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Abstract: Many websites utilise CAPTCHA (Completely Automatic Public Turing tests to tell Computers and Humans 

Apart) schemes as human interaction proofs to grant access to their services only to people rather than spam bots. In this 

paper, we examine the security of six widely used types of CAPTCHA and present novel attacks against all of them, 

achieving success rates of up to 88%. We made improvements to three previously published attacks against the Hotmail, 

Wikipedia, and Slashdot challenges and devised novel and successful attacks against BotDetect's Wavy chess, 

reCAPTCHA, and a new variant of the Wikipedia scheme. Furthermore, we implemented a library that includes 

customisable segmentation algorithms and character recognisers. This library can serve as a tool for further investigating 

CAPTCHA security. Even though the difficulty and time needed to develop our CAPTCHA solver algorithms varied 

significantly between different schemes, none of these CAPTCHAS proved to be resistant to the attacks we devised. Based 

on our findings, we make recommendations for strengthening CAPTCHA methods to make them more resistant to automated 

attacks such as ours. 
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1. INTRODUCTION 

 Online services such as webmail, social media, cloud 

storage, file sharing, and content creation platforms are often 

abused by bots. Websites are using CAPTCHAs  

(Completely Automated Public Turing test to tell Computers 

and Humans Apart) as one of their main defence 

mechanisms against such bots. CAPTCHAs are challenges 

sent to users and permission is granted only to those that are 

able to solve them correctly within a certain time frame. The 

challenges are based on tasks that current state of the art 

algorithms do not perform well but that are fairly easy for 

people. 

 Challenges include recognition of distorted words, 

identification of the context of an image, logic questions, 

mathematical questions and understanding speech. A good 

candidate task is one such that  

 • challenges can be automatically generated  

 • there is a very large (ideally infinite) pool of challenges  

 • humans (even naive users) perform it easily  

 • bots perform the task poorly or only with substantial 

resource overheads  

 A CAPTCHA is secure if, in the long run, the total cost 

of automated attacks is higher than their expected gain. 

Hence the likelihood of a successful attacks is a measure of  
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the security of a CAPTCHA. It was suggested that if more 
than 0.01% of the challenges can be successfully solved by a 
computer program then the scheme is broken [1], but in the 
literature a threshold of 1% [27, 6] is more commonly 
adopted. The threshold was decided based on the cost of the 
attack and the gains of the hacker for every successful attack. 
Since the use of CAPTCHAs, as well as the underlying 
security economics could have changed since these earlier 
studies were published, it would be useful to have a more 
recent and representative metric. In the absence of a widely 
used baseline metric, we will use the much more 
conservative 1% accuracy criterion that is becoming more 
widely used in the literature. Most schemes we consider in 
this paper were broken by our algorithms with a much higher 
precision, so the limit needs to be increased considerably for 
the schemes to be considered safe. 

 Good candidate tasks for CAPTCHAs are challenges where 

no artificial intelligence algorithm exists to solve them 

accurately. This creates a win-win situation since hackers are in 

effect forced to advance the field of Artificial Intelligence [20]. 

 We focus on text-based CAPTCHAs because they were 
the first to be introduced [4] and remain the most widely 
used type. Even though Optical Character Recognition 
(OCR) has advanced substantially, solving text based 
CAPTCHA remains difficult [21, 15]. Major challenges for 
automated solution to CAPTCHAs include the fact that 
artificially created noise and distortions are added to make 
segmentation and recognition of characters difficult, the 
words do not necessarily belong to any lexicon, and the 
words are too few and too unpredictable for contextual 
disambiguation. We did not experiment with OCR 
algorithms but instead focused on algorithms that are 
commonly used against CAPTCHA challenges. 
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 The main aim of this paper was to check whether 

commonly used CAPTCHA schemes still suffer from known 

vulnerabilities and can be compromised by straightforward 

attacks using variations of known techniques. Additionally 

we implemented two novel attacks against reCAPTCHA and 

BotDetect's Wavy chess. 

 A major achievement of this paper is that we demonstrate 

that an attacker who implements an application with attacks 

documented in the literature can relatively easily develop 

attacks against new schemes by using combinations and 

alterations of those algorithms. It was out of the scope of our 

project to devise algorithms that would achieve the best 

possible accuracy against the CAPTCHA schemes. Instead, 

we demonstrate relatively straightforward techniques that 

achieve success percentages that already make a potential 

attack highly profitable. 

 We focused mostly on the segmentation part of the 

algorithms and we used a generic character recogniser that 

has been previously tested in the literature [6, 11]. While this 

is not an optimal state of the art algorithm, it offers the 

significant advantages of simplicity, robustness, and an 

ability of training an adequate set of classifiers in a small 

enough time period to allow us to check different variations 

of the segmentation algorithm against the validation test. 

2. RELATED WORK 

 There are a number of published attacks against several 

CAPTCHA schemes, although some of these are still being 

used without major modifications [6, 23, 18, 3, 24]. One 

general benefit of such research is that it can offer guidelines 

for CAPTCHA designers in order to strengthen their 

algorithms. Specific prior art will be discussed in the context 

of our implementation. 

 A scheme is commonly regarded as broken if there exists 

an algorithm that can break more than 0.01% of the 

challenges [1]. For experiments simulating the behaviour of 

the CAPTCHA scheme in lab conditions, a stricter threshold 

of at least 1% should be achieved by a successful attack 

[27]. Since an attacker may only answer challenges when he 

is confident that the answer is correct, it is better to use the 

precision and coverage of the attacker's algorithm to assess 

the security of a scheme [6], which are defined as follows: 

Precision =
#chal lenges ans weredcorrectly

#ans wered chal lenge s
 

Coverage =
#chal lenge sans wered

#total chal lenge s
 

 In order to devise a technique to automatically solve text-
based CAPTCHAs, one effectively needs to reverse engineer 
the methods that are used to produces the CAPTCHA 
scheme. This process can be broken down into three main 
stages [1]: 

 1. Preprocessing: Transformations such as image 
enhancements are carried out to make the work of the next 
stages easier  

 2. Segmentation: Segment text from the background and 
attempt to split it into single character blocks  

 3. Recognition: Classify each extracted character  

 Further post-processing stages can be added in order to 
improve the output of each step. A common practice is to 
write a specific algorithm for segmenting each scheme and 
use machine learning to derive classifiers to distinguish 
between individual letters. The classifiers are trained on data 
produced from the segmentation algorithm. 

 Computers can outperform humans at recognising 
individual characters [8] even under large distortion and 
hence the difficulty of solving text-based CAPTCHAs 
primarily depends on the difficulty of text segmentation. 
This problem can be made substantially more difficult 
through the use of hand-written characters [28], but all 
common CAPTCHA schemes currently use distorted 
versions of printed text with various anti-segmentation 
techniques. 

2.1. Pre-processing 

 The purpose of pre-processing is to take the challenges to 
a state were the segmentation algorithms can extract the 
letters. Common pre-processing techniques include: 

 • Background removal: This is most useful against 
CAPTCHAs that use colour as a defence mechanism. It 
results in a greyscale image with the foreground pixels 
retaining their intensity and background pixels being white. 

 • Up-sampling Each pixel of the image is divided into 
subpixels, thus allowing finer control over the area that is 
affected by the segmentation algorithm. 

 • Blurring: The image is convolved with Gaussian, mean 
or median smoothing kernels to reduce the amount of noise 
in the image. 

 • Thresholding: Removes pixels of low intensity (they 
are treated as noise), resulting in a binarised image. This is 
very useful since most segmentation algorithms require a 
binarised input image. 

 • Line removal: Eliminate straight segments that are not 
part of characters. Lines are categorised as: 

- lines with smaller thickness than the characters. They can 
be removed using erosions followed by dilations [23]. Black 
pixels in areas with small black count are removed from the 
erosion and dilation preserves the thickness of the characters 
in areas were pixels were not removed.  

 - lines with similar or greater thickness than the 
characters. If the lines are longer than the characters then line 
detection algorithms ( eg .Hough transforms) are used to 
identify them. The area around them is then examined to 
decide which pixels to remove [6].  

 If the lines substantially overlap with characters, then 
they are not removed at this stage and instead are dealt with 
by the segmentation methods. 

 • Thinning of characters: a binary skeleton of the image 
is created using Zhang's thinning algorithm [26]. This is 
done in order to reduce the number of character pixels 
without removing any intrinsic information. 
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 • Identification and correction of global wave 

transformations [12]. Useful when pattern matching 
segmentation will be performed [13]. Such transformations 
are not in general reversible and when they are, their reversal 
requires a priori assumptions about the transformations used. 

 • Identify the CAPTCHA scheme. A website can use 

more than one schemes, randomly select one and send a 

challenge from that scheme. Hence the attacker needs to 

identify the scheme in order to choose the attack algorithm. 

If the schemes differ significantly between they could be 

identified and only challenges of the weak scheme will be 

attacked, otherwise they can be treated as one scheme. The 

developed algorithm must be generic enough to attack all 

different challenge variations. 

2.2. Segmentation 

 The goal of segmentation is to identify the location of the 

characters and extract them from the rest of the image. 

Published attacks use techniques that are specific to a 

particular CAPTCHA scheme. The most commonly used 

algorithms include: 

 • Flood-filling segmentation An object is a connected 

component created from neighbouring black pixels. Flood-

filling segmentation takes a binarised image and returns the 

collection of objects found. 

 • Histogram segmentation: the number of pixels at each 

column is counted and the minima of this value are chosen 

as possible segmentation points. This is especially useful 

when no column contains pixels of more than one character. 

 • Pattern matching techniques [10, 12, 13] the attacker 
searches for characteristic features of letters, including:  

 - the dot of ì ', ` j  '  

 - the cross like intersection of 
  
` f ', k̀ ', r̀ ', `x '.  

 - sigmoid shaped characters such as s̀ ' and `5'  

 The categories are searched in a pre-specified order. Any 

characters that belong to the current category are identified 

and removed. The process is repeated for characters of the 

next category until there are no categories or characters left. 

 • Snake Segmentation: A line (snake) is created starting 

from the top of the image and moving downwards, left and 

right, without crossing any character pixels to create a 

segmentation line [24]. The snake ends at the bottom-most 

pixel of the image. Snakes at different horizontal positions 

are drawn and those that best describe a cut are selected. 

Each character is then contained in the area between two 

snakes.  

2.3. Character Recognition 

 Characters are extracted from the CAPTCHA according 
to the results of the segmentation phase. A classifier is then 
used to recognise the letters. While early attacks against 
CAPTCHAs were using simple criteria such as the pixel 
count of the resulted objects, more recent attacks utilise 
machine learning classifiers that are trained on the output of 
the segmentation algorithm [6]. 

3. AUTOMATED CAPTCHA SOLVER FRAMEWORK 

 We developed a flexible framework for automated 

CAPTCHA solving. A modular design allows different pre-

processing, segmentation and recognition algorithms to be 

deployed or new algorithms to be devised as required for any 

given scheme. Individual segmentation algorithms are used 

to extract the characters of the CAPTCHA challenge. We try 

to identify segmentation failures as early as possible and skip 

the challenge in order to minimise wasted effort. 

 Both pre-processing and segmentation steps required a 

number of hyper parameters to be tuned in order to achieve 

the best results. A subset of the evaluation set was used to 

manually select appropriate values for the hyper-parameters. 

We selected values that achieved reasonable performance 

against a set of a few hundred challenges. This number was 

regarded as small enough to allow manual inspection of 

segmentation results and large enough to ensure 

generalisation performance. 

 The set of parameters was selected on the rationale that 

we want to assess the ease with which attackers could attack 

the schemes. Hence we tried a few dozen to a few hundred 

parameter combinations and we stopped when a reasonable 

accuracy was reached (well above the success threshold 

defined above). This was in general not difficult as there 

were a number of parameters that could give good accuracy. 

The methods were thus shown to be reasonably stable with 

respect to those particular parameter values. Further 

parameter tuning would no doubt yield some small 

incremental performance gains, as would the usage of some 

more complex algorithms for particular image analysis 

subtasks, but as was mentioned earlier the main aim of this 

paper is not achieving maximal accuracy on a particular 

selection of data sets or indeed algorithms. Instead, we show 

how combinations and variations of well-known robust 

image processing and analysis techniques can break some of 

the most widely used CAPTCHA schemes currently in 

widespread usage. Our results present a challenge to the 

designers of CAPTCHA algorithms to make their methods 

more robust with respect to these kinds of solution 

frameworks. 

3.1. Pre-Processing 

 The framework provided the ability to use up-sampling, 
blurring, thresholding, removing of certain intensities, and 
thinning of characters. We also developed custom methods 
for removing the lines in Slashdot CAPTCHAs and the chess 
effect in BotDetect's Wavy Chess. In the latter cases we used 
the fact that there was consistency in how those patterns 
were created to achieve better results. For each CAPTCHA 
scheme we selected both the needed methods and the order 
of applying them. Some methods were used more than once 
against the same scheme. 

3.2. Segmentation 

 We implemented flood-filling, histogram segmentation, 
and a variation of histogram segmentation that uses further 
metrics from the pixel count in each column to decide the  
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segmentation lines. Additionally we developed a new 
algorithm that identifies the vertical lines of letters of 
reCAPTCHA challenges and then examines them in order to 
determine the segmentation line starting point and 
orientation. More implementation details will be given in the 
context of each scheme. 

3.3. Character Recognition 

 Our character recognition module is structured into 

layers. In the first layer characters are grouped into 

categories of one or more characters and a Support Vector 

Machine (SVM) classifier is used to assign candidate 

character regions to relevant categories. If the chosen 

category contains more than one letter, then a second stage 

category specific SVM classifier is applied. This process 

continues until the letter has been unambiguously classified. 

In practice we have found two-layer classifier architectures 

sufficient. 

 The SVMs are trained using the real and imaginary parts 

of Zernike moments [11] up to and including order 10, and 

the width, height, aspect ratio, and inverse aspect ratio of the 

character's bounding box. We chose Zernike moments 

because their usage is well established in OCR (optical 

character recognition) tasks. Zernike polynomials are 

orthogonal to each other and hence can represent information 

compactly with very low redundancy while retaining enough 

of the characteristic information of shapes to allow efficient 

reconstruction. Used as classification features, this means 

that their usage provides higher representational accuracy 

than comparable methods at similar description length for 

fairly complex shapes. They also exhibit some invariance to 

simple rotations, translations and scale differences, which 

makes them especially useful for CAPTCHAs whose 

characters undergo various transformations. 

 We decided to use SVM since they can be quickly 

trained and they perform relatively well when given input 

Zernike Moments as input features. Other machine learning 

frameworks, such as convolutional neural networks, could 

have been used instead, but these typically require larger 

amounts of training data. Furthermore, [11] compares the 

performance of neural networks with that of SVMs training 

using Zernike features and strongly favours the latter 

approach. As the development of an optimal classification 

methodology is not a primary focus of this paper, we also 

adopted this approach, and our results demonstrate the 

efficacy of this algorithm and feature choice. Indeed, we 

gained character classification precision larger than 95% in 

all but the reCaptcha scheme. Characters in reCaptcha 

challenges were rotated and that caused a poor precision. 

 The Zernike moments are approximated for the discrete 
case of image processing by the formula [14]: 

Z
pq

= p, N( )
x=0

N 1

y=0

N 1

R
pq

(r
xy

)e
iq

xy
f x, y( ) (1) 

 A better way to calculate them is by using the radial 
polynomials  

R
pq

r( )=
s=0

p |q|

2

1( )
s p s( )!
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p+ | q |

2
s !

p q

2
s

r p 2s  (2) 

 There exist a number of fast and numerically stable (with 
a small number of erroneous cases) algorithms [9, 16, 19] to 
calculate these polynomials. We employ the q-recursive 
algorithm that uses the relations:  

H
1

=
q q 1( )

2
qH

2
+

H
3

p + q + 2( ) p q( )
8

 (3a) 

H
2

=
H

3
p + q( ) p q + 2( )

4 q 1( )
+ q 2( ) (3b) 

H
3

=
4 q 2( ) q 3( )

p + q + 2( ) p q + 4( )
 (3c) 

 This algorithm has been shown to outperform other 
algorithms of similar complexity [17]. While its usage for 
high-order polynomials can give rise to numerical 
instabilities, this is not a problem in our case since we were 
able to restrict ourselves to polynomials of order 10 or lower 
without loss of accuracy. The polynomials are calculated and 
their values cached at the initialisation of the recogniser and 
hence we were able to investigate adding further 
polynomials using other (slower) methods to check that our 
usage of the q-recursive algorithm did not adversely affect 
classification performance. In practice we saw that 
polynomials of up to order 10 give good precision, and 
therefore our choice of the q-recursive algorithm was 
justified with minimal overhead for calculating the moments. 

 The image is transformed into polar coordinates and the 
feature vector is calculated. During training the maximum 
and minimum values of each feature are found and stored to 
be used to normalise each feature in the range [ 1,+1]  using 
the formula: 

i 1, 2,.., n{ }. v
i

v
i
= min

i
+

v
i

max
i

min
i

 (4) 

 The SVMs were implemented using the GPU (Graphics 
Processing Unit) accelerated libsvm [2, 7] package that 
creates a SVM for each pair of classes. Multi-label 
classification is implemented by "voting": the outputs of all 
the SVMs are summed and the class with the most votes is 
chosen. 

4. CAPTCHA-SPECIFIC ALGORITHMS 

4.1. Wikipedia 

 Wikipedia challenges consist of two joined-up English 
words (each consisting of either four or five letters) that form 
a single character sequence. Highly distorted letters of a 
single font are used. Segmentation resistance is provided 
through local distortions of characters and a global wave  
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transformation of the word string (see Fig. 1a). The scheme 
was updated in Spring 2013 to further strengthen it (Fig. 1b). 
The new scheme uses a different font with thinner letters, 
hence the applied transformations distort the letters 
significantly more. Our algorithm is able to break both 
schemes. It achieves 72% precision against the older scheme 
and 16% against the new scheme but the latter required a 
significantly smaller training set (just 210 samples compared 
to 2075 previously). Our discussion primarily focuses on the 
older scheme. 

 There are two causes of characters becoming conjoint 
and hence difficult to segment apart:  

 • Letters with long horizontal lines come very close to 
their neighbours because of the wave transformation. The 
formed joins are made of pixels of low intensities. 

 • Local distortions create areas of grey pixels around 
characters. These grey areas span through a lot of columns 
causing neighbouring characters to merge.  

 The scheme has been proven to be insecure by Bursztein 
et al. [6] who achieved a 25% attack success rate against it. 
The old scheme does not have significant differences from 
the one that they attacked. In their paper they do not present 
the specific details of their attack but we believe that they 
removed the noise, binarised the image and then they used 
flood-filling segmentation which is their main segmentation 
algorithm. We proceeded similarly although we have added 
some extra segmentation and post-segmentation steps. Our 
algorithm consists of the following main stages (see Fig. 3): 

 1. The image is thresholded and connected components 
are extracted.  

 2. Connected components that are too small are removed 
as noise.  

 3. Connected components that are of typical dot 
dimensions are identified and candidate ` i ' or ` j ' are 
marked.  

 4. Connected components that belong to fragmented 
characters are merged.  

 5. Overly large connected components are split.  

 6. Characters are recognised using SVM classifiers.  

 7. If the final string contains the expected number of 
characters (currently 8-10) then return it, otherwise skip the 
challenge. 

 A number of common cases where two letters are not 
separated can be treated as a composite character (ligature) 
that is recognised explicitly by our classifiers. The most 
common conjoint character pairs are t,`rt` f  and y` r . 

4.1.1. ` i ',` j  ' Recognition 

 Objects of a certain size and shape are categorised as dots 
and their neighbours are examined. If exactly one of the 
neighbours is a long straight object and is in good horizontal 
alignment with the dot, then we mark those objects as a 
potential ` i ' or ` j ' character. 

4.1.2. Join Connected Components 

 Two neighbouring objects are combined when at least 
one of the following conditions holds:  

 

Fig. (1). Examples illustrating the difficulty of character 

segmentation in the case of the old (a) and new (b) Wikipedia 

CAPTCHAs. 

  

 

Fig. (2). Top: Examples of correct (left) and erroneous (right) 

Wikipedia CAPTCHA component divisions. Bottom: t  and r  

overlap vertically and are initially combined into a single 
component before being split. 

 

Fig. (3). Stages of Wikipedia CAPTCHA solving: (a) original character sequence, (b) thresholded, (c) connected components (d) small 
objects (such as noise near the n, e, t and i characters) are removed.  
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 • Three or more common columns  

 • More than one common column and both objects have 
more than four pixels per column  

 • If the distance between their bounding boxes is smaller 
than 2 px  (two pixels), they are searched to determine 
whether we can find three lines that do not intersect 
pairwise, that join the two components, and have lengths 
equal or less than 2 px .  

 Sometimes false joins are created and the next steps deal 
with them by combining fragmented objects. 

4.1.3. Divide Objects 

 Any character with pixel count more than 500 px  is 
thresholded keeping only low intensities (< 90). The objects 
that are created are returned as separate characters. (See  
Fig. 2) for examples. 

4.1.4. Recogniser 

 The bounding boxes created by the preceding algorithms 

(see Fig. 4 for examples) are turned into features for 

recognition. Any i` , 
 
`j  found are returned according to the 

position of their dot. The structure of the classifiers is shown 

in Fig. 5. Our solution algorithms for the other CAPTCHA 

schemes have similar recogniser structures, so details of 

most of these are omitted for the sake of brevity. 

4.2. Slashdot 

 Slashdot CAPTCHAs consist of a single English word 
with a number of horizontal and vertical lines intersecting 
multiple characters and each other. The security of this 
CAPTCHA is founded upon the difficulty of segmenting 
characters apart (see Fig. 6a). The characters are connected 
to each other by the lines and by clumping some characters 
together horizontally. 

 

 Characters are horizontally and vertically displaced but 
they have no distortions apart from in-plane rotations. They 
come from a single font, there are both hollow and solid 
characters and the line width of characters varies from a 
couple of pixels to more than 10. The character-set is such 
that line removal will cause damage to the characters and it 
is difficult to perform pattern recognition. 

 The scheme was attacked by Bursztein et al. [6] who 
broke it with precision 24% without using any post-
processing and 35% by spell-checking the output with an 
English dictionary. They use a custom implementation of 
Hough Transforms to identify the lines and then they remove 
pixels by inspecting their surroundings. They do not provide 
further segmentation information but they probably use 
flood-filling segmentation in order to remove the connected 
components. We tried a similar algorithm but most of the 
connected components we extracted contained more than one 
character. We used a histogram based segmentation 
algorithm to segment the characters further, thus achieving a 
precision of 44% without the use of a lexicon. 

 We chose to remove pixels that were close to characters 
using histogram segmentation instead of removing the line 
points that were next to characters using other heuristics. 
Histogram segmentation has the advantage of not causing 
significant damage to the characters, whereas line point 
removal may lead to character break-up. Furthermore, 
histogram segmentation allowed us to segment apart 
characters that were erroneously connected by collapsing the 
distance between them. Since they were just touching each 
other in a single point and not overlapping, the histogram 
columns in which they were connected contained a small 
number of characters. Our algorithm consists of the 
following main stages (see Fig. 6): 

 1. The image is thresholded to remove some noise and 
create a binary image (Fig. 6b).  

 2. Identify the pixels of the horizontal and vertical lines  

 

 

Fig. (4). Examples of characters extracted from Wikipedia challenges. The ligature r̀t ' can be recognised using a special classifier.  

 

Fig. (5). Wikipedia recogniser consisting of a two-stage cascade of SVM classifiers. In addition to isolated letters, the recogniser is capable 
of recognising conjoint character pairs (ligatures) r̀y ',   ̀ rt ' and ` ft '. 
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 3. Remove the pixels of the lines that are distant from 
characters  

 4. Remove pixels in columns where there is a likely 
character join  

 5. Join fragmented characters  

 6. Extract characters using the resulting bounding boxes 
of the characters (Fig. 6d)  

 7. Skip the challenge if very wide (conjoint) characters 
are found  

 8. Recognise individual letters and form the result string  

4.2.1. Line Pattern Identification  

 Line detection algorithms return a lot of false positives 
(characters are positioned so that their pixels create spurious 
lines). The Slashdot CAPTCHA lines are produced using a 
deterministic algorithm (Fig. 6c) that seems to follow these 
basic steps:  

 • There are four to six vertical line starts at the top of the 

challenge and four to six ends at the bottom. Each start is 

connected to the two closest ends (or one if it is the first or 

last). Hence the challenge might contain seven to 11 vertical 

lines.  

 • One to three horizontal line starts on the left side and 
one to three ends on the right side. Each start is connected to 
the two closest ends and the top most start is connected to 
the vertical start or end that is closer to the right end.  

 • Occasionally there is a line starting at some point at the 
bottom of the challenge and connected to the last vertical 
end.  

 The horizontal starts and ends of the lines are points on 

the two sides where there are black pixels for three 

consecutive columