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Abstract: We describe the application of a new QSAR (quantitative structure-activity relationship) formalism to the 

analysis and modeling of PDE-4 inhibitors. This new method takes advantage of the X-ray structural information of the 

PDE-4 enzyme to characterize the small molecule inhibitors. It calculates molecular descriptors based on the matching of 

their pharmacophore feature pairs with those (the reference) of the target binding pocket. Since the reference is derived 

from the X-ray crystal structures of the target under study, these descriptors are target-specific and easy to interpret. We 

have analyzed 35 indole derivative-based PDE-4 inhibitors where Partial Least Square (PLS) analysis has been employed 

to obtain the predictive models. Compared to traditional QSAR methods such as CoMFA and CoMSIA, our models are 

more robust and predictive measured by statistics for both the training and test sets of molecules. Our method can also 

identify critical pharmacophore features that are responsible for the inhibitory potency of the small molecules. Thus, this 

structure-based QSAR method affords both descriptive and predictive models for phosphodiesterase-4 inhibitors. The 

success of this study has also laid a solid foundation for systematic QSAR modeling of the PDE family of enzymes, which 

will ultimately contribute to chemical genomics research and drug discovery targeting the PDE enzymes.  

INTRODUCTION 

 The cyclic nucleotide phosphodiesterases (or PDE’s) 
comprise a group of enzymes that degrade the phosphodi-
ester bond in the second messenger molecules cAMP and 
cGMP. They regulate the localization, duration, and ampli-
tude of cyclic nucleotide signaling within subcellular do-
mains. Thus, PDE’s are important regulators of signal trans-
duction mediated by these second messenger molecules [1-
3]. 

 According to their sequence homology, substrate speci-
ficity and pharmacological properties, the PDE enzymes are 
classified into 11 families (i.e., PDE1 - PDE11) [2]. Even 
though different subtypes of this super-family are function-
ally related, they do have different substrate specificities. For 
example, PDE-4, PDE-7 and PDE-8 are cAMP selective, 
whereas PDE-5, PDE-6 and PDE-9 are cGMP selective. 
Other members of this family (e.g., PDE-1, PDE-2, PDE-3, 
PDE-10 and PDE-11) can hydrolyse both cAMP and cGMP.  

 Phosphodiesterases have proven to be a therapeutically 
important class of drug targets. Sildenafil is an inhibitor of 
cGMP-specific phosphodiesterase (PDE-5) and used to treat 
erectile dysfunction (ED) [4]. Inhibitors of PDE-4 have been 
explored as potential drugs for chronic obstructive pulmo-
nary disorder (COPD) [5]. Inhibitors of other PDE enzymes 
are being explored for coronary heart disease [6], dementia, 
depression, and schizophrenia [7]. Thus, there are continuing 
interests in discovering novel inhibitors of PDE enzymes that 
are potent and selective for specific subtypes. 
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 We have been interested in modeling the inhibitors of 
PDE-4 due to their potential in treating neurodegenerative 
diseases and cognitive disorders. PDE-4 selectively hydro-
lyzes cAMP and has been mostly targeted for the treatment 
of inflammation, and in particular chronic obstructive pul-
monary disorder (COPD) [5]. However, selective phos-
phodiesterase-4 (PDE-4) inhibitors have been demonstrated 
recently as novel agents to treat memory deficit [8] and neu-
rodegeneration [9]. Preclinical studies indicate that these 
PDE-4 inhibitors can counteract deficits in long-term mem-
ory caused by pharmacological agents, aging or over-
expression of mutant forms of human amyloid precursor 
proteins [9]. Although a number of major advances have 
been made with respect to PDE-4 inhibition, most of the 
PDE-4 inhibitors have unacceptable side effects, particularly 
nausea and emesis [10, 11]. Thus, it is critically important to 
understand the structural determinants of potent and selec-
tive PDE-4 inhibitors, so that we can rationally design new 
molecules that minimize the undesirable side effects.  

