
Send Orders for Reprints to reprints@benthamscience.net

 The Open Computer Science Journal, 2014, 1, 1-17 1

 2352-6270/14 2014 Bentham Open

Open Access

Character Segmentation for Automatic CAPTCHA Solving

Christos Makris and Christopher Town
*

University of Cambridge Computer Laboratory, 15 JJ Thomson Avenue, Cambridge CB3 0FD, UK

Abstract: Many websites utilise CAPTCHA (Completely Automatic Public Turing tests to tell Computers and Humans

Apart) schemes as human interaction proofs to grant access to their services only to people rather than spam bots. In this

paper, we examine the security of six widely used types of CAPTCHA and present novel attacks against all of them,

achieving success rates of up to 88%. We made improvements to three previously published attacks against the Hotmail,

Wikipedia, and Slashdot challenges and devised novel and successful attacks against BotDetect's Wavy chess,

reCAPTCHA, and a new variant of the Wikipedia scheme. Furthermore, we implemented a library that includes

customisable segmentation algorithms and character recognisers. This library can serve as a tool for further investigating

CAPTCHA security. Even though the difficulty and time needed to develop our CAPTCHA solver algorithms varied

significantly between different schemes, none of these CAPTCHAS proved to be resistant to the attacks we devised. Based

on our findings, we make recommendations for strengthening CAPTCHA methods to make them more resistant to automated

attacks such as ours.

Keywords: CAPTCHA, character segmentation, human interaction proofs, optical character recognition, security.

1. INTRODUCTION

 Online services such as webmail, social media, cloud

storage, file sharing, and content creation platforms are often

abused by bots. Websites are using CAPTCHAs

(Completely Automated Public Turing test to tell Computers

and Humans Apart) as one of their main defence

mechanisms against such bots. CAPTCHAs are challenges

sent to users and permission is granted only to those that are

able to solve them correctly within a certain time frame. The

challenges are based on tasks that current state of the art

algorithms do not perform well but that are fairly easy for

people.

 Challenges include recognition of distorted words,

identification of the context of an image, logic questions,

mathematical questions and understanding speech. A good

candidate task is one such that

 • challenges can be automatically generated

 • there is a very large (ideally infinite) pool of challenges

 • humans (even naive users) perform it easily

 • bots perform the task poorly or only with substantial

resource overheads

 A CAPTCHA is secure if, in the long run, the total cost

of automated attacks is higher than their expected gain.

Hence the likelihood of a successful attacks is a measure of

*Address correspondence to this author at the University of Cambridge

Computer Laboratory, 15 JJ Thomson Avenue, Cambridge CB3 0FD, UK;

Tel: +44(0)1223 763686; Fax: +44(0)1223 334678;

E-mails: christos.makris@cantab.net, cpt23@cam.ac.uk

the security of a CAPTCHA. It was suggested that if more
than 0.01% of the challenges can be successfully solved by a
computer program then the scheme is broken [1], but in the
literature a threshold of 1% [27, 6] is more commonly
adopted. The threshold was decided based on the cost of the
attack and the gains of the hacker for every successful attack.
Since the use of CAPTCHAs, as well as the underlying
security economics could have changed since these earlier
studies were published, it would be useful to have a more
recent and representative metric. In the absence of a widely
used baseline metric, we will use the much more
conservative 1% accuracy criterion that is becoming more
widely used in the literature. Most schemes we consider in
this paper were broken by our algorithms with a much higher
precision, so the limit needs to be increased considerably for
the schemes to be considered safe.

 Good candidate tasks for CAPTCHAs are challenges where

no artificial intelligence algorithm exists to solve them

accurately. This creates a win-win situation since hackers are in

effect forced to advance the field of Artificial Intelligence [20].

 We focus on text-based CAPTCHAs because they were
the first to be introduced [4] and remain the most widely
used type. Even though Optical Character Recognition
(OCR) has advanced substantially, solving text based
CAPTCHA remains difficult [21, 15]. Major challenges for
automated solution to CAPTCHAs include the fact that
artificially created noise and distortions are added to make
segmentation and recognition of characters difficult, the
words do not necessarily belong to any lexicon, and the
words are too few and too unpredictable for contextual
disambiguation. We did not experiment with OCR
algorithms but instead focused on algorithms that are
commonly used against CAPTCHA challenges.

2 The Open Computer Science Journal, 2014, Volume 1 Makris and Town

 The main aim of this paper was to check whether

commonly used CAPTCHA schemes still suffer from known

vulnerabilities and can be compromised by straightforward

attacks using variations of known techniques. Additionally

we implemented two novel attacks against reCAPTCHA and

BotDetect's Wavy chess.

 A major achievement of this paper is that we demonstrate

that an attacker who implements an application with attacks

documented in the literature can relatively easily develop

attacks against new schemes by using combinations and

alterations of those algorithms. It was out of the scope of our

project to devise algorithms that would achieve the best

possible accuracy against the CAPTCHA schemes. Instead,

we demonstrate relatively straightforward techniques that

achieve success percentages that already make a potential

attack highly profitable.

 We focused mostly on the segmentation part of the

algorithms and we used a generic character recogniser that

has been previously tested in the literature [6, 11]. While this

is not an optimal state of the art algorithm, it offers the

significant advantages of simplicity, robustness, and an

ability of training an adequate set of classifiers in a small

enough time period to allow us to check different variations

of the segmentation algorithm against the validation test.

2. RELATED WORK

 There are a number of published attacks against several

CAPTCHA schemes, although some of these are still being

used without major modifications [6, 23, 18, 3, 24]. One

general benefit of such research is that it can offer guidelines

for CAPTCHA designers in order to strengthen their

algorithms. Specific prior art will be discussed in the context

of our implementation.

 A scheme is commonly regarded as broken if there exists

an algorithm that can break more than 0.01% of the

challenges [1]. For experiments simulating the behaviour of

the CAPTCHA scheme in lab conditions, a stricter threshold

of at least 1% should be achieved by a successful attack

[27]. Since an attacker may only answer challenges when he

is confident that the answer is correct, it is better to use the

precision and coverage of the attacker's algorithm to assess

the security of a scheme [6], which are defined as follows:

Precision =
#chal lenges ans weredcorrectly

#ans wered chal lenge s

Coverage =
#chal lenge sans wered

#total chal lenge s

 In order to devise a technique to automatically solve text-
based CAPTCHAs, one effectively needs to reverse engineer
the methods that are used to produces the CAPTCHA
scheme. This process can be broken down into three main
stages [1]:

 1. Preprocessing: Transformations such as image
enhancements are carried out to make the work of the next
stages easier

 2. Segmentation: Segment text from the background and
attempt to split it into single character blocks

 3. Recognition: Classify each extracted character

 Further post-processing stages can be added in order to
improve the output of each step. A common practice is to
write a specific algorithm for segmenting each scheme and
use machine learning to derive classifiers to distinguish
between individual letters. The classifiers are trained on data
produced from the segmentation algorithm.

 Computers can outperform humans at recognising
individual characters [8] even under large distortion and
hence the difficulty of solving text-based CAPTCHAs
primarily depends on the difficulty of text segmentation.
This problem can be made substantially more difficult
through the use of hand-written characters [28], but all
common CAPTCHA schemes currently use distorted
versions of printed text with various anti-segmentation
techniques.

