
72 Current Chemical Genomics, 2011, 5, (Suppl 1-M4) 72-84  

 

 1875-3973/11 2011 Bentham Open 

Open Access 

Targets in Epigenetics: Inhibiting the Methyl Writers of the Histone Code 

Julianne M. Yost#, Ilia Korboukh#, Feng Liu#, Cen Gao# and Jian Jin* 

Center for Integrative Chemical Biology and Drug Discovery, Division of Medicinal Chemistry and Natural Products, 

UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, 

USA 
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1. INTRODUCTION 

 Although all nucleated cells contain the same genetic 
information, multicellular organisms have evolved elaborate 
mechanisms that enable differential and cell-type specific 
gene expression. Epigenetics refers to the heritable changes 
that control how the genome is accessed in different cell 
types during embryonic development and cellular differen-
tiation [1]. This capability permits specialization of function 
between cells without altering the DNA sequence. The cellu-
lar machinery that creates these heritable changes has been 
the subject of intense scientific investigation over the last 
decade [2].  

 The epigenome is a group of proteins that regulate gene 
expression and is responsible for cell differentiation [2]. The 
template upon which the epigenome is written is chromatin – 
the complex of DNA, histones and other structural proteins 
that efficiently package the genome in an appropriately ac-
cessible state within each cell [3, 4]. Regulation of chromatin 
state plays an important role in the fields of epigenetics, on-
cology, developmental biology, stem cell fate and regenera-
tive medicine. The state of chromatin, and thus access to the 
genetic code, is mainly regulated by reversible post-
translational modifications (PTMs) to DNA or histone pro-
teins and the recognition of these marks by other proteins 
and protein complexes. Histones are subject to various kinds 
of PTMs, including methylation, acetylation, phosphoryla-
tion, sumoylation, ubiquitination, and glycosylation [5, 6]. 
The addition, interpretation and removal of these PTM 
marks are crucial to gene transcription. Proteins that are di-
rectly involved in PTMs are often classified into three func-
tional families: the enzymes that produce these modifications 
(the ‘writers’), the proteins that recognize them (the  
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‘readers’), and the enzymes that remove them (the ‘erasers’). 
Given the wide-spread importance of chromatin regulation in 
cell biology, the ‘writers’, ‘readers’, and ‘erasers’ are critical 
targets for manipulation to further understand the histone 
code [7, 8] and the role it plays in the progression of human 
disease. 

 Histone methylation, which mainly occurs at lysine and 
arginine residues located on the N-terminal tails of the core 
histones, is one of the most studied PTM marks [9]. Protein 
lysine methyltransferases (PKMTs) and protein arginine 
methyltransferases (PRMTs) are two of the writers responsi-
ble for adding the methyl marks to histones [10]. Recently, it 
has also been shown that these writers are capable of methy-
lating other functionally important proteins, including p53, 
ER , pRb, TAF10, and HIV tat [11-14]. Both in vitro and 
cell-based studies have suggested that methyltransferases are 
responsible for methylating only specific residues, which is 
referred to as substrate selectivity. Moreover, these writers 
only methylate the residue to a specific methylation level, 
which is known as product specificity. For example, lysine 
residues can be mono-, di- or trimethylated (Scheme 1A), 
while arginines can be mono- or dimethylated in either a 
symmetric (sDMA) or asymmetric (aDMA) manner (Scheme 
1B). Table 1 lists known histone methyl marks, their corre-
sponding methyltransferases, and potential function and 
links to disease. Several experimental and theoretical groups 
have recently investigated the detailed catalytic mechanism, 
especially in regard to how writers achieve their substrate 
selectivity and product specificity [15-19]. These studies are 
not the subject of this review. 

 PKMTs and PRMTs have two binding pockets: the sub-
strate binding pocket and a cofactor binding site [68]. Upon 
activation, the writer recruits the lysine or arginine residue of 
the histone tail to the substrate binding pocket and a univer-
sal methyl donor, S-5’-adenosyl-L-methionine (SAM), to the 
cofactor binding site [5]. As shown in Fig. (1), the substrate 
binding pocket and the cofactor binding site are joined by a 
narrow hydrophobic channel, just large enough to allow the 
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Scheme 1. SAM-dependent methylation of lysine (A) and arginine (B) residues. 

 

Table 1. Protein Methyltransferases, their Methylation Marks, and Links to Disease 

Methyltransferase Major Target Site(s) Function or Links to Disease  

SUV39H1 H3K9 Increased expression in colorectal tumors [20]  

SUV39H2 H3K9 Mice lacking both SUV39H genes showed cytogenetic abnormalities and increased 

incidence of lymphoma [21] 

SUV420H1 H4K20 Function or link to disease not yet elucidated 

SUV420H2 H4K20 Decreased expression found in human breast cancer cells [22] 

EZH1 H3K27 Function or link to disease not yet elucidated 

EZH2 H3K27 Overexpressed in various human cancers, including prostate, breast, colon, skin, and 

lung cancers; [23] dominant, gain-of-function mutation (Tyr641) increases H3K27me3 

levels leading to tumorigenesis; [24] malignant phenotype of follicular and diffuse-large 

B-cell lymphomas of the germinal-center origin is the result of the overall gain of func-

tion [25] 

G9a H3K9, p53K373 Overexpressed in various human cancers including leukemia, prostate carcinoma, hepa-

tocellular carcinoma and lung cancer [26-29] 

GLP H3K9, p53K373 Overexpressed in gland tumors [30] 

SETDB1 H3K9 Cooperation with DNA methyltransferase silencing of promoter regions in tumor cells 

[31] 

SET7/9 H3K4, p53K372, p65 subunit NF- B Modulates p53 activity in human cancer cells; [32] regulates NF- B-dependent inflam-

matory genes [33] 

SETD8 H4K20, p53K372, p53K382 Implicated in cell cycle dependent gene silencing and mitotic regulation; [34, 35] sup-

presses p53 dependent transcription [36]  

MLL1 H3K4 Mutations/rearrangements observed in patients with acute leukemia including MLL 

partial tandem duplications and MLL fusions [37-39]  

MLL2 H3K4 Mutations of MLL2 found in renal cell carcinoma [40] and Kabuki syndrome [41] 

MLL3 H3K4  Function or link to disease not yet elucidated [42] 

MLL4 H3K4 Serves as a cellular target for hepatitis B virus in liver oncogenesis [43] 

SMYD2 H3K36, p53K370 Suppresses p53 transcriptional activity [44] 

SMYD3 H3K4 Overexpression correlated with the development of colorectal and hepatocellular carci-

noma; [45] enhanced breast cancer cell growth due to overexpression [46] 
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(Table 1). Contd….. 

Methyltransferase Major Target Site(s) Function or Links to Disease  

NSD1 H3K36, H4K20 NSD1 deletions and intragenic mutations are identified in patients with Sotos and 

Weaver syndromes [47] 

NSD2 H3K4, H3K27, H3K36, H4K20 Translocated in some cases of myeloma [48] 

NSD3 H3K4, H3K27, H3K36 Fused with NUP98 in acute myeloid leukemia; [49] amplified in breast cancers [50] 

DOT1L H3K79 Recruited by MLL fusion partners to Hox genes; directly involved in acute myeloid 

leukemia [51, 52] 

PRMT1 H4R3, NAB2p, NPL3p, ER R260 and 

other GAR motifs 

Coactivator of hormone receptor function; aberrant expression observed in several tu-

mor states including breast and colon cancers; [53-56] deregulation of H4R3 suggestive 

marker of prostate cancer; [57] essential component of MLL oncogenic transcriptional 

complex and activity required for malignant transformation [58] 

PRMT2 H4(site of methylation unknown)[59] Coactivator of both the androgen receptor and ER  [59] 

PRMT4 (CARM1) H3R2, H3R17, H3R26, and other PGM 

motifs 

Steroid receptor coactivator; overexpressed in both human breast tumors and castration-

resistant prostate cancer; [60-62] knockdown impedes androgen receptor signaling 

PRMT5 H3R8, H4R3, H2AR3 Acts as a strong repressor of numerous genes; recruited to the promoters of tumor sup-

pressor genes such as ST7 and NM23; [63] overexpression observed in a variety of 

lymphoma and leukemia cells, [64, 65] gastric carcinoma, [66] and immortalized fibro-

blast cells [63] 

PRMT6 H3R2, H4R3, H2AR3 Transcriptional repressor [59] 

PRMT7 H4R3, H2AR3 Downregulation sensitizes cancer cells to camptothecin treatment [67] 

 

terminal amine of the substrate to come within bonding dis-
tance of the cofactor. The terminal amine undergoes nucleo-
philic substitution with SAM, transferring the methyl group 
to the target residue, converting SAM to S-adenosyl-L-
homocysteine (SAH) which is then released by the enzyme. 
In some cases, depending on the enzyme, this process can be 
repeated to add subsequent methyl groups to the lysine or 
arginine residue. 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. (1). GLP-H3 co-crystal structure (PDB: 2RFI, H3K9me2 is 
shown in green) with SAH (cyan) illustrating the hydrophobic 
channel connecting the cofactor binding site and the substrate bind-
ing pocket. 

 Growing evidence suggests that PKMTs and PRMTs are 
associated with the development of various human diseases, 

including cancer, inflammation, and psychiatric disorders 
[69-71]. For example, H3K9 methyltransferase G9a is over-
expressed in various human cancers [26-29] including leu-
kemia, prostate carcinoma, hepatocellular carcinoma, and 
lung cancer and has been shown to play a role in mental re-
tardation [72], inflammation [33], drug addiction [73] and 
HIV-1 latency maintenance [74]. Another PKMT, DOT1L, 
can be recruited by AF10, an MLL (mixed lineage leukemia) 
or CALM (clathrin-assembly protein-like lymphoid–
myeloid) fusion partner involved in acute myeloid leukemia 
[51, 52]. Direct fusion of DOT1L to MLL results in leuke-
mic transformation in a DOT1L methyltransferase activity-
dependent manner [52]. In addition, DOT1L contributes to 
CALM–AF10-mediated leukaemogenesis by methylation of 
H3K79 at the Hoxa5 gene [51]. PRMT4 [better known as 
coactivator-associated arginine methyltransferase 1 
(CARM1)] enhances transcriptional activation of nuclear 
receptors and aberrant expression of this methyltransferase 
has been linked to human breast and castration-resistant 
prostate cancers [60, 61]. Given the significant role of these 
proteins in human disease, the discovery of potent, selective, 
and cell penetrant chemical probes of PKMTs and PRMTs is 
gaining momentum. In addition to providing the scientific 
community excellent tools for further studying chromatin 
remodeling and other PTMs, high quality well characterized 
chemical probes [75] can facilitate a smooth transition from 
target validation to a drug development effort. In this review, 
we will focus on the recent progress in the discovery of se-
lective PKMT and PRMT inhibitors. A future perspective on 
developing methyltransferase inhibitors will also be dis-
cussed. Nucleoside-based inhibitors (analogs of cofactor 
SAM) such as sinefungin and methylthioadenosine and bi-
substrate analogs containing structural components of both 
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SAM and the substrate peptide will not be discussed in this 
review as these cofactor analogs are not selective in general 
[76-79]. 

2. PROTEIN LYSINE METHYLTRANSFERASES 
(PKMTs) 

 PKMTs can mono-, di-, and/or trimethylate lysine resi-
dues of various proteins including histones. Protein lysine 
methylation is involved in many biological processes, such 
as heterochromatin formation, gene expression, transcrip-
tional regulation and X-chromosome inactivation [9]. Since 
the first PKMT was characterized in 2000 [80], more than 50 
human PKMTs have been identified and over 10 high-
resolution 3-dimensional (3-D) structures have been reported 
[5, 9, 69, 81-85]. PKMTs are classified based on the pres-
ence or absence of the evolutionarily conserved SET do-
main, named after Drosophila Su(var)3-9 (suppressor of 
variegation 3-9), E(z) (enhancer of zeste), and trithorax [86]. 
The SET domain containing PKMTs are further categorized 
into five subfamilies named after their founding members: 
RIZ, SET1, SET2, SMYD3 and SUV39 [82]. 

 A number of lysine methylation sites of H3 and H4 have 
been well characterized [87]. Unlike acetylation which gen-
erally correlates with transcriptional activation [3], histone 
lysine methylation can either activate or repress transcription 
depending on the site of methylation. For example, methyla-
tion at H3K4, H3K36 and H3K79 has been linked to actively 
transcribed genes, whereas methylated H3K9, H3K27 and 
H4K20 are considered repressive marks [88]. In addition to 
histones, other proteins have been identified as PKMT sub-
strates [12, 13, 89-91]. One such example, the tumor sup-
pressor protein p53, implicated in over 50% of cancers [92], 
can be methylated by various PKMTs with contrasting ef-
fects depending on the site of lysine methylation. For in-
stance, methylation of p53 on K370 by SMYD2 [51] or on 
K382 by SETD8 [13] results in transcriptional repression, 
whereas methylation at K372 by SET7/9 leads to activation 
of transcription [12]. In addition, G9a (also known as 
EHMT2) and GLP (also known as EHMT1), which share 
80% sequence homology in their respective SET domains 
[84, 93], have been found to methylate p53 at K373, corre-
lating with inactivation of p53 [92]. 

2.1. PKMT Inhibitors 

 In 2005, Greiner and co-workers screened a library of ca. 
3,000 compounds using a standard radioactive filter-binding 

assay [94] and identified chaetocin (Fig. 2), a fungal myco-
toxin, as the first small-molecule inhibitor of recombinant 
Drosophila Su(var)3-9 (IC50 = 0.6 M). Chaetocin was also 
found to inhibit H3K9 PKMT SUV39H1 (IC50 = 0.8 M), 
the human orthologue of dSu(var)3-9. While chaetocin in-
hibited other H3K9 PKMTs, including Neurospora DIM5 
(IC50 = 3.0 M) and mouse G9a (IC50 = 2.5 M), it was se-
lective over non-H3K9 PKMTs, such as H3K27 PKMT 
dE(z) complex, H3K4 PKMT SET7/9, and H4K20 PKMT 
SETD8 [94] (IC50 dE(z) complex > 90 M; SET7/9 and 
SETD8 >180 M). Furthermore, mechanistic studies charac-
terized chaetocin as a SAM-competitive inhibitor, which 
remained active even after the disulfide bonds of chaetocin 
were reduced in the presence of increasing amounts of 
dithiothreitol (DTT) [94]. Interestingly, a total synthesis re-
port found both natural (+)- and synthetic ( )-chaetocin to be 
equipotent against G9a (IC50 = 2.4 and 1.7 M, respectively) 
while the sulfur-deficient analogs were inactive (IC50 > 50 
μM, Fig. 2) [95]. Like other members of the epidithiodike-
topiperazine (ETP) class [96], chaetocin is cytotoxic, al-
though dependent on initial cell density. Chaetocin-treated 
Drosophila SL-2 cells at an inhibitor concentration of 0.5 
μM showed marked cellular reduction of di- and trimethyla-
tion levels of H3K9 with no apparent changes in the degree 
of methylation of other lysines (H3K27, H3K36, H3K79, 
and H3K4) [94]. 