 Most PDE-4 inhibitors can be classified into three struc-
tural families: rolipram-related compounds, xanthine deriva-
tives and nitraquazone analogues [12]. This structural diver-
sity suggests that the binding site of the PDE-4 enzyme pre-
sents a number of alternative pharmacophores that are capa-
ble of interacting with different classes of small molecule 
inhibitors. Many investigators have tried to understand the 
structural basis for PDE-4 inhibition (both potency and se-
lectivity) by constructing 3D QSAR (quantitative structure-
activity relationship) models based on known PDE-4 inhibi-
tors [12-16]. Even though these models provided preliminary 
pharmacophoric insights into PDE-4 inhibitors, the absence 
of the 3D structure of the target enzyme (i.e., PDE-4) in 
these models poses a major limitation on the reliability and 
interpretability of these models. Other traditional 2D QSAR 
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Table 1. Molecular Structures and Inhibition Activities (-logM) of the Data Set 
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analyses often result in only statistical models with little to 
offer in terms of structural insights that the medicinal chem-
ist can use to optimize the inhibitors [12, 17]. Thus, it is 
highly desirable to develop structure-based, both descriptive 
and predictive models.  

 Here, we describe the application of a new QSAR 
method to the analysis and modeling of PDE-4 inhibitors. 
This method takes advantage of the X-ray structural informa-
tion of the target enzyme (i.e., PDE4) to characterize its 
small molecule inhibitors. Other groups have published dif-
ferent methods to conduct conceptually similar QSAR analy-
sis on other targets, notably the work by Hopfinger’s group 
and Cruciani’s group [18-22]. Our method derives the phar-
macophoric centers from the 3D structure of PDE-4’s bind-
ing pocket, and uses them as pharmacophore reference. It 
then generates structure-based pharmacophore key (SB-
PPK) descriptors for the inhibitors based on their pharma-
cophoric matching patterns with the above reference. We 
have analyzed 35 indole derivative-based PDE-4 inhibitors 
[15]. Partial Least Square (PLS) analysis has been employed 
to obtain the predictive models measured by both the train-
ing set and test set statistics [23]. We will compare our re-
sults with previous studies of the same data set by more con-
ventional methods and highlight some novel aspects of our 
approach.  

METHODS AND MATERIALS 

Dataset 

 35 indole derivative-based PDE-4 inhibitors [15] were 
used in this study. The molecular structures and their bio-
logical activities against PDE-4 are given in Table 1. The 
compounds contain an indole moiety which replaces the 
“rolipram-like” 3-methoxy-4-cyclopentoxy motif. The ac-
tivities were determined from measurement of serum TNF-  
levels in LPS challenged mice (mouse endotoxemia model) 
[24]. 

 This dataset covers a variety of molecules with various 
levels of inhibitory activities against PDE-4. Fig. (1) shows 
the activity distribution of the 35 indole derivatives. To de-
velop and rigorously validate a QSAR model, 28 molecules 
were selected as the training set, and the remaining 7 mole-
cules were held out as the test set. The specific selection of 
the training and test sets was determined by either randomly 
splitting or clustering-based splitting of the original dataset.  

 

 

 

 

 

 

 

 

 

Fig. (1). The distribution of biological activity (-logM) of the 35 

indole derivatives. 

 

 The 3D conformations of all the inhibitors were gener-
ated using the OMEGA 2.0 program available from 
OpenEye Scientific (OMEGA 2.0, OE Scientific, NM, 
USA). In this study, only the best conformer of each mole-
cule was used to generate the pharmacophore points.  

The Overall Work Flow of the QSAR Method 

 Fig. (2) depicts the overall work flow of the structure-
based QSAR method employed in this study. The novel as-
pect of this method is the way by which it generates the mo-
lecular descriptors by the SB-PPK (Structure-based Pharma-
cophore Key) program. Unlike conventional 2D or 3D mo-
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lecular descriptor generation methods where ONLY the 
structural information of the inhibitor molecules is used to 
characterize the molecules, the SB-PPK program uses the 
structural information of the target binding site to measure 
the inhibitor molecules. Thus, target-specific molecular de-
scriptors are generated, which reflects not only the inhibitor 
molecules but also the way these molecules interact with the 
binding site of the target. The general process of SB-PPK 
involves: 1) extraction of pharmacophore features from the 
target binding site; 2) perception of pharmacophore features 
of small molecules; and 3) generation of the structure-based 
pharmacophore key (SB-PPK) descriptors. Specifically, it 
derives the pharmacophoric centers from the 3D structure of 
a protein-ligand (R-L) complex, and uses them to generate 
the pharmacophore reference. It then generates structure-
based pharmacophore key (SB-PPK) descriptors for the in-
hibitor molecules based on their pharmacophoric matching 
patterns with the above reference. Once molecular descrip-
tors are generated, PLS (Partial Least Square) method is em-
ployed to establish the relationship between these molecular 
descriptors and the activity of the inhibitors. Details of the 
individual steps are described as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). The overall flowchart of the SB-PPK QSAR Method. 

 

Deriving Pharmacophore Feature Pairs from Ligand-

Receptor (R-L) Complex 

 The LigandScout program [25] was first employed to 
derive structure-based pharmacophore centers (Fig. 3a). The 
advanced 3D pharmacophore model option of the Ligand-
Scout program was used, which allows multiple pharma-
cophore feature types on the same heavy atom. The pharma-
cophore feature types used in this study include hydrogen 
bond donor (D), hydrogen bond acceptor (A), positively 
charged (P), negatively charged (N), and lipophilic (L) cen-
ters. Pharmacophore feature pairs are then generated by mak-
ing all possible pair-wise combinations of the above pharma-
cophore centers. A specific pharmacophore feature pair is 
determined by both the feature types involved and the dis-
tance between the two centers. For example, AL in Fig. (3a) 
indicates a hydrogen bond acceptor (A) and lipophilic (L) 

feature pair; and the distance between them is 4.5 . Another 
example, AP, means a hydrogen bond acceptor (A) and a 
positive (P) feature pair and their inter-feature distance is 3.8 

. All possible feature pairs are generated, and this recorded 
information reflects the pharmacophoric characteristics of 
the target binding site, and will be used as the reference for 
generating the SB-PPK descriptors of the inhibitor mole-
cules. To avoid confusion with traditional pharmacophore 
fingerprints, we note that we do not need “distance binning” 
to capture different possible distance ranges because the 
pharmacophore features pairs are derived from the 3D struc-
ture of the target protein. Thus, all the feature pairs have 
defined distances.  

Perception of Pharmacophore Feature Pairs for a Ligand 

 The LigandScout program[25] is used to perceive the 
pharmacophoric groups on small organic molecules (Fig. 
3b). All pair-wise combinations of the perceived pharma-
cophore centers are checked for the feature types and inter-
feature distances. In the example given in Fig. (3b), there is 
an AL pair and an AP pair, and the inter-feature distances for 
each pair are 4.6 A and 3.8 A, respectively.  

Generation of Structure-Based Pharmacophore Key (SB-
PPK) Descriptors 

 Once the pharmacophore feature pairs for both the recep-
tor and ligand molecules are generated, we can compare 
them to determine pattern matches. For example, Fig. (3c) 
shows that AL’s and AP’s from the receptor’s pharma-
cophore feature pairs (the reference) and small molecule’s 
pharmacophore pairs match with each other. Thus, the corre-
sponding positions for AL and AP are increased by 1 count. 
Both fingerprint-like binary descriptors and feature pair 
counts descriptors can be generated for a given ligand.  

Statistical Analysis with Partial Least Square (PLS) 
Method 

 The relationship between the molecular descriptors and 
the biological activities is modeled by the PLS (Partial Least 
Square) method [26]. Specifically, the PLS implementation 
in the MOE package (Chemical Computing Group, Mont-
real, Canada) was used in this study. Other types of machine 
learning methods can be used as well to analyze the dataset.  

Validation of the QSAR Models 

 Model validation is a critical step in any QSAR study. As 
shown in Fig. (4), we have adopted a standard workflow, 
similar to what Tropsha group advocate [23], to build robus-
tly predictive QSAR models. Rational splitting of the dataset 
into training and test sets as well as obtaining the statistics 
for both the training set and test sets is critical in this model 
validation protocol. Thus, a given dataset is split into multi-
ple pairs of training and test sets. Both random shuffling and 
clustering-based [27] splitting of the data set can be used for 
dataset partitioning. In the random shuffling approach, the 
first 7 molecules were held out as the test set after the order 
of molecules in the data set was randomly shuffled. In the 
clustering-based partitioning approach, the dataset was split 
in such a way that both the training set (28 molecules) and 
the test set (7 molecules) had the most coverage of the clus-
ters. For each split, PLS was used to analyze the training set 
in order to build a PLS regression model. Regression coeffi-
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cients were then calculated for both the training set (r
2
) and 

the test set (R
2
). While the former reflects the model quality 

as measured on the training set, the latter (R
2
) is a more ro-

bust indicator of the predictive power of the model. In the 
end, only those model(s) with both coefficients greater than 
set thresholds are retained as the final model(s).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Workflow for rigorous validation of QSAR models.  