2.1. Pre-processing

 The purpose of pre-processing is to take the challenges to
a state were the segmentation algorithms can extract the
letters. Common pre-processing techniques include:

 • Background removal: This is most useful against
CAPTCHAs that use colour as a defence mechanism. It
results in a greyscale image with the foreground pixels
retaining their intensity and background pixels being white.

 • Up-sampling Each pixel of the image is divided into
subpixels, thus allowing finer control over the area that is
affected by the segmentation algorithm.

 • Blurring: The image is convolved with Gaussian, mean
or median smoothing kernels to reduce the amount of noise
in the image.

 • Thresholding: Removes pixels of low intensity (they
are treated as noise), resulting in a binarised image. This is
very useful since most segmentation algorithms require a
binarised input image.

 • Line removal: Eliminate straight segments that are not
part of characters. Lines are categorised as:

- lines with smaller thickness than the characters. They can
be removed using erosions followed by dilations [23]. Black
pixels in areas with small black count are removed from the
erosion and dilation preserves the thickness of the characters
in areas were pixels were not removed.

 - lines with similar or greater thickness than the
characters. If the lines are longer than the characters then line
detection algorithms (eg .Hough transforms) are used to
identify them. The area around them is then examined to
decide which pixels to remove [6].

 If the lines substantially overlap with characters, then
they are not removed at this stage and instead are dealt with
by the segmentation methods.

 • Thinning of characters: a binary skeleton of the image
is created using Zhang's thinning algorithm [26]. This is
done in order to reduce the number of character pixels
without removing any intrinsic information.

Character Segmentation for Automatic CAPTCHA Solving The Open Computer Science Journal, 2014, Volume 1 3

 • Identification and correction of global wave

transformations [12]. Useful when pattern matching
segmentation will be performed [13]. Such transformations
are not in general reversible and when they are, their reversal
requires a priori assumptions about the transformations used.

 • Identify the CAPTCHA scheme. A website can use

more than one schemes, randomly select one and send a

challenge from that scheme. Hence the attacker needs to

identify the scheme in order to choose the attack algorithm.

If the schemes differ significantly between they could be

identified and only challenges of the weak scheme will be

attacked, otherwise they can be treated as one scheme. The

developed algorithm must be generic enough to attack all

different challenge variations.

2.2. Segmentation

 The goal of segmentation is to identify the location of the

characters and extract them from the rest of the image.

Published attacks use techniques that are specific to a

particular CAPTCHA scheme. The most commonly used

algorithms include:

 • Flood-filling segmentation An object is a connected

component created from neighbouring black pixels. Flood-

filling segmentation takes a binarised image and returns the

collection of objects found.

 • Histogram segmentation: the number of pixels at each

column is counted and the minima of this value are chosen

as possible segmentation points. This is especially useful

when no column contains pixels of more than one character.

 • Pattern matching techniques [10, 12, 13] the attacker
searches for characteristic features of letters, including:

 - the dot of ì ', ` j '

 - the cross like intersection of

` f ', k̀ ', r̀ ', `x '.

 - sigmoid shaped characters such as s̀ ' and `5'

 The categories are searched in a pre-specified order. Any

characters that belong to the current category are identified

and removed. The process is repeated for characters of the

next category until there are no categories or characters left.

 • Snake Segmentation: A line (snake) is created starting

from the top of the image and moving downwards, left and

right, without crossing any character pixels to create a

segmentation line [24]. The snake ends at the bottom-most

pixel of the image. Snakes at different horizontal positions

are drawn and those that best describe a cut are selected.

Each character is then contained in the area between two

snakes.

2.3. Character Recognition

 Characters are extracted from the CAPTCHA according
to the results of the segmentation phase. A classifier is then
used to recognise the letters. While early attacks against
CAPTCHAs were using simple criteria such as the pixel
count of the resulted objects, more recent attacks utilise
machine learning classifiers that are trained on the output of
the segmentation algorithm [6].

3. AUTOMATED CAPTCHA SOLVER FRAMEWORK

 We developed a flexible framework for automated

CAPTCHA solving. A modular design allows different pre-

processing, segmentation and recognition algorithms to be

deployed or new algorithms to be devised as required for any

given scheme. Individual segmentation algorithms are used

to extract the characters of the CAPTCHA challenge. We try

to identify segmentation failures as early as possible and skip

the challenge in order to minimise wasted effort.

 Both pre-processing and segmentation steps required a

number of hyper parameters to be tuned in order to achieve

the best results. A subset of the evaluation set was used to

manually select appropriate values for the hyper-parameters.

We selected values that achieved reasonable performance

against a set of a few hundred challenges. This number was

regarded as small enough to allow manual inspection of

segmentation results and large enough to ensure

generalisation performance.

 The set of parameters was selected on the rationale that

we want to assess the ease with which attackers could attack

the schemes. Hence we tried a few dozen to a few hundred

parameter combinations and we stopped when a reasonable

accuracy was reached (well above the success threshold

defined above). This was in general not difficult as there

were a number of parameters that could give good accuracy.

The methods were thus shown to be reasonably stable with

respect to those particular parameter values. Further

parameter tuning would no doubt yield some small

incremental performance gains, as would the usage of some

more complex algorithms for particular image analysis

subtasks, but as was mentioned earlier the main aim of this

paper is not achieving maximal accuracy on a particular

selection of data sets or indeed algorithms. Instead, we show

how combinations and variations of well-known robust

image processing and analysis techniques can break some of

the most widely used CAPTCHA schemes currently in

widespread usage. Our results present a challenge to the

designers of CAPTCHA algorithms to make their methods

more robust with respect to these kinds of solution

frameworks.

3.1. Pre-Processing

 The framework provided the ability to use up-sampling,
blurring, thresholding, removing of certain intensities, and
thinning of characters. We also developed custom methods
for removing the lines in Slashdot CAPTCHAs and the chess
effect in BotDetect's Wavy Chess. In the latter cases we used
the fact that there was consistency in how those patterns
were created to achieve better results. For each CAPTCHA
scheme we selected both the needed methods and the order
of applying them. Some methods were used more than once
against the same scheme.

3.2. Segmentation

 We implemented flood-filling, histogram segmentation,
and a variation of histogram segmentation that uses further
metrics from the pixel count in each column to decide the

4 The Open Computer Science Journal, 2014, Volume 1 Makris and Town

segmentation lines. Additionally we developed a new
algorithm that identifies the vertical lines of letters of
reCAPTCHA challenges and then examines them in order to
determine the segmentation line starting point and
orientation. More implementation details will be given in the
context of each scheme.

3.3. Character Recognition

 Our character recognition module is structured into

layers. In the first layer characters are grouped into

categories of one or more characters and a Support Vector

Machine (SVM) classifier is used to assign candidate

character regions to relevant categories. If the chosen

category contains more than one letter, then a second stage

category specific SVM classifier is applied. This process

continues until the letter has been unambiguously classified.

In practice we have found two-layer classifier architectures

sufficient.