 A high throughput screen of ca. 125,000 compounds, 
preselected from the Boehringer Ingelheim (BI) compound 
collection, revealed BIX01294 (Fig. 2) as the first selective 
small-molecule inhibitor of G9a and GLP with low micro-
molar potency in vitro over other H3K9 PKMTs (SUV39H1 
and SETDB1), H3K4 PKMT SET7/9, and arginine methyl-
transferase PRMT1, which all showed no inhibition at con-
centrations of 45 μM [93]. Under linear assay conditions, 
BIX01294 inhibited G9a and GLP with IC50 values of 1.9 
μM and 0.7 μM, respectively [84]. In cellular assays, 
BIX01294 was toxic at high concentrations (> 4.1 μM). 
However, when cells were treated at an inhibitor concentra-
tion of 4.1 μM, BIX01294 reduced H3K9me2 levels of bulk 
histones, while methylation levels of other known sites, in-
cluding H3K27, H3K36, and H4K20, remained largely un-
changed. Mechanistically, unlike chaetocin, BIX01294 did 
not inhibit G9a in a SAM-competitive manner but rather 
occupied the histone peptide binding pocket, as confirmed 
by the X-ray crystal structure of BIX01294 and GLP in the 
presence of SAH (Fig. 3A, PDB: 3FPD) [84, 93]. Interest-
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Fig. (2). Lysine methyltransferase inhibitors (IC50 values in parentheses with corresponding enzyme). 
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ingly, the X-ray structure revealed that while BIX01294 did 
not bind in the SAM-binding site, it also did not interact with 
the lysine binding channel [84]. Through the same high-
throughput screen as mentioned above, non-selective lysine 
and arginine methyltransferase inhibitors, such as BIX01338, 
were also discovered (Fig. 2) [93]. 

 Structure-activity relationships (SAR) of the quinazoline 
scaffold exemplified by BIX01294 were investigated based 
on the reported X-ray structure of the GLP-BIX01294 com-
plex (Fig. 3A). Tractable SAR were demonstrated for the 2- 
and 4-amino moieties [85, 97]. To improve potency, the 7-
methoxy moiety of the quinazoline template was explored in 
an attempt to design analogs that would interact with the 
lysine binding channel. These efforts resulted in the discov-
ery of UNC0224 (Fig. 4) as a seven times more potent G9a 
inhibitor (IC50 = 15 nM) when compared to BIX01294 (IC50 
= 106 nM) in the G9a ThioGlo assay [85, 98]. The higher 
potency of UNC0224 was confirmed by isothermal titration 
calorimetry (ITC) (Kd = 23 nM; BIX01294 Kd = 130 nM) 
[85]. Although UNC0224 was equipotent against GLP with 
an IC50 of 20 nM, it was more than 1,000-fold selective for 
G9a over other PKMTs, including SET7/9 and SETD8. In 
addition, UNC0224 was clean against a broad panel of G-
protein coupled receptors, ion channels, and transporters 
[85]. A high resolution (1.7 Å) X-ray co-crystal structure of 
G9a and UNC0224 (PDB: 3K5K) was obtained, providing 
the first crystal structure of G9a in complex with a small 
molecule inhibitor (Fig. 3B). Indeed, the structure showed 
the 7-dimethylamino propoxy side chain of UNC0224 occu-
pying the lysine binding channel of G9a, validating the de-
sign rationale for UNC0224 and providing an explanation for 
its higher potency [84, 85]. However, the 7-alkoxy side chain 
did not completely occupy the lysine binding channel, and 
space remained for the channel to accommodate a longer 
side chain or larger amino-capping group. Therefore, addi-
tional SAR of the 7-alkoxy side chain of UNC0224 was in-
vestigated. These side chain optimization efforts led to the 
discovery of UNC0321 (Fig. 4), the most potent G9a inhibi-
tor to date (IC50 = 6 nM, AlphaScreen; 9 nM, ThioGlo) [97]. 
Because UNC0321 likely reached the detection limits of the 
biochemical assays, Morrison Ki’s were determined using an 
endoproteinase-coupled microfluidic capillary electrophore-

sis (MCE) assay [99]. UNC0321 (Morrison Ki = 63 pM) was 
about 40-fold more potent than UNC0224 (Morrison Ki = 2.6 
nM) and 250-fold more potent than BIX01294 (Morrison Ki 

= 16 nM) [97]. While UNC0224 was equipotent against G9a 
and GLP, UNC0321 showed some selectivity for G9a (IC50 
= 6 nM, AlphaScreen) over GLP (IC50 = 23 nM, AlphaS-
creen). In addition, UNC0321 was inactive (IC50 > 40 M, 
ThioGlo) against other PKMTs, SET7/9 and SETD8, as well 
as PRMT3 [97]. While highly potent in biochemical assays, 
UNC0321 was less potent in cellular assays compared to 
BIX01294. 

 To improve cellular potency of this series, new analogs 
aimed at increasing lipophilicity, thus cell membrane perme-
ability, while maintaining high in vitro potency were de-
signed and synthesized. Among the newly synthesized com-
pounds, UNC0638 (Fig. 4) had excellent in vitro potency 
(Morrison Ki G9a = 3.7 nM; Ki = 3.0 nM) and was > 100-
fold selective over a wide range of epigenetic and non-
epigenetic targets [100]. Michaelis-Menten kinetics found 
UNC0638 was indeed competitive with the peptide substrate 
instead of the SAM cofactor. This mechanism of action was 
confirmed by X-ray crystal structure of the G9a-UNC0638-
SAH complex (2.56 Å resolution, PDB: 3RJW) which 
showed UNC0638 occupying the substrate binding groove 
and lysine binding channel, not the SAM binding pocket – 
the same binding mode that was previously observed for 
UNC0224 (see Fig. 3B). More importantly, UNC0638, 
which possesses balanced in vitro potency and physico-
chemical properties aiding cell penetration, had excellent 
potency in cellular assays and low cell toxicity. UNC0638 
treatment of a variety of cell lines resulted in reduction of 
global H3K9me2 levels equivalent to that observed for 
shRNA knockdown of G9a/GLP. It significantly reduced the 
H3K9me2 mark at the promoter of known G9a-regulated 
endogenous genes and did not reduce the H3K9me2 mark at 
the promoter of a non-G9a-regulated gene. In addition, 
UNC0638 significantly reduced the clonogenicity of MCF7 
cells and disproportionately affected a number of genomic 
loci encoding microRNAs. In mouse embryonic stem (mES) 
cells, UNC0638 reactivated a retroviral reporter gene and 
G9a-silenced endogenous genes in a concentration depend-
ent manner without promoting differentiation. Furthermore, 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). A) GLP-BIX01294 complex (PDB: 3FPD, BIX01294 is shown in orange) with SAH (cyan) superimposed with GLP-H3 co-crystal 
structure (PDB: 2RFI, H3 backbone (ribbon) and H3K9me2 are shown in green). B) G9a-UNC0224 complex (PDB: 3K5K, UNC0224 is 
shown in grey) with SAH (cyan) superimposed with GLP-H3 co-crystal structure (H3K9me2 is shown in green). 
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UNC0638 significantly reduced H3K9me2 levels at the 
promoter of the retroviral long terminal repeat and G9a-
regulated genes and indirectly induced DNA hypomethyla-
tion in mES cells [100]. The combination of high potency, 
excellent selectivity, and robust on-target activities in cells 
makes UNC0638 a valuable tool for further investigating the 
biological function of G9a and GLP and their role in health 
and disease [101]. 

 Chang and co-workers also designed and synthesized 
quinazoline analogs based on the previously reported GLP-
BIX01294 X-ray co-crystal structure and discovered com-
pound E72 (Fig. 4) as a potent G9a and GLP inhibitor (IC50 
GLP = 100 nM) with binding affinities determined by ITC 
(Kd GLP = 136 nM; G9a = 164 nM) [102]. A brief selectivity 
study showed E72 was inactive against H3K9 PKMT 
Suv39H2 with no inhibition at 5 μM [102]. The X-ray co-
crystal structure of the GLP-E72 complex in the presence of 
SAH (2.19 Å, PDB: 3MO5) showed that E72 occupied both 
the surface of the peptide binding groove and the lysine 
binding channel, in an analogous manner to UNC0224 with 
G9a (see Fig. 4 inset for an overlay of E72 with BIX01294 
and UNC0224) [102]. In three separate cell types, E72 was 
significantly less toxic than BIX01294 at compound concen-
trations of 10 μM and was able to reactivate K-ras-mediated 
epigenetic silencing of the Fas gene in NIH 3T3 cells [102]. 

3. PROTEIN ARGININE METHYLTRANSFERASES 
(PRMTs) 

 Arginine residues of various histone and protein sub-
strates can be mono- or dimethylated, and depending on the 
type of arginine methyltransferase, dimethlyation can occur 
in either a symmetric (one methyl group on each of the two 
terminal N atoms) or asymmetric (both methyl groups on the 
same terminal N atom) manner (Scheme 1B). These enzymes 
transfer a methyl group from SAM to a terminal (or ) gua-
nidino nitrogen of arginine, resulting in SAH and methy-
larginine. To date, about nine human PRMTs have been 
characterized and are mainly classified as type I or type II 
enzymes [59]. Both types catalyze the formation of the 
monomethylarginine (MMA) intermediate. Type I enzymes 
(PRMT1 4, 6, and 8) then lead to the formation of asymmet-
ric dimethylarginines (aDMA); whereas, type II enzymes 

(PRMT5, 7, and 9/FBXO11) form symmetrical dimethy-
larginine side chains (sDMA) [59, 103, 104]. In addition, 
PRMT7 exhibits type III enzymatic activity, the ability to 
selectively monomethylate certain substrates [59, 105]. Type 
IV activity has also been described, where the internal gua-
nidino nitrogen atom is monomethylated, but this has only 
been documented in yeast [106]. Type I methyltransferase 
activity was recently demonstrated for PRMT2, albeit very 
weak [59, 107]. Also, while type II PRMT activity has been 
proposed for FLAG-PRMT9/hFBXO11 [108], none was 
detected with GST-purified hFBXO11 and GST-purified or 
HA-tagged DRE-1, the C. elegans ortholog [109]. Catalytic 
activity for PRMT9/4q31 has yet to be demonstrated [59]. 
PRMTs usually methylate glycine- and arginine-rich patches 
(so-called GAR motifs) [106, 110] except for PRMT4 
(CARM1) which instead has an affinity toward proline, gly-
cine, methionine, and arginine-rich sequences (PGM motifs) 
[111, 112]. PRMT5 has also shown an affinity for PGM mo-
tifs, in select cases [111]. 

 PRMTs play a key role in transcriptional regulation, pro-
tein and RNA subcellular localization, RNA splicing, DNA 
damage repair and signal transduction [113]. Arginine meth-
ylation has been implicated in the positive and negative 
regulation of transcription. At least two methyltransferases, 
PRMT1 and PRMT4 (CARM1), have been linked to tran-
scriptional activation. PRMT1 serves as a diverse regulator 
of protein function, responsible for the bulk (ca. 85%) of 
total arginine methyltransferase activity, and has the ability 
to methylate H4R3. PRMT4 (CARM1) was identified as a 
steroid receptor coactivator and can catalyze the methylation 
of H3R2, H2R17, and H3R26. Certain transcription factors 
(NR, p53, YY1, NF- B) recruit these enzymes to specific 
promoters where they activate transcription. In contrast, 
PRMT5 methylates H3R8 and H4R3 and serves as a strong 
repressor of numerous genes. For example, PRMT5 nega-
tively regulates the expression of tumor suppressor genes 
ST7 and NM23 [63]. 

3.1. PRMT Inhibitors 

 In 2004, Bedford and co-workers discovered the first 
non-nucleoside specific inhibitors of PRMTs using a random 
screening approach [114]. A diverse library of 9,000 com-

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (4). Lysine methyltransferase inhibitors (Morrison Ki or Kd values in parentheses with corresponding enzyme); inset, E72 (green) super-
imposed with BIX01294 (orange) and UNC0224 (grey).  

N

NN

N

NH

N

OMe

O N

UNC0224

(Morrison Ki

2.6 nM, G9a)

N

NN

N

NH

N

OMe

O
O

UNC0321

(Morrison Ki

63 pM, G9a)

N

N

N

NH

OMe

ON
H

N

N

E72

(Kd 164 nM, G9a;

Kd 136 nM, GLP)

NH2

NH2

N

N

NH

N

OMe

O

UNC0638

(Morrison Ki

3.7 nM, G9a)

N

 



78    Current Chemical Genomics, 2011, Volume 5 Yost et al. 

pounds from ChemBridge was screened and nine of these 
compounds were identified as low micromolar inhibitors 
(0.15 6.9 μM) of in vitro methylation of the RNA binding 
protein, Npl3p, by the yeast Hmt1p arginine methyltrans-
ferase. These hits, named arginine methyltransferase inhibi-
tors (AMIs), also inhibited human PRMT1, a mammalian 
orthologue of Hmt1p, with potency ranging from 0.19 to 
16.3 μM (Fig. 5) [114]. 

 To determine specificities, the AMIs were screened 
against a panel of other type I PRMTs (PRMT3, 4, and 6). 
Although each of the nine AMIs initially inhibited all of the 
PRMTs tested, displaying no specificity for individual type I 
PRMTs [114], a subsequent report found AMI-1 was selec-
tive over type II PRMT5 [115]. Furthermore, AMI-1 and -6 
were selective in vitro against several lysine methyltrans-
ferases including Suv39H1, Suv39H2, SET7/9, and DOT1. 
Cellular activity studies in HeLa cells showed AMI-1, but 
not -6, was able to inhibit hPRMT1, decreasing methylation 
levels of the GFP-Npl3 fusion [114]. AMI-1 was also 
screened against sirtuin, a class III histone deacetylase 
(HDAC), due to the minor similarity of the binaphthylurea 
motif of AMI-1 to the known sirtuin inhibitor, suramin. 
AMI-1 inhibited sirtuin, albeit with decreased potency rela-
tive to suramin (IC50 on SIRT1: AMI-1, 32 μM; suramin, 
300 nM) [116].  

 Several groups have since used the AMIs as leads for 
PRMT drug discovery. Using the dye-like core of AMI-5 
and -6 as a lead scaffold, a number of analogs were synthe-
sized [117]. The most potent of these analogs was compound 
1 (IC50 hPRMT1 = 4.8 μM), which was less potent than 
AMI-5 (Fig. 6). Cellular activity data was not reported [117]. 
The AMI-5 (eosin) scaffold was subsequently simplified to 
curcumin-like structures [118] containing bromo- and di-
bromophenol moieties [119]. These analogs were screened 

against a panel of methyltransferases. Several compounds, 
including 2 and 3 (Fig. 6), were selective for PRMT4 
(CARM1) over PRMT1 and SET7/9 at concentrations of 100 
μM [119].  

 In addition, Bonham and co-workers reported their ef-
forts to generate a less polar version of AMI-1 while still 
maintaining PRMT potency [115]. Using the aminonaphthol 
sulfonate scaffold of AMI-1 as the core, analogs were syn-
thesized by adding structural attributes of AMI-6 and -9. The 
most potent hybrid, compound 4 (IC50 hPRMT1 = 4.2 μM; 
hPRMT4 = 2.6 μM), contained both the dichlorotriazine 
group of AMI-6 and the azo moiety of AMI-9 (Fig. 6). Se-
lectivity studies showed compound 4 inhibited both type I 
and type II PRMTs but was mostly inactive against lysine 
methyltransferase SET7/9. Since PRMTs have been shown 
to regulate T-helper cell activation and cytokine secretion 
[120-122], the effect of compound 4 on cytokine expression 
was also examined. Indeed, compound 4 enhanced T-helper 
cell proliferation without affecting cell viability and de-
creased IFN-  and IL-4 production of type I and type II T-
helper cells, respectively, thereby interfering with IL-4 pro-
moter activity and impairing the interaction between PRMT1 
and NIP45 [115]. 

 A high throughput screening effort by Purandare and co-
workers led to the identification of pyrazole amide 5 as an 
initial hit (Fig. 7), which after preliminary optimization gave 
compound 6 (IC50 hPRMT4 = 80 nM) as a potent and selec-
tive inhibitor of PRMT4 (CARM1) [123], albeit poor perme-
ability [parallel artificial membrane permeability assay
PAMPA)] and pharmacokinetic (PK) properties [124, 125]. 

Further hit to lead optimization of this class by separate 
groups led to two potent derivatives: 7 and 8 (Fig. 7) with 
IC50’s < 100 nM, although the compounds were either not 
active in cellular assays or the data were not reported [124, 
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126]. However, replacing the amide functionality with the 
1,3,4-oxadiazole moiety in 7 improved membrane perme-
ability (PAMPA) [124]. Compounds 6 and 7 were found to 
be significantly less potent against other type I PRMTs 
(PRMT1 and 3, IC50 > 25 μM) [123, 124] and 8 was selec-
tive against both PRMT1 and lysine methyltransferase 
SET7/9 (IC50 > 100 μM) [126]. A subsequent report identi-
fied compound 9 as a potent pyrazole derivative (IC50 
mPRMT4 = 0.20 μM, Fig. 7) with an improved PK profile in 
rats, although it did not show cellular activity when tested in 
the MTT cell viability assay [125]. Concurrently, an addi-
tional screening effort by Wan and co-workers identified 
benzo[d]imidazole related analogs as hits against PRMT4 
(CARM1) with low micromolar potency [127]. Hit to lead 
optimization and SAR exploration led to the most potent 
analog in this series, compound 10 (IC50 hPRMT4 = 70 nM, 
Fig. 7 inset), which was significantly less active against 
other type I PRMTs (PRMT1 and 3, IC50 > 25 μM) [127]. 

 The first target based virtual screening study for PRMTs 
was reported by Spannhoff and co-workers in 2007 [128-
130]. In this study, a combination of molecular docking and 
pharamacophore-based filtering was used to virtually screen 
hPRMT1 and fungal RmtA, a PRMT1 homologue, against 
the NCI diversity subset consisting of 1990 compounds. 
Homology models of both enzymes were constructed from 
the known rat PRMT3 X-ray crystal structure (PDB: 1F3L). 
In order to target the histone binding pocket, SAH was in-
cluded as part of the protein during docking. Compounds 
that were successfully docked were then tested in vitro 
against RmtA and recombinant hPRMT1. In this study, 
seven of the 36 virtual hits were able to inhibit RmtA and 
hPRMT1 with micromolar potency (IC50 hPRMT1 = 2–90 
μM) [128]. Hit validation was conducted in cancer cells us-
ing antibody-mediated detection of histone hypomethylation 

caused by inhibition of PRMT1. Two of the hits, allantodap-
sone and stilbamidine (Fig. 8), inhibited methylation at 
PRMT1 target H4R3 in a dose-dependent manner while hav-
ing only a marginal effect on methylation levels of PKMT 
target H3K4. In a reporter gene functional assay with 
MCF7a cells, both inhibitors showed a dose-dependent re-
duction of estrogen receptor activation by estradiol. In addi-
tion, kinetic assays showed allantodapsone and stilbamidine 
did not inhibit RmtA in a SAM-competitive manner but were 
rather competitive with regard to the histone substrate, as 
expected [128].  

 Based on the success of the structure-based virtual screen 
to discover potent and cell-penetrant PRMT inhibitors, a 
larger virtual screening effort was conducted using the 
ChemBridge compound collection containing 328,000 com-
pounds [129-131]. The database was first filtered using a 
simple pharmacophore search resulting in an abbreviated 
library of ca. 6200 compounds. These compounds were then 
docked into the substrate binding pocket of PRMT1, result-
ing in nine inhibitors of hPRMT1 with IC50 values ranging 
from 13 to 37 μM [131]. The three most potent compounds, 
11 13, are represented in Fig. (8). 

 As an alternative approach for identifying new PRMT 
inhibitors, Spannhoff and co-workers performed a fragment-
based virtual screen of ca. 900 fragment-like leads with mo-
lecular weights below 200 g/mol and identified an -
methylthioglycolic amide compound as a micromolar inhibi-
tor of RmtA [129, 130, 132]. A subsequent structure similar-
ity search led to the discovery of RM65 (Fig. 8) as an equi-
potent inhibitor of RmtA and hPRMT1 in vitro (IC50 
hPRMT1 = 55 μM). A cursory selectivity study found RM65 
was not active against PKMT SET7/9 at a concentration of 
50 μM. In cancer cells, histone hypomethylation was ob-
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served at PRMT1 target H4R3. Additionally, while the vir-
tual screen was conducted with fragments binding to the 
substrate binding pocket, docking studies have suggested a 
bisubstrate binding mode for RM65, targeting both the sub-
strate and cofactor binding sites [132]. 

 An alternative mechanism of inhibiting PRMT-mediated 
arginine methylation was recently reported. Rather than de-
veloping inhibitors of the enzyme active site, Feng and co-
workers developed small molecules that target the substrate, 
blocking PTMs on H4 by H4-modifying enzymes [133]. The 
naphthalene-sulfonate (NS) analogs were discovered through 
a similarity structure search of a weak hit identified from a 
virtual screen of the ChemBridge compound collection. The 
most potent derivative, NS-1 (Fig. 9), was initially character-
ized as a substrate-competitive PRMT1 inhibitor with mi-
cromolar potency (IC50 hPRMT1 = 13 μM) [133]. However, 
after a variety of kinetic and biophysical studies, NS-1 and 
similar structural analogs including AMI-1 were found to 
interact directly with the substrate, not the enzyme, blocking 
PRMT1-mediated arginine methylation. In a selectivity 
study, NS-1 was found to be significantly less potent against 
PRMT4 (CARM1) (IC50 mPRMT4 ~ 2 mM) [133]. Unlike 
PRMT1, PRMT4 (CARM1) targets H3 and does not methy-
late GAR sequences. In addition, Selvi and co-workers iso-
lated the small molecule TBBD (ellagic acid) from pome-
granate extract and found it inhibited the methyltransferase 
activity of PRMT4 (CARM1) in a substrate-targeting man-
ner, selectively blocking methylation of H3R17 (Fig. 9) 
[134]. These and other substrate sequence-specific inhibitors 
may emerge as useful tools for mechanistic study of arginine 
methylation and other epigenetic modifications. 

4. FUTURE DIRECTIONS IN DRUG DISCOVERY  

 The interest in epigenetic misregulation from the scien-
tific community over the past decade is bound to increase in 

the future as more scientists realize its profound effect on 
genome function [135]. Understanding the mechanisms be-
hind cell differentiation and gaining the ability to control 
them by inhibiting chromatin modifying enzymes holds 
much promise for combating human disease. For example, it 
is now understood that epigenetic changes work in concert 
with genetic changes to promote oncogenesis. Recently, vi-
ability of this approach has been confirmed by promising 
cancer therapy clinical data [136]. These discoveries drive 
the interest in solving the mystery behind cell differentiation 
and deciphering the histone code. 

 As new inhibitors for various methyltransferases emerge, 
mechanisms by which PTM marks are made and their impact 
on nucleosome structure and remodeling are becoming better 
understood. Thus far, the histone code has proven to be a 
significantly more complex entity than for example, the ge-
netic code, where a direct mapping between codons and 
amino acids exists [137]. Certain correlations between spe-
cific PTMs of the histones and individual processes have 
been identified, inter alia, methylation of H3K4, H3K36 and 
H3K79 has been linked to activation of transcription, H3K79 
and H4K20 to DNA repair, and H3K9 and H3K27 have been 
correlated to transcription repression [138]. Interestingly, 
these correlations are not always conserved amongst species 
and organisms [139]. 

 The discovery effort is quickly gaining momentum and 
several potent, selective inhibitors of methyltransferases 
have already been identified vide supra. Future efforts 
should focus on continued discovery of potent, selective, and 
cell penetrant inhibitors. A number of traditional techniques 
have been employed in the discovery of the existing inhibi-
tors. High throughput screening (HTS) and virtual screening 
(VS) are responsible for identifying most of these inhibitors. 
As the number of available HTS compatible biological as-
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says increases, these approaches are likely to continue to 
generate structurally diverse hits as good starting points for 
medicinal chemistry optimization.  

 Increased availability of high resolution 3-dimensional 
(3D) structures of methyltransferases in apo- and holo- states 
provides medicinal and computational chemists a unique 
opportunity to design and synthesize novel inhibitors. Re-
viewing the existing crystal structure data, two distinct co-
factor conformations can be noted for PKMTs and PRMTs. 
Fig. (10) shows the superimposition of the cofactor confor-
mations extracted from the currently available crystal struc-
tures. Amongst the PKMTs, with the exception of DOT1L, 
the cofactor (SAM or SAH) adopts a highly conserved con-
formation, sometimes referred to as the “U shape” (Fig. 
10A). On the other hand, a different and a more extended 
cofactor conformation is observed in four of the PRMTs, as 
well as for DOT1L (Fig. 10B). This consistent cofactor con-
formation may provide a molecular basis for ligand-based 
rational design as well as for pharmacophore-based screen-
ing. Although inhibitor selectivity could be a potential issue 
for this target class approach [140, 141], one may reasonably 
expect that a high degree of selectivity can be achieved by 
targeting diversified residues in the binding pockets based on 
what we have learned from the discovery of highly selective 
kinase inhibitors. Drawing upon the analogy between 
SAM/methyltransferase and the ATP/kinase relationships, 
many of the techniques previously applied to studying 
kinases could very well be carried over to the investigation 
of methyltransferases [135]. To date, few cofactor-
competitive inhibitors have been reported. Thus, progress on 
a systematic approach to discovering SAM-competitive in-
hibitors is keenly awaited. 

 In addition, a fragment based drug discovery approach 
[142, 143], where weakly binding fragments are identified 
and then grown or combined to produce higher affinity 
molecules, might be employed in discovering novel methyl-
transferase inhibitors. Taking note of the close proximity 
observed between the cofactor and substrate binding pockets, 
one might envision designing a ligand that occupies both 
binding sites. Finally, molecules that interact with an allos-
teric site may yield quality methyltransferase inhibitors.  

 The scientific community eagerly awaits the discovery of 
more, high quality, well characterized chemical probes [75] 
of PKMTs and PRMTs. A ‘tool-kit’ of such chemical probes 
would permit biological hypotheses to be tested in cell-based 
and animal models of human biology and disease with high 
confidence, thus providing the biomedical community with 
excellent tools for further investigating the biology of meth-
yltransferases and their role in chromatin remodeling and 
other PTMs. 
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