 

RESULTS AND DISCUSSION 

Pharmacophore Features of the PDE-4 Binding Site 

 As described before (Cf. Method), LigandScout was used 
to analyze the interactions between PDE-4 inhibitors and the 

binding site of PDE-4, based on the X-ray structure of the 
inhibitor-bound PDE-4 (1xon.pdb). This analysis has re-
vealed nine pharmacophore centers. The 3D rendering and 
the 2D depiction of the interactions are shown in Fig. (5a) 
and Fig. (5b), respectively. The following occupies the four 
hydrophobic centers: the cyclopentane ring, two chlorine 
atoms on the pyridine ring, and the central benzene ring. The 
cyclopentane ring interacts with hydrophobic residues in the 
PDE-4 binding pocket: MET337, MET357, PHE340, 
PHE372, and ILE336. Chlorines on the pyridine ring interact 
with hydrophobic residues MET273, PHE340, ILE336, and 
LEU319, and the central benzene ring interacts with ILE336, 
PHE372 and TYR159. The amide nitrogen occupies a hy-
drogen bond donor center, which interacts with a water 
molecule that serves as a bridge to the enzyme’s binding 
pocket. Four hydrogen bond acceptor centers are identified 
and they are occupied by the following atoms/groups: the 
methoxy oxygen on the benzene ring, amide oxygen, pyri-
dine nitrogen, and the ether oxygen (connecting the benzene 
and the cyclopentane rings). The methoxy oxygen and the 
ether oxygen atoms both interact with GLN369. The amide 
oxygen and the pyridine nitrogen interact with the small 
molecule EDO744 and a water molecule, respectively.  

Pharmacophore Reference Generated from the PDE-4 
Binding Site 

 Based on the above-generated pharmacophore features, 
we created the pharmacophore reference in terms of pharma-
cophore feature pairs (Cf. Method). Each structure based 
descriptor is determined by the feature types involved in a 
pharmacophore feature pair and the distance between the two 
feature centers. Table 2 shows the pharmacophore feature 
pairs (the reference) derived from the PDE4-inhibitor com-
plex (1xon.pdb). It has six AA pairs with inter-feature dis-
tances ranging from 6.34 to 10.69 A. Four AD pairs with 
inter-feature distances ranging from 2.29 to 6.50 A. Like-
wise, there are sixteen AL pairs, four DL pairs and six LL 

  a        b 
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Fig. (3). a. Deriving the pharmacophore feature pairs (the reference) from the receptor-ligand complex. b. Deriving the pharmacophore fea-

ture pairs for inhibitor molecules. c. Generating structure-based pharmacophore key (SB-PPK) descriptors. 
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pairs with different inter-feature distances. Together, this set 
of feature pairs uniquely characterizes the binding pocket of 
the PDE-4 enzyme, and serves as a reference with which 
candidate inhibitor molecules can be compared to generate 
their molecular descriptors.  

Structure-based Pharmacophore Key (SB-PPK) Descrip-
tors of PDE-4 Inhibitors 

 The descriptors of the PDE-4 inhibitors were determined 
based on the matches between the feature pairs in the refer-
ence and those in each individual molecule. Fig. (6a) shows 
the values of calculated SB-PPK descriptors of PDE-4 in-
hibitor 3 (mol.3 in Table 1). The average descriptor values 
over the dataset of 35 PDE-4 inhibitors are presented in Fig. 
(6b). In inhibitor 3, the value of AL10 is 4, which indicates 4 
possible AL10 (inter-feature distance 3.98) matches between 
the feature pairs of inhibitor 3 and those of the binding site 
reference. Obviously, different molecules have different 
number of matches between different feature pairs. In Fig. 
(6b), the error bars show the variations of each descriptor 

value around the averages, amongst the different inhibitors 
in the dataset under study. Those descriptors with larger 
variations tend to have more important roles in QSAR mod-
els.  

QSAR Model Building with Partial Least Square (PLS) 
Method 

 We follow the workflows outlined in Fig. (2) and Fig. (4) 
to conduct the QSAR model building and model validation. 
A variety of factors that may have significant effect on 
QSAR model quality have been thoroughly examined and 
discussed below. The quality of the final model is compared 
with previous work. 

Effect of Number of Principle Components on the Qual-
ity of QSAR Models 

 To obtain predictive QSAR models, we systematically 
performed PLS analysis with different number of principle 
components used in the regression model. Fig. (7) shows 
how the number of principle components affects the quality 

          a       b 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). a. 3D rendering of the pharmacophore features derived from Ligand-bound PDE4 structure using the LigandScout program. b. 2D 

depiction of the pharmacophore features perceived from the Ligand-bound PDE4 structure using the LigandScout program. 