 The SVMs are trained using the real and imaginary parts

of Zernike moments [11] up to and including order 10, and

the width, height, aspect ratio, and inverse aspect ratio of the

character's bounding box. We chose Zernike moments

because their usage is well established in OCR (optical

character recognition) tasks. Zernike polynomials are

orthogonal to each other and hence can represent information

compactly with very low redundancy while retaining enough

of the characteristic information of shapes to allow efficient

reconstruction. Used as classification features, this means

that their usage provides higher representational accuracy

than comparable methods at similar description length for

fairly complex shapes. They also exhibit some invariance to

simple rotations, translations and scale differences, which

makes them especially useful for CAPTCHAs whose

characters undergo various transformations.

 We decided to use SVM since they can be quickly

trained and they perform relatively well when given input

Zernike Moments as input features. Other machine learning

frameworks, such as convolutional neural networks, could

have been used instead, but these typically require larger

amounts of training data. Furthermore, [11] compares the

performance of neural networks with that of SVMs training

using Zernike features and strongly favours the latter

approach. As the development of an optimal classification

methodology is not a primary focus of this paper, we also

adopted this approach, and our results demonstrate the

efficacy of this algorithm and feature choice. Indeed, we

gained character classification precision larger than 95% in

all but the reCaptcha scheme. Characters in reCaptcha

challenges were rotated and that caused a poor precision.

 The Zernike moments are approximated for the discrete
case of image processing by the formula [14]:

Z
pq

= p, N()
x=0

N 1

y=0

N 1

R
pq

(r
xy

)e
iq

xy
f x, y() (1)

 A better way to calculate them is by using the radial
polynomials

R
pq

r()=
s=0

p |q|

2

1()
s p s()!

s!
p+ | q |

2
s !

p q

2
s

r p 2s (2)

 There exist a number of fast and numerically stable (with
a small number of erroneous cases) algorithms [9, 16, 19] to
calculate these polynomials. We employ the q-recursive
algorithm that uses the relations:

H
1

=
q q 1()

2
qH

2
+

H
3

p + q + 2() p q()
8

 (3a)

H
2

=
H

3
p + q() p q + 2()

4 q 1()
+ q 2() (3b)

H
3

=
4 q 2() q 3()

p + q + 2() p q + 4()
 (3c)

 This algorithm has been shown to outperform other
algorithms of similar complexity [17]. While its usage for
high-order polynomials can give rise to numerical
instabilities, this is not a problem in our case since we were
able to restrict ourselves to polynomials of order 10 or lower
without loss of accuracy. The polynomials are calculated and
their values cached at the initialisation of the recogniser and
hence we were able to investigate adding further
polynomials using other (slower) methods to check that our
usage of the q-recursive algorithm did not adversely affect
classification performance. In practice we saw that
polynomials of up to order 10 give good precision, and
therefore our choice of the q-recursive algorithm was
justified with minimal overhead for calculating the moments.

 The image is transformed into polar coordinates and the
feature vector is calculated. During training the maximum
and minimum values of each feature are found and stored to
be used to normalise each feature in the range [1,+1] using
the formula:

i 1, 2,.., n{ }. v
i

v
i
= min

i
+

v
i

max
i

min
i

 (4)

 The SVMs were implemented using the GPU (Graphics
Processing Unit) accelerated libsvm [2, 7] package that
creates a SVM for each pair of classes. Multi-label
classification is implemented by "voting": the outputs of all
the SVMs are summed and the class with the most votes is
chosen.

4. CAPTCHA-SPECIFIC ALGORITHMS

4.1. Wikipedia

 Wikipedia challenges consist of two joined-up English
words (each consisting of either four or five letters) that form
a single character sequence. Highly distorted letters of a
single font are used. Segmentation resistance is provided
through local distortions of characters and a global wave

Character Segmentation for Automatic CAPTCHA Solving The Open Computer Science Journal, 2014, Volume 1 5

transformation of the word string (see Fig. 1a). The scheme
was updated in Spring 2013 to further strengthen it (Fig. 1b).
The new scheme uses a different font with thinner letters,
hence the applied transformations distort the letters
significantly more. Our algorithm is able to break both
schemes. It achieves 72% precision against the older scheme
and 16% against the new scheme but the latter required a
significantly smaller training set (just 210 samples compared
to 2075 previously). Our discussion primarily focuses on the
older scheme.

 There are two causes of characters becoming conjoint
and hence difficult to segment apart:

 • Letters with long horizontal lines come very close to
their neighbours because of the wave transformation. The
formed joins are made of pixels of low intensities.

 • Local distortions create areas of grey pixels around
characters. These grey areas span through a lot of columns
causing neighbouring characters to merge.

 The scheme has been proven to be insecure by Bursztein
et al. [6] who achieved a 25% attack success rate against it.
The old scheme does not have significant differences from
the one that they attacked. In their paper they do not present
the specific details of their attack but we believe that they
removed the noise, binarised the image and then they used
flood-filling segmentation which is their main segmentation
algorithm. We proceeded similarly although we have added
some extra segmentation and post-segmentation steps. Our
algorithm consists of the following main stages (see Fig. 3):

 1. The image is thresholded and connected components
are extracted.

 2. Connected components that are too small are removed
as noise.

 3. Connected components that are of typical dot
dimensions are identified and candidate ` i ' or ` j ' are
marked.

 4. Connected components that belong to fragmented
characters are merged.

 5. Overly large connected components are split.

 6. Characters are recognised using SVM classifiers.

 7. If the final string contains the expected number of
characters (currently 8-10) then return it, otherwise skip the
challenge.

 A number of common cases where two letters are not
separated can be treated as a composite character (ligature)
that is recognised explicitly by our classifiers. The most
common conjoint character pairs are t,`rt` f and y` r .

4.1.1. ` i ',` j ' Recognition

 Objects of a certain size and shape are categorised as dots
and their neighbours are examined. If exactly one of the
neighbours is a long straight object and is in good horizontal
alignment with the dot, then we mark those objects as a
potential ` i ' or ` j ' character.

4.1.2. Join Connected Components

 Two neighbouring objects are combined when at least
one of the following conditions holds:

Fig. (1). Examples illustrating the difficulty of character

segmentation in the case of the old (a) and new (b) Wikipedia

CAPTCHAs.

Fig. (2). Top: Examples of correct (left) and erroneous (right)

Wikipedia CAPTCHA component divisions. Bottom: t and r

overlap vertically and are initially combined into a single
component before being split.

Fig. (3). Stages of Wikipedia CAPTCHA solving: (a) original character sequence, (b) thresholded, (c) connected components (d) small
objects (such as noise near the n, e, t and i characters) are removed.

6 The Open Computer Science Journal, 2014, Volume 1 Makris and Town

 • Three or more common columns

 • More than one common column and both objects have
more than four pixels per column

 • If the distance between their bounding boxes is smaller
than 2 px (two pixels), they are searched to determine
whether we can find three lines that do not intersect
pairwise, that join the two components, and have lengths
equal or less than 2 px .

 Sometimes false joins are created and the next steps deal
with them by combining fragmented objects.

4.1.3. Divide Objects

 Any character with pixel count more than 500 px is
thresholded keeping only low intensities (< 90). The objects
that are created are returned as separate characters. (See
Fig. 2) for examples.

4.1.4. Recogniser

 The bounding boxes created by the preceding algorithms

(see Fig. 4 for examples) are turned into features for

recognition. Any i` ,

`j found are returned according to the

position of their dot. The structure of the classifiers is shown

in Fig. 5. Our solution algorithms for the other CAPTCHA

schemes have similar recogniser structures, so details of

most of these are omitted for the sake of brevity.

