSSF1A(3p21.3)

Loss of heterogeneity, CpG methylation [93, 94]CTNNB1(3p21)
TGF-1βR11(3q22)

4q Loss of heterogeneity [95]
6p Gain [96]
6q M6P/IGF2R (6q26-q27) Loss of heterogeneity [97]

8q

c-Myc (8q24.21)

Gain [98.99,100]
PTK2 (8q24.3)

EIF3S3 (8q23.3)
SGK3 (8q13.1)

8p
DLC-1 (8p21.3-22)

Loss of heterogeneity, CpG methylation [101]LPTS (8p23)
CSMD1 (8p23.2)

9p
CDKN2A (9p21)

Loss of heterogeneity, CpG methylation [102]
CDKN2B (9q21)

11q cyclinD1 (11q13) Gain [103]
10q PTEN/MMAC1 (10q23.3) Loss of heterogeneity [104]

11p
KAI1 (11p11.2)

Loss of heterogeneity, CpG methylation [105]IGF-2 (11p15)
TSLC1 (11p23.2)

13q

Rb1 (13q14.2)

Loss of heterogeneity [106, 107]

BRCA2 (13q12.3)
Tg737 (13q12.1)
TFDP1 (13q34)
CUL4A (13q34)
CDC1 (13q34)

16q CDH1 (16q22.1) Loss of heterogeneity, CpG methylation [102]

16p
Axin1 (16p13.3)

CpG methylation [108]
SOCS-1 (16p13.3)
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Chromosome Candidate target gene and their location Aberration type Reference

17p
p53 (17p13.1)

Loss of heterogeneity [103, 109]HIC-1 (17p13.3)
HCCS1 (17p13.3)

5.2.2. Circulating miRNAs

MicroRNA (miR), a class of non-coding RNAs, has been identified as important regulators of gene expression at
post-transcriptional  levels.  Role of circulating miRNAs in serum as cancer biomarkers were described in 2008 and
overexpression  of  miR-155,  miR-21  and  miR-210  were  observed  in  B-cell  lymphoma  patients  [115].  Abnormal
expression of HCC development and progression related miRNAs and their role is under investigation. miR-122 and
miR-221 regulate the cell cycle by modulating cyclins or cdk [116, 117]. Pro-apoptotic proteins (Bmf) are targets of
some  miRNAs  (miR-221)  which  help  HCC  cells  to  avoid  apoptosis  [118].  However,  some  miRNA  (miR29)  can
promote  HCC  apoptosis  by  targeting  the  Bcl-2  and  Mcl-1,  the  anti-apoptotic  proteins  [119].  The  most  important
characteristics of HCC i.e., invasion and metastasis are also regulated by miRNAs. Cell migration and spreading in
HCC is promoted by pro-metastatic miRNAs e.g., miR-106b induces cell migration and invasion in HCC by activating
epithelial-mesenchymal transition process [120]. Metastasis and HCC progression are suppressed by let-7g, miR-139,
and miR-195 [121]. Unusually expressed miRNAs and their roles are given in Table 2.

Table 2. Aberrantly expressed miRNA and their reported target genes.

S.N miRNAs Validated Gene targets Function of miRNAs Expression of
miRNAs References

1 miR-21 PTEN, RECK, PDCD4 Anti-apoptotic activity, promotes metastasis and
invasion [122, 123]

2. miR-106b E2F1, RhoGTPases, RhoA, RhoC Promotes cell migration and actin stress fibre
formation [120]

3. miR-17-5p p38, MAPK pathway, E2F-1, c-MYC Promotes malignancy and metastasis [2, 124]

4. miR- 151 RhoGDIA, FAK, Promotes tumour metastasis and invasion [125, 126]

5. miR-122 CyclinG1, ADAM10, SRF, IGF1R, PTTG1, PBF,
CUTL1,NDRG3,MDR-1

Responsible for inhibition of virus replication and
cell proliferation [127, 128]

6. miR-143 FNDC3B Promotes tumour metastasis [129]

7. miR-210 VMP1 Promotes hypoxia induced epithelial to
mesenchymal transition [130]

8. miR-29 MEG3, Bcl-2, Mcl-1 Promotion of apoptosis and
inhibition of tumour growth [119]

9. let-7 cMyc, p16, Bcl-xl, COLIA2 Inhibit cell growth and proliferation [131]

10. miR-26a Cyclin D2, Cyclin E2,
Cyclin E1,CDK6, IL-6 Inhibit metastasis, invasion and tumour growth [132]

11. miR-221 CDKN1B/p27,CDKN1C/p57, DDIT4,PTEN, Bmf,
TIMP3, PPP2R2A

Anti-apoptotic, help in metastasis and tumour
growth. [118, 133]

12. miR-1 FoxP1, MET, HDAC4 Inhibition of cell growth and
reduced replication potential [134]

13. miR-195 cyclin D1, CDK6, E2F3, LATS2,VEGF, VAV2,
CDC42, IKKα and TAB3, TNF-α/NF-κB pathway

Inhibit metastasis, G1/S transition, angiogenesis
and helps in apoptosis. [135]

14. miR-45 OCT4, IRS1, IRS2, IGF signaling,HDAC2 Inhibit cell proliferation,
migration, and invasion [136, 137]

15. miR-224
API-5, CDC42, CDH1, PAK2, BCL-2,MAPK1,

PPP2R1B.
.

Promote cell proliferation,migration, invasion,
andinhibit cell apoptosis [138, 139]

5.2.3. Altered DNA Methylation Pattern

Abnormal DNA methylation is recurrently observed in human carcinomas. Methylation of cytosine residues in the
promoter  region  takes  place  at  CpG islands  by  DNA Methylase  (DNMT).  However,  in  tumour  cells,  the  promoter

(Table 1) contd.....
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methylation pattern is usually changed. Aberrant DNA methylation in the promoter regions of tumour suppressor genes
results  in  transcriptional  silencing  and  genomic  instability  by  inhibiting  the  binding  of  RNA  polymerase  and
transcription factors [86, 140, 141]. Hypermethylation is commonly observed at CpG islands in the promoter region of
tumour  suppressor  genes  in  HCC.  Suppressor  of  cytokine  signalling,  which  regulates  the  JAK/STAT  signalling
pathway, was found to be silenced in more than 60% of HCC patients due to promoter hypermethylation [142]. It has
been  reported  that  multiple  tumor-related  genes,  such  as  the  APC,  E-Cadherin  and  Hypermethylated-In-Cancer
(HIC)-18 genes, are silenced by DNA hypermethylation in HCC [143, 144]. Stepwise increase in methylation of several
genes was observed with the cancer progression. Upregulation of oncogenic signalling pathways such as JAK/STAT,
Ras,  and  β-catenin/Wnt  takes  place  by  silencing  tumour  suppressors  epigenetically  in  HCC  has  been  revealed  in
genome-wide DNA methylation analysis [145].

6. Drug targets in HCC

6.1. Multikinase Inhibitors

Sorafenib (BAY43-9006, Nexavar) is multikinase inhibitor with dual inhibitory activity against RAF/MEK/ERK
(Raf-1,  B-Raf)  in  the  tumour  cell  and  vascular  growth  factor  inhibitor  family  (VEGFR1,  VEGFR2)  and  platelets
derived  growth  factor  receptor  (PDGFR,  c-Kit)  which  promote  tumour  progression  and  angiogenesis.  Therefore,
sorafenib acts  either  directly  on the tumour or  on angiogenesis  and inhibits  tumour growth [146].  Sunitinib malate
(SU11248, Sutent; Pfizer, NY, USA) and Linifanib (ABT-869) are also oral multikinase inhibitors that act on growth
factors and receptor tyrosine kinases involved in angiogenesis and HCC progression [147, 148].

6.2. Inhibitors of Mesenchymal-Epithelial Transition factor (MET) Receptor

C-MET is a protein, encoded by MET oncogene, possesses tyrosine kinase activity involved in tumour development
and  metastasis  [149].  Tivantinib  (ARQ  197)  and  cabozantinib  are  MET  inhibitors  that  act  by  binding  to  its
dephosphorylated state which is responsible for inhibition of growth and apoptosis in human tumour cell line [150,
151].

6.3. Angiogenesis Inhibitors

HCC is characterized by hyper vasculature resulting from higher expression of angiogenesis promoting factors viz.,
angiopoietin 2, PDGF, and VEGF [152]. Bevacizumab (Avastin; Genentech, CA, USA) is a humanised monoclonal
antibody (mAb) acting on VEGF and one of the important drugs for colorectal cancer and liver metastasis of colorectal
cancer [153].  Brivanib (BMS-582664),  an inhibitor of VEGF and FGF signalling has shown efficacy as a first-line
treatment for advanced HCC patients [154]. Ramucirumab (Cyramza), a mAb, is an inhibitor of VEGFR-2 [155].

6.4. PI3K/Akt/mTOR Inhibitors

Immunohistochemistry has shown that approximately 50% of HCC patients have activated mTOR pathway. This
activation may be the result of increased signalling due to overexpression of ligands (EGF, IGF1, and IGF2) or may be
due to mutant oncogenes (PI3KCA) or tumour suppressor genes (PTEN). Temsirolimus and Everolimus, an analogue of
rapamycin are the inhibitors of mTOR [156].

CONCLUSION

HCC is common and aggressive malignant tumour worldwide with a dreadful outcome. Multiple factors including
viruses, chemicals as well as inborn and acquired metabolic diseases are responsible for its development. HBV and
HCV are the major risk factors for virus-induced HCC development through direct or indirect mechanisms. HBV DNA
integration into the host genome induces genomic instability and eventually directs insertional mutagenesis. Epigenetic
changes targeting the expression of tumour suppressor genes also occur early in the development of HCC. Since HCC is
a complex disease, therefore it is difficult to characterize HCC with a single biomarker. Several diagnostic markers
including α-fetoprotein,  des-γ-carboxyprothrombin,  glypican-3,  golgi  protein-73,  squamous cell  carcinoma antigen,
miRNAs and altered DNA methylation pattern are associated with HCC. Thus, the investigation on a combination of
biomarker might provide valuable insight for diagnosis and prognosis. Sever drug classes acting on various targets like
multikinase inhibitors, MET receptor inhibitor, angiogenesis inhibitors and mTOR inhibitors have shown efficacy in the
treatment of HCC patients. Further researches on HCC are necessary to identify new biomarkers and drugs for early
diagnosis and effective treatment.
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