Table 2. Structure-BASED Pharmacophore Feature Pairs of PDE4 Binding Site 

AA1
a
 AA2 AA3 AA4 AA5 AA6 AD1 AD2 AD3 

6.34b 10.69 2.72 4.94 5.05 9.91 6.50 2.29 4.24 

AD4 AL1 AL10 AL11 AL12 AL13 AL14 AL15 AL16 

6.15 4.79 3.98 3.99 7.84 2.31 7.03 8.47 2.93 

AL2 AL3 AL4 AL5 AL6 AL7 AL8 AL9 DL1 

7.98 8.56 2.86 5.91 3.12 4.48 3.61 10.69 7.47 

DL2 DL3 DL4 LL1 LL2 LL3 LL4 LL5 LL6 

2.98 3.09 3.68 7.51 9.98 4.88 5.45 5.36 5.98 

aThe code represents pair wise combinations of pharmacophore features in the PDE4 structure. For example, there are six AA pairs (AA1 to AA6) and four AD pairs (AD1 to AD4) 
where “A” and “D” represent hydrogen bond acceptor and donor features, respectively. 
bThe numbers are the inter-feature distances between the corresponding feature pairs. For example, the distance between “A” and “A” in AA1 is 6.34 (A). 
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of the resulting models for the best partitioning of training 
and test sets. The conventional correlation coefficient r

2
 ob-

tained for the training set monotonically increases while the 
predictive R

2
 obtained for the testing set reaches a plateau 

before it starts to decrease. When the number of principle 
components (PC) is less than 3, the resulting QSAR models 
are not predictive for either the training set or the test set. 
When the number of principle components is over 8, the 
predictive ability for the test set starts to go down. This indi-
cates potential over-training at higher number of principle 
components. According to our model validation protocol 
(Fig. 4), the models with the number of principle compo-
nents between 5 and 8 are predictive for both the training 
and the test sets. The best models should be a trade-off be-
tween conventional r

2
 and the predictive R

2
. Also, to com-

pare with other literature work which uses number of princi-
ple components of 6 [15], we decided to use 6 components to 
build the final best models. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). Quality of the QSAR models depends on the number of 

principle components (PC) employed. 

 

Effect of Dataset Partitioning on QSAR Model Quality 

 To build high quality, predictive QSAR models, we sys-
tematically performed dataset splitting into training and test 
sets using both random shuffling and clustering-based split-
ting methods. For each partitioning approach, we obtained 
ten different training/test sets, and built 90 different QSAR 

models with the number of principal components ranging 
from 2 to 10. Of all 180 QSAR models, the conventional 
correlation coefficient r

2
 ranges from 0.69 to 0.89, and the 

predictive R
2
 values range from 0.05 to 0.75. The splitting 

which renders the highest r
2
 and R

2
 for corresponding mod-

els with number of principle components between 5 and 8 is 
selected as the partitioning of training and test sets to build 
the final QSAR models. 

The Best SB-PPK Models have Better Predictive Ability 
than those Obtained with other Methods 

 Fig. (8a) and Fig. (8b) show the predictive quality of the 
best QSAR models for PDE-4 inhibitors built with the SB-
PPK descriptors and PLS method. Table 3 present the com-
parison between our best models with those of other meth-
ods. We have compared the results obtained with CoMFA 
[15], CoMSIA [15], 2D QSAR (using MOE package) and 
SB-PPK (our own method). All methods use PLS as the 
modeling tool with number of principle components set at 6. 
Both CoMFA and CoMSIA afforded highly predictive mod-
els based on the training set; however, the predictive R

2
 for 

the test set are both significantly lower than that for the train-
ing set. Our method, on the other hand, afforded much more 
balanced predictive quality, for both the training set and the 
test set. Thus, based on the reported correlation coefficients 
(for both training and test sets), we believe our method (SB-
PPK plus the specific workflow process) afforded the best 
model both in terms of predictive ability for the training set 
and, more importantly, in terms of the predictive power on 
the test set. 

Critical Pharmacophore Features have been Revealed by 

the SB-PPK QSAR Analysis 

 One of the important tasks of QSAR analysis is to iden-
tify critical features that are responsible for explaining the 
SAR trend in the dataset. In order to do so, we define a score 
for each SB-PPK descriptor based on the magnitude of the 
coefficient for that descriptor in the PLS regression models. 
Specifically, we define the score according to equations 1 
and 2.  

Score =  score (i)           (1) 

score (i) = (10 - rank) + 1           (2)  

 Score (i) is the score of a given descriptor contributed by 
a particular model, i, and rank is the rank order of a particu-

            a        b 

 

 

 

 

 

 

 

 

 

Fig. (6). a. The SB-PPK descriptor values of a PDE4 inhibitor (mol.3 of Table 1). b. The SB-PPK descriptor values averaged over the 35 

PDE4 Inhibitors. 
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    a       b 

 

 

 

 

 

 

 

 

 

 

 

Fig. (8). a. QSAR model-predicted activity versus the actual activity for the molecules in the training set. b. QSAR model-predicted activity 

versus the actual activity for the molecules in the test set. 

 

Table 3. Comparison of Model Performance in Terms of r
2
 and Predicted R

2 
when Different Set of Descriptors are Used 

Molecular Descriptors Regression Method Number of Components Correlation Coefficient (r
2
) Predicted R

2
 

SBPPK PLS d 6 0.747 0.624 

MOE-2D a PLS d 6 0.664 0.579 

CoMFA b
 PLS 6 0.986 0.560 

CoMSIA c PLS 6 0.967 0.590 

a2D descriptors generated using the MOE software (Chemical Computing Group, Toronto, CA). 
bCoMFA analysis of the PDE4 inhibitors is cited from [15]. 
cCoMSIA analysis of the PDE4 inhibitors is cited from [15]. 
dPartial Least Square (PLS) program implemented in the MOE package. 

lar descriptor according to the magnitude of its coefficient in 
that PLS model. The summation is conducted over all the 
predictive models obtained. In this study, we base the score 
on four predictive PLS models, corresponding to the number 
of principal components 5, 6, 7, and 8. Fig. (9a) shows that 
descriptor LL1, AL12, AA6, AA1 and AL2 are relatively 
important in the QSAR models. These descriptors corre-
spond to the pharmacophore feature pairs depicted in Fig. 
(9b). Thus, the SB-PPK descriptor based QSAR analysis can 
reveal critical features that correspond to the pharmacophore 
features of the target binding pocket. This descriptive ability 
is very useful and often desired by the medicinal chemist 
working on compound optimizations. 

CONCLUSIONS 

 We have successfully applied a new structure-based 
QSAR formalism to study the SAR (Structure-activity Rela-
tionship) of 35 PDE-4 inhibitors. This new QSAR formalism 
describes molecular structures based on the matching of their 
pharmacophore feature pairs with those (the reference) of the 
target binding pocket. This reference is derived from the X-
ray crystal structures of the target under study. Thus, these 
descriptors are target-specific and easy to interpret. The PLS 
(partial least square) method is then employed to reveal the 
correlation between these target-specific descriptors and the 
biological activity, and help identify the critical pharma-
cophore features for PDE-4 inhibition.  

 To ensure the predictive ability of the built QSAR mod-
els, we have adopted a rigorous model validation protocol 
that emphasizes rational design of the training and test sets, 
and uses the statistics calculated for both the training set (r

2
) 

and test set (R
2
) as the model selection criteria. Conse-

quently, our models display highly balanced predictive abil-
ity for both the training and the test sets (Table 3). In con-
trast, CoMFA and CoMSIA models have shown signs of 
over fitting, with high r

2
 for the training set but much lower 

R
2
 for the test set. Thus, this model validation protocol based 

on both training and test set statistics is critical for the suc-
cess of this study.  

 The new structure-based descriptors overcome the draw-
backs of traditional descriptors that ignore the binding 
pocket information. These target-specific descriptors could 
offer structural insights into the critical features responsible 
for the potency of the inhibitors. The feature importance 
analysis proposed in this study has helped fulfill this task. 
Thus, our models afford both predictive and descriptive 
models for PDE-4 inhibitors.  

 Since the structures of many other PDE enzymes have 
also been solved (e.g., PDE5: 2h44, 2h42, 2h40; PDE-9: 
2hd1; PDE3B: 1soj, 1so2; PDE2A: 1z1l and PDE1B: 1taz), 
the success of this study has also laid a solid foundation for 
studying the inhibition mechanisms of other PDE enzymes 
using this new structure-based QSAR formalism. Such a 
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systematic study of the whole family of PDE enzymes will 
eventually afford insights into the structural requirements for 
both the potency and selectivity of PDE inhibition, and ulti-
mately contributes to chemical genomics research and thera-
peutic development targeting the PDE family of enzymes.  
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pairs according to the descriptor significance scores.  
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