4.2. Slashdot

 Slashdot CAPTCHAs consist of a single English word
with a number of horizontal and vertical lines intersecting
multiple characters and each other. The security of this
CAPTCHA is founded upon the difficulty of segmenting
characters apart (see Fig. 6a). The characters are connected
to each other by the lines and by clumping some characters
together horizontally.

 Characters are horizontally and vertically displaced but
they have no distortions apart from in-plane rotations. They
come from a single font, there are both hollow and solid
characters and the line width of characters varies from a
couple of pixels to more than 10. The character-set is such
that line removal will cause damage to the characters and it
is difficult to perform pattern recognition.

 The scheme was attacked by Bursztein et al. [6] who
broke it with precision 24% without using any post-
processing and 35% by spell-checking the output with an
English dictionary. They use a custom implementation of
Hough Transforms to identify the lines and then they remove
pixels by inspecting their surroundings. They do not provide
further segmentation information but they probably use
flood-filling segmentation in order to remove the connected
components. We tried a similar algorithm but most of the
connected components we extracted contained more than one
character. We used a histogram based segmentation
algorithm to segment the characters further, thus achieving a
precision of 44% without the use of a lexicon.

 We chose to remove pixels that were close to characters
using histogram segmentation instead of removing the line
points that were next to characters using other heuristics.
Histogram segmentation has the advantage of not causing
significant damage to the characters, whereas line point
removal may lead to character break-up. Furthermore,
histogram segmentation allowed us to segment apart
characters that were erroneously connected by collapsing the
distance between them. Since they were just touching each
other in a single point and not overlapping, the histogram
columns in which they were connected contained a small
number of characters. Our algorithm consists of the
following main stages (see Fig. 6):

 1. The image is thresholded to remove some noise and
create a binary image (Fig. 6b).

 2. Identify the pixels of the horizontal and vertical lines

Fig. (4). Examples of characters extracted from Wikipedia challenges. The ligature r̀t ' can be recognised using a special classifier.

Fig. (5). Wikipedia recogniser consisting of a two-stage cascade of SVM classifiers. In addition to isolated letters, the recogniser is capable
of recognising conjoint character pairs (ligatures) r̀y ', ̀ rt ' and ` ft '.

Character Segmentation for Automatic CAPTCHA Solving The Open Computer Science Journal, 2014, Volume 1 7

 3. Remove the pixels of the lines that are distant from
characters

 4. Remove pixels in columns where there is a likely
character join

 5. Join fragmented characters

 6. Extract characters using the resulting bounding boxes
of the characters (Fig. 6d)

 7. Skip the challenge if very wide (conjoint) characters
are found

 8. Recognise individual letters and form the result string

4.2.1. Line Pattern Identification

 Line detection algorithms return a lot of false positives
(characters are positioned so that their pixels create spurious
lines). The Slashdot CAPTCHA lines are produced using a
deterministic algorithm (Fig. 6c) that seems to follow these
basic steps:

 • There are four to six vertical line starts at the top of the

challenge and four to six ends at the bottom. Each start is

connected to the two closest ends (or one if it is the first or

last). Hence the challenge might contain seven to 11 vertical

lines.

 • One to three horizontal line starts on the left side and
one to three ends on the right side. Each start is connected to
the two closest ends and the top most start is connected to
the vertical start or end that is closer to the right end.

 • Occasionally there is a line starting at some point at the
bottom of the challenge and connected to the last vertical
end.

 The horizontal starts and ends of the lines are points on

the two sides where there are black pixels for three

consecutive columns in two consecutive rows. Vertical

points can be similarly identified by our attack algorithm. If

an unexpected number of starts or ends is found then our

algorithm skips the CAPTCHA.

4.2.2. Line Pattern Pixel Removal

 All lines are exactly two black pixels wide and the area

around them has much lower intensities than the area around

characters. The area around each pixel of the intermediate

stage line pattern is examined in the initial challenge (Fig.

6a). If the pixels before and after the two black ones are

white and no more than two of their common neighbours are

grey, then the two black pixels are removed.

 This algorithm is not able to remove some line pixels

(blue areas in Fig. 6d) because there is speckled noise added

to the image and the pattern confuses line intersections with

line pixels close to characters. Those pixels create small

objects with very large density. The image is scanned for

objects that meet those criteria which are then removed.

4.2.3. Removing Pixels from Columns where Characters
are Joined

 The heights h of the object at each column (difference
between first and last black pixel in the column) are
calculated and used to calculate the first derivative of heights

h[i] = h[i] h[i +1]

and columns with large gradient are removed (Fig. 6e).

Fig. (6). Slashdot solution stages. (a) original images (b)

thresholded images (c) line pattern is detected (d) the remaining

line fragments (e) columns with large height gradient differences (f)

segmentation columns identified by scanning h for positive runs

that are followed by negative runs (g) segmentation lines between

crests (h) images after segmentation finishes (i) first stage of

merging characters (j) second stage of merging.

8 The Open Computer Science Journal, 2014, Volume 1 Makris and Town

 Character joins often have small ‘v’ like shapes that are
less common inside a character. The characters that have
similar shape are characters that have thick lines. Hence
when the line of a join is identified all the pixels of the line
have independent probability of being removed. This tends
to preserve thick characters since not all of their pixels are
removed but disconnects character joins. The middle points
of the joins are identified by scanning for positive runs
that are followed by negative runs. The runs must be of
medium size, three to six pixels (Fig. 6f).

 For each column the total number, ctot, of pixels in the

current column and in the two neighbouring columns is

calculated. A run of increasing and then decreasing ctot is

called a crest. Most characters consist of exactly two crests

and all segmentation points are found at points between the

end of the previous and the start of the next crest.

 For each object that is too long to consist of a single
character the crests are examined. Objects that have four
crests are segmented at the join between the second and the
third crest. Objects that have three crests are segmented at
the join between the widest crest and the two other crests. If
an object with more than four crests is found the challenge is
skipped. The two columns at the join are examined and the
one that has the least pixels is chosen and its pixels are
removed in a similar way as above (Fig. 6g).

The line pixels that were not previously removed are iterated

and each pixel has independent probability

7

17
 to be

removed. This is done because character-to-character joins

contain less pixels in a column than internal character joins

(see Fig. 6h for the final result of segmentation).

4.2.4. Join Character Fragments

 Characters with lines of small thickness are often

fragmented but the fragments overlap in a lot of columns.

Objects whose bounding boxes overlap in more than

3

10
 of

their columns are merged together (Fig. 6i) and then

neighbouring objects of the same height and density are also

merged (Fig. 6j).

4.3. reCAPTCHA

 reCAPTCHA challenges consist of two words (Fig. 7),
with one being the word that needs to be entered correctly
(the control word) and the answer given for the other word is
used as an OCR solution for digitising books. If the
submitted string for the control word is at edit distance one
or zero from the actual string of the control word, the user is
regarded as human and the answer to the other string is
stored by the system [22].

 Based on the characteristics summarised in (Table 1) and
an empirical analysis of reCAPTCHA samples (a few
hundred challenges from the training set), we surmised that
the string that has been distorted by a wave transform is used
as the control word and we concentrated our efforts on
implementing an algorithms that recognises it.

 reCAPTCHA occasionally uses other versions of the
challenges that consist of a wavy word and the image of a
number (Fig. 8). In some of those challenges, both words are
required to solve the challenge which is the case for the
challenges that are sent after a false submission. We only
focused on the common reCAPTCHA challenges and we
achieved a precision of 5% against the wavy word. Although
this is not substantially above the target minimum of 1%, it
shows that there are a number of potential vulnerabilities
with this CAPTCHA.

 The intuition behind our algorithm for reading the wavy
word is that letters are constructed by connecting different
lines with the great majority of the letters having lines that
are perpendicular to the median line the word. The algorithm
tries to find those lines and then by examining the area
between them it decides where the end of the current
character is. It constructs a divisions that will create the least
possible damage to the characters.

4.3.1. Algorithm Outline

 1. Identify the boundaries of the two words

 2. Select the wavy word and discard the other

 3. Check the inclination of letters of the challenge

 4. Up-sample the image to allow more fine-grained
processing. The image is scaled by a factor of 4 in each
dimension.

 5. Dilate it to reduce the thickness of character lines

 6. Blur it using Gaussian kernels to remove the noise
around characters

 7. Threshold it to get binarised image

 8. The positions of i,j are identified and the letters are
removed from initial consideration

Fig. (7). Example of the most common variant of a reCaptcha
challenge.

Table 1. Characteristics of the two most common types of

reCAPTCHA words.

 Single font used across challenges Challenges have different fonts

 Random sequence of characters English word

 Wavy transformation Similar to scanned printed text

 Collapsed (vertically squashed)

characters

 Large distances between

characters

Fig. (8). A newer reCAPTCHA challenge with a picture of a

number.

Character Segmentation for Automatic CAPTCHA Solving The Open Computer Science Journal, 2014, Volume 1 9

 9. Starting from the left, the end of the current letter is
identified and a line is drawn removing the rest of the
character:

 (a) Find the current starting line

 (b) Find up to three unique character lines

 (c) Calculate the next segmentation line

 (d) Remove all the pixels between the start line and the
dividing line and save them for recognising the character

 (e) If we did not reach the end continue until a dividing
line has been computed

 10. If at any point the next segmentation cannot be
calculated, then fail

 11. The letters are recognised, including any i, j that

were previously identified

4.3.2. Find the Boundaries of the Words

 The positions of the words are constant: the left-most

word is positioned at the top of the image whereas the right-

most word is positioned at the bottom of the image. Hence

the end point of the first word can be recovered by moving

from x =
2

3
width backwards as long as there are empty

columns or columns that have:

bot tom distanc e >

2

3
height

top distanc e >
1

3
height

 The start of the second word can be recovered similarly.

4.3.3. Select the Wavy Word and Discard the Other

 If one of the words has more than three columns with no

pixels we can safely assume that it is not the wavy word. In a

different case, the word whose letters' distances have the

largest coefficient of variation from the bottom of the image,

is selected. Columns that have height (distance between the

first and last pixel of the column) lower than the median

height are not included in the calculation in order to discard

character arcs. The included heights are shown in (Fig. 9).

4.3.4. Further Pre-processing Steps

 The resulting image (Fig. 13b) contains a single object or

multiple objects, not necessarily divided at character-to-

character joins. This is because character-to-character joins

are made to look like characters' internal points (darker

pixels) and some internal character joins have very high

intensities. This does not allow us to use the pixels'

intensities to identify the joins and hence thresholding the

image removes no useful information.

4.3.5.

`i ,`j Removal

 The removal of ` i ',` j ' provides the later stages of the
algorithm with useful information since it defines the
boundaries of the nearby characters. Their positions can be

Fig. (10). Enlarged detail of the area that is scanned for the selection of the best line that describes the current ` i ' or ` j '.

Fig. (9). The red lines represent the distances that are included in

the calculation of the coefficients of variation of the two words.

10 The Open Computer Science Journal, 2014, Volume 1 Makris and Town

identified since their dots almost always form a separate
object that has specific dimensions.

 The image is scanned for the dots of j,`i` which are
objects that have

width < 16 px height < 12 px

and for any column that they span there is no black pixel
above them.

 Starting from the middle of the dot (Fig. 10) at its lowest
row we test all the lines that have inclination smaller than 45
degrees from the perpendicular (dotted light blue line). A
candidate line that describes the line of the ` ' must have the
first black pixel less than 20 px from the start (the blue
area). From those lines the one that contains more black
pixels is selected to describe the ` i '

 The red lines in (Fig. 11) are the parallels to the selected

line that describes the ` i ' (the light blue line) and they start

from neighbouring pixels of the dot's corners. The area

between the two red lines is assumed to belong to the letter

and it is removed from further consideration.

4.3.6. Check the Inclination of the Wavy Word

 In order to increase the probability of correct decisions in
subsequent steps and decrease the number of cases the
algorithm needed to consider, only challenges with the
majority of characters inclined left are examined (56% of
total challenges).

 Starting from the left top of the current image and going
to the right, top lines at different inclinations are examined
and two counters are maintained, representing lines that
contain more than 20 px and have positive and negative
gradient respectively. (Fig. 12) shows the lines that are
counted in this calculation.

4.3.7. Find the Initial Line

 The tangent to the left side of the first character line is
the first guide line to be calculated. This is the line that has

the most black pixels. In the case of ties the last line to be
encountered is selected.

4.3.8. Find Three Guide Lines

 In a window equal to the maximum width of a character,
all lines with inclination to the perpendicular of 5

o

 to + 70
are checked and the best lines that describe the characters'
vertical lines are selected. Lines at small positive angles are
checked first, then those at small negative angles and finally
those at large positive angles. In each iteration the angles are
checked in order of increasing magnitude. Lines that have
more than 20 black pixels and fewer than 4 white pixels are
compared against all the previously found lines. The
resulting lines are sorted by x-coordinate and the first three
are used as the guide lines.

4.3.9. Next Segmentation Line

 The starting line is only used if there are enough black
pixels between the start line and the first guide line. The
areas between consecutive guide lines are examined to
identify whether the area is a part of a character or is the join
between two characters.

 The first area that does not contain a part of a character is
examined in order to find the most likely segmentation line
that passes through it. If two areas between guide lines are
examined the character can only be an ` m ', hence if the two
areas behind it can be recognised as two arcs the
segmentation line is just after the last guide line. If the
algorithm is not able to identify a possible segmentation line
it fails.

4.4. BotDetect (Wavy Chess)

 BotDetect CAPTCHA challenges (Fig. 14a) have two
different layers, the first is a background that resembles a
chess board with wavy dividing lines. The left-most top-

Fig. (11). The blue line is the best line to describe the line of the

` i s as calculated from the above algorithm. The area between the

red lines is the estimated area of the ` i '.

Fig. (12). Left: lines with positive orientation gradient. Right: lines
with negative gradient.

Fig. (13). Major steps in solving a reCAPTCHA challenge: (a)

Initial challenge (b) The wavy word after pre-processing is done (c)

The calculated segmentation lines (d) The extracted characters of
the challenge

Character Segmentation for Automatic CAPTCHA Solving The Open Computer Science Journal, 2014, Volume 1 11

most rectangle is sometimes black and sometimes white and
the colour of neighbouring rectangles alternates. There are
two rows of rectangles and a variable number of columns
(four to eight). The text string is superimposed onto this
background through inversion. The character-set consists of
nineteen Latin letters and six Arabic digits. Three different
fonts are used but each challenge has characters from a
single font. Characters of the same challenge have the same
width, but width differs between challenges.

 Characters have black and white areas that are aligned
along a different grid of straight lines at regular distances.
The horizontal line is positioned at the centre of the image.

The start of the grid does not match the start of the image but
it has the same number of columns as the background grid.
Characters are pasted at positions such that there is a small
part that has the same colour as the background. The size of
this patch is such that it does not interfere much with human
readability but it is not possible to extract character parts
with flood-filling segmentation.

 There is no published attack for the current version of the
scheme. El Ahmad et al. [25] attacked an earlier version of
scheme that had straight rather than wavy lines by
identifying the chess board and then, if the majority of pixels
was black, they reversed the intensities of pixels. The
designers of the scheme have addressed these issues since
now the letters and the background change intensities at
different positions. The algorithm would need to identify the
chess board of both the background and the foreground in
order to be effective. The wavy lines and the merge of the
two patterns in unpredictable ways would make this difficult.
Our algorithm finds an approximation of the background
grid, reverses the grid, and then it uses the fact that all
challenges have five letters of the same width to achieve
precision 88%.

4.4.1. Algorithm Outline

 1. Create an approximation of the chess grid

 2. Identify the rectangles where pixel intensities are
inverted

 3. Correct the inversion

 4. Find the start and end of the character's string

 5. Divide the area between the start and end into five
equal chunks

 6. Recognise each letter and combine them to produce
the final result

4.4.2. Grid Approximation

 We scan the top-most row and the black pixels (intensity
< 100) whose neighbour is white (> 230) or vice versa are
identified. The grid is created from vertical lines at those
points and a horizontal line in the middle of the challenge.

 The colour of the left-most top-most rectangle is the

same as the value of left-most, top-most pixel. If the pixel is

white the values of the pixels in the even rectangles of the

first line and of the odd rectangles in the second row are

flipped (

i
new

= 255 i). If it is black, intensities of the

complement rectangles are flipped.

4.4.3. Segmentation

 Characters are connected to each other because of lines
created from the previous steps. The start of the characters is
the left-most column with more than 10 px and the end of
the characters is the right-most such column.

 Each challenge has exactly five characters of the same
width. Hence the start and end points of each character can
be computed by dividing the total distance occupied by the
character into 5 parts of equal width.

Fig. (14). The solution stages of our BotDetect (Wavy Chess)

attack: (a) initial CAPTCHA (b) grid approximation (c) reversal of

the chess effect (d) starting and ending lines (e) segmentation lines
(f) Extracted characters.

12 The Open Computer Science Journal, 2014, Volume 1 Makris and Town

start
i
= start

0
+

wor d width

5
i

 Sometimes characters cover the top most row and bogus
points are found. Hence any challenges where more than
seven such points are found are skipped.

 The recogniser (Fig. 15) uses a main classifier and
several sub-classifiers of character classes. Characters of all
three fonts used in BotDetect CAPTCHAs are recognised.

4.5. JCAPTCHA library - Hotmail and Gmail
CAPTCHAs

 We also examined the security of CAPTCHAs produced
by the JCAPTCHA library that can be used at the server side
of web applications and websites. A major disadvantage of
the JCAPTCHA schemes is that for an accurate
implementation of the challenges one needs to have the exact
typeface that the developer of the scheme was using when he
implemented the library.

 We examined the Hotmail scheme, which was easily
attacked using techniques similar to [29], and the Gmail
scheme (see Fig. 16 for examples), for which no successful
attack could thus far be developed. The challenges were
most of the times not recognisable by humans as well.

Gmail challenges consist of a seven letter phonetic word.
Characters are red, blue or green and they are merged with
each other, forming a single object. Vertical lines of
characters overlay each other. An algorithm similar to our
reCatpcha attack cannot be used since there are neither thin
line segments nor areas created by character joins, hence it is
very difficult to accurately identify segmentation lines. A
vertical morphology analysis similar to our Slashdot solver
cannot be used either, since characters have similar

morphology in both character-to-character joins and internal
joins.

 The algorithm
1
 for attacking the Hotmail CAPTCHAs is

presented below. (Fig. 17) shows the initial challenge and
the results of segmentation.

Fig. (17). Top: The initial Hotmail challenge. Bottom: Segmented
character are shown in different colours.

4.5.1. Algorithm Outline

 1. Threshold the image in order to remove the
background

 2. Extract the connected components of the image

 3. Remove connected components that are too small

 4. Remove connected components that satisfy

(a < 600 < 0.22) (a < 250 < 0.35)

where is the pixel count and

=
a

width height

 5. Examine wide objects and check if they have a column
with small pixel count

 6. If they do, then divide the object into two at that
column, otherwise the challenge is skipped

 7. If exactly 8 objects were found recognise the letters
and return the string, otherwise skip the challenge

5. RESULTS

 We evaluated our algorithms by checking the number of
correctly solved challenges on a test set. The achieved

1http://jCAPTCHA.sourceforge.net/

Fig. (15). Structure of the character recogniser for our BotDetect (Wavy Chess) attack.

Fig. (16). Two Gmail challenges produced by the JCAPTCHA

library. No sufficiently robust attack against Gmail CAPTCHAs
has yet been devised. Top: abliter. Bottom: neethed.

Character Segmentation for Automatic CAPTCHA Solving The Open Computer Science Journal, 2014, Volume 1 13

precisions suggest that the CAPTCHA schemes we were
able to break have obvious vulnerabilities that need to be
addressed.

 The time needed to solve a single challenge is very small
compared to the time that humans need to solve the
corresponding challenges. This allows for the use of even
more complex transformation at different parts without
worrying about time limitations.

 The learnability of the algorithms was also examined in
order to see the number of labelled challenges that is needed
for training the algorithms to achieve the desired
performance. In most cases that number was very small,
allowing the rapid development of new algorithms when
minor changes are made to the CAPTCHA scheme.

5.1. Data

 Sample challenges for each scheme were downloaded
from their websites using automated scripts. The scripts
downloaded challenges and randomly divided them into
three sets (Training, Validation, Test). Wikipedia and
Slashdot challenges were collected from their sign-up page
whereas reCAPTCHA and BotDetect challenges were
downloaded from their online demo. Hotmail samples were
generated using the JCAPTCHA library.

 The servers were occasionally responding to our scripts
with the same images, and such duplicates were discarded.
All challenges were then manually labelled with groundtruth.

 A subset of the training set was used to design the
algorithms and the accuracy of the algorithms was refined
against this validation set.

 The sizes of the sets are outlined in Table 2. Training sets
of approximately 2500 samples were used and the
performance of the algorithms was checked against a test set
of 800 or more challenges.

5.2. Evaluation

 We applied the following metrics:

Precision =
#true pos itive

#true pos itive + #false pos itive

Recal l =
#true pos itive

#true pos itive + #falsenegat ive

Accuracy =
#correct solut ions

#total solut ions

 The performance of the character recognisers was
evaluated against artificially created characters similar to
those encountered in CAPTCHA challenges and characters
extracted by the segmentation algorithms from training set
images. All classifiers achieved accuracies of > 99%.

 Table 3 summarises the precision, recall and accuracy
levels achieved by our algorithms for each scheme. Table 4
summarises precisions reported by other published attacks,
and (Fig. 18 and 19) illustrates precision of our methods
relative to others.

 Our attacks against Hotmail, Slashdot and Wikipedia
perform similarly or better than other published attacks, the
attack against reCAPTCHA algorithm achieves precisions
higher than the 1% threshold for a scheme being broken.
With precision 88% on BotDetect, which is comparable to
human precision [5], the use of the BotDetect scheme is
unlikely to provide any security against attacks such as ours.

 The attack against reCAPTCHA (5%) does not deal with
book words, but after a wrong answer both words must be
answered correctly and reCaptcha uses additional metrics
that might reduce our precision. In any case, our results show
that there are definite vulnerabilities in the reCAPTCHA
scheme also.

 Only the Gmail CAPTCHA has not yet proved
vulnerable to our attacks.

5.3. Learnability

 To evaluate how the efficacy of our solvers depends upon

the amount of available data, challenges from the training

sets were randomly divided to create smaller training subsets

of 100, 200, 300, 500, 750 and 1000 challenges. Similarly,

validation sets equal to

1

5
 of the corresponding training

corpus were created. In order to create the training and

validation letter corpora the following procedure was used:

 1. For each challenge set iterate over the challenges and
solve them

 2. If the number of characters return is equal to the
number of characters of the groundtruth

 (a) Assume that the challenge is segmented correctly.

Table 2. The number of samples used for training, validating, and testing each CAPTCHA breaker.

 Training Set Validation Set Test Set

 Wikipedia 2075 411 800

 Slashdot 2038 282 800

 reCAPTCHA 2712 205 1044

 BotDetect 2573 300 1000

 Hotmail 2500 500 1000

14 The Open Computer Science Journal, 2014, Volume 1 Makris and Town

Table 3. Performance statistics of our CAPTCHA attack algorithms.

 Precision (%) Recall (%) Accuracy (%) Answered (%)

Wikipedia 72 ± 3 100 67 93

Slashdot 44 ± 4 88 26 53

reCAPTCHA 5 ± 3 100 0.11 25

BotDetect 88 ± 2 96 81 91

Hotmail 68 ± 5 42 50 31

Table 4. Precisions reported by other published attacks.

Scheme Precision Published Source

3*Hotmail 3*0.61
 Segmentation accuracy 0.95, all challenges have eight characters, each character is

recognised correctly with probability 0.95 [29].

Wikipedia 0.25 2*Precision recorded in [6]

Slashdot 0.35

Fig. (18). Precisions achieved by our attacks relative to previously published attacks and 1% target benchmark (the darker area of each bar).

 (b) Extract the characters.

 (c) Label each character according to its position.

 Then the character recogniser of the scheme was trained

using training, validation pairs. The precision was calculated

against the full test corpus of the respective CAPTCHA

scheme.

 All algorithms apart from reCAPTCHA achieve
precisions higher than 7% when trained with no more than
100 challenges and their performance increases as the
training set increases. It can be seen that those schemes are
not only weak but they require minimal data collection to be

broken. The first correctly solved reCAPTCHA challenge
occurs when the training set is 1000. The expensive data
collection and labelling increases the total cost of the
attacker and hence it increases the percentage above which
the breaker will be profitable.

5.4. Time

 Each challenge must be answered in less than 30s [27]
which is close to the human average [5]. The time taken by
our program (total of segmentation and recognition) are
significantly lower than that limit. Median solution times are
lower than 250 ms for all schemes and there is no challenge

Character Segmentation for Automatic CAPTCHA Solving The Open Computer Science Journal, 2014, Volume 1 15

that requires more than 600 ms. Fig. (20) shows box charts
of time overheads for each algorithm.

 A lot of reCAPTCHA challenges (44%) return almost
immediately because the characters are inclined to the right
and the challenge is skipped. This is the reason for the low
median time. Other schemes have much lower variability
mainly because of changes in the size of the image or more
connected/disconnected letters that need to be corrected.
Bottom outliers in Slashdot and BotDetect are due to failure
in grid reconstruction. It is clear that there are no issues with

time and algorithms can safely use more time consuming
methods.

CONCLUSION

Achievements

 We have achieved the following main tasks:

 • Improvements made to known attacks against Hotmail,
Wikipedia, and Slashdot challenges

Fig. (19). Analysis of learnability (dependence of precision on training set size).

Fig. (20). Time distribution box plots of our attacks algorithms for each CAPTCHA scheme.

16 The Open Computer Science Journal, 2014, Volume 1 Makris and Town

 • Successful attacks against BotDetect's Wavy chess,
reCAPTCHA and the new Wikipedia scheme

 • Implementation of a library that includes customisable
segmentation algorithms and customisable character
recognisers. The library can serve as a tool for further
investigating CAPTCHA security.

Suggested CAPTCHA Improvements

 Based on the results of our implementation and
evaluation and the knowledge we have gained from the
research in this area, we have the following suggestions for
improving CAPTCHA security.

 CAPTCHA providers need to avoid any regularities in
the algorithm that they use to construct the challenges. The
lines of Slashdot were easily recreated once the pattern used
to create them was identified and the darker area around
characters helped in removing lines without damaging
characters. Similarly the regularities of BotDetect's chess
effect and the same width of characters in a challenge helped
break it. Additionally they need to vary the challenges more
significantly. This would force the attackers to have a very
generic algorithm and this will make tuning of the hyper-
parameters difficult. In all but reCAPTCHA, finding a set of
hyper-parameters that was giving sufficient precision against
a scheme did not require more than a couple of hours.
Because of the in-class variability of reCAPTCHA
challenges, even though the precision of the algorithm was
22% against the validation set, it dropped to 5% against the
test set.

 CAPTCHA providers can also try to identify possible
data collection from attackers and try to introduce greater
latency or present potential bots with unforeseen difficulties.
A category of challenges that fail even if a correct answer is
given but have characteristics that are different from the
regular challenges (eg. different font, characters not used in
regular challenges) can be used for this purpose. Those
challenges must not be easily spotted in order not to be
excluded from the training set.

 Furthermore, challenges that are very difficult (or
impossible) for human users and likely to be unsolvable by
automated techniques can be sent to potential bots. Humans
will be expected to skip the challenge whereas bots will
attempt an answer. Challenges that contain nonsense letters
or pictograms can serve this purpose.

Future Outlook

 It is unclear whether some of the currently used
CAPTCHA schemes serve their purpose. An attacker with a
similar tool to ours that implements CAPTCHA breaking
methods can attack several schemes with minimal work. The
number of required challenges before a successful algorithm
is produced is small and the number of parameters to be
tuned is not large. CAPTCHAs need to use more randomness
and variability in all features.

 Of the three schemes (Wikipedia, Slashdot, BotDetect)
that were broken with very high precision, only Wikipedia
recently changed their scheme but it does not defend against
our algorithm. Our algorithms show that reCAPTCHA, the
most commonly used CAPTCHA, is not invincible either. Its

security is provided not only from the challenge but from the
metrics that they keep about website users. Alternative
CAPTCHAs that use non-standard, easier to use challenges
are gaining credibility

2
.

 It is likely that challenges will get easier to solve (with
varying difficulty for different users) and bots will be
categorised by their behaviour against challenges and not
only by their ability to solve them.

CONFLICT OF INTEREST

 The authors confirm that this article content has no
conflict of interest.

ACKNOWLEDGEMENTS

 Declared none.

REFERENCES

[1] K. Chellapilla, K. Larson, P.Y. Simard, and M. Czerwinski,
“Building segmentation based human friendly human interactive

proofs”, In: Proceedings of the Second International Workshop on
Human Interactive Proofs, Springer-Verlag, 2005, pp. 1-26.

[2] A. Andreas, D. Anastasios, M. Vasileios, and K. Ioannis, “GPU
acceleration for support vector machines”, In: 12th International

Workshop on Image Analysis for Multimedia Interactive Services
(WIAMIS), Delft, The Netherlands, April 2011.

[3] P. Baecher, M. Fischlin, L. Gordon, Ro. Langenberg, M. Lützow,
and D. Schröder, “CAPTCHAs: The good, the bad, and the ugly”,

Sicherheit. LNI, vol. 170, pp. 353-365, 2010.
[4] H.S. Baird, A.L. Coates, and R.J. Fateman, “Pessimal Print: a

reverse Turing test”, Int. J. Doc. Anal. Recognit., vol. 5, no. (2-3),
pp. 158-163, 2003.

[5] E. Bursztein, S. Bethard, C. Fabry, D. Jurafsky, and J.C. Mitchell,
“How good are humans at solving CAPTCHAs a large scale

evaluation”, In: Security and Privacy, May 2010.
[6] E. Bursztein, M. Martin, and J.C. Mitchell, “Text-based

CAPTCHA strengths and weaknesses”, In: Computer and
Communications Security(CCS), October 2011.

[7] C.C. Chang and C.J. Lin, “LIBSVM: A library for support vector
machines”, ACM Trans. Intell. Syst. Technol., vol. 2, no.27,pp. 1-

27, 2011.
[8] K. Chellapilla, K. Larson, P. Simard, and M. Czerwinski,

“Computers beat humans at single character recognition in reading
based human interaction proofs (HIPS)”, In: Proceedings of the 2nd

Conference on Email and Anti-Spam, pp. 21-22, 2005.
[9] C.W. Chong, P. Raveendran, and R. Mukundan, “A comparative

analysis of algorithms for fast computation of Zernike moments”,
Pattern Recognit., vol. 36, no. 3, pp.731-742, 2003.

[10] A.S. El Ahmad, J. Yan, and M. Tayara, “The robustness of Google
CAPTCHAs”, Technical Report 1278, School of Computing

Science, University of Newcastle upon Tyne, September 2011.
[11] L. Fedorovici and F. Dragan, “ A comparison between a neural

network and a SVM and Zernike moments based blob recognition
modules”, In: Applied Computational Intelligence and Informatics

(SACI), 6th IEEE International Symposium 2011, pp. 253-258.
[12] H. Gao, W. Wang, and Y. Fan, “ Divide and conquer: An efficient

attack on Yahoo! CAPTCHA”, In: IEEE 11th International
Conference on, Trust, Security and Privacy in Computing and

Communications (TrustCom), 2012, pp. 9-16.
[13] G. Mori, and J. Malik, “Recognizing objects in adversarial clutter:

Breaking a visual CAPTCHA”, In: Proceeding of Computer Vision
and Pattern Recognition, 2003 IEEE Computer Society

Conference, 2003, vol. 1, pp. 1-134.

2 BBC News, 2013: "Ticketmaster dumps 'hated' CAPTCHA verification system."

http://www.bbc.co.uk/news/technology-21260007

Character Segmentation for Automatic CAPTCHA Solving The Open Computer Science Journal, 2014, Volume 1 17

[14] R. Mukundan, and K.R. Ramakrishnan, “Moment functions in

image analysis: theory and applications”, World Scientific, vol.
100, 1998.

[15] M. Naor, “Verification of a human in the loop or identification via
the turing test”, Weizman Institute report, 1996.

[16] G.A. Papakostas, Y.S. Boutalis, C.N. Papaodysseus, and D.K.
Fragoulis, “Numerical stability of fast computation algorithms of

Zernike moments”, Appl.Math.Comput., vol.195, no.1, pp. 326-
345, 2008.

[17] C. Singh and E. Walia, “Fast and Numerically Stable Methods for
the Computation of Zernike Moments’, Pattern Recogn., vol. 43,

no.7, pp. 2497-2506, 2010.
[18] P.Y. Simard, “Using machine learning to break visual human

interaction proofs”, in Advances in Neural Information Processing
Systems 17, Neural Information Processing Systems NIPS 2004,

pp. 265-272, MIT Press, 2004.
[19] C. Singh, and E. Walia, “Algorithms for fast computation of

Zernike moments and their numerical stability”, Image Vision
Comput., vol. 29, no.4, pp. 251-259, 2011.

[20] L. von Ahn, M. Blum, and J. Langford, “Telling humans and
computers apart automatically or how lazy cryptographers do AI”,

Computer Science Department, p. 149, 2002.
[21] L. von Ahn, M. Blum, N.J. Hopper, and J. Langford, “CAPTCHA:

Using hard AI problems for security”. In: Proceedings Of
Eurocrypt, pp. 294-311. Springer-Verlag, 2003.

[22] L. von Ahn, B. Maurer, C. McMillen, D. Abraham, and M.Blum,
“reCAPTCHA: Human-based character recognition via web

security measures”, Science, vol. 321,no. 5895, pp. 1465-1468,

2008.
[23] J. Wilkins, “Strong CAPTCHA guidelines vo1. 2”, Technical

report, 2009.
[24] Yan and A.S. El Ahmad, “ Breaking visual CAPTCHAs with naive

pattern recognition algorithms”, In: Computer Security
Applications Conference, 2007. ACSAC 2007. 23rd Annual, pp.

279-291, December. 2007.
[25] A.S.El Ahmad, J. Yan, and W.Y. Ng, “ CAPTCHA Design: Color,

Usability, and Security”, Internet Comput., IEEE , vol.16, no.2, ,
pp. 44-51, March 2012.

[26] T. Y. Zhang, and C. Y. Suen, “A fast parallel algorithm for
thinning digital patterns”, ACM Commun., vol. 27, no. 3, pp.236-

239, March 1984.
[27] B.B. Zhu, J. Yan, Q. Li, C. Yang, J. Liu, N. Xu, M. Yi, and K. Cai,

“ Attacks and design of image recognition CAPTCHAs”, In:
Proceedings of the 17th ACM conference on Computer and

communications security, CCS '10, pp. 187-200, New York, NY,
USA, 2010. ACM.

[28] A. Rusu, A. Thomas, and V. Govindaraju, “Generation and use of
handwritten CAPTCHAs”, Int. J. Doc. Anal. Recog., vol. 13, no. 1,

pp. 49-64, 2010.
[29] J. Yan, and A.S. El Ahmad, “A low-cost attack on a Microsoft

CAPTCHA”, In: Proceedings of the 15th ACM conference on
Computer and communications security, pp. 543-554, 2008.

Received: February 13, 2014 Revised: February 28, 2014 Accepted: June 28, 2014

© Makris and Town; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-

nc/3.0/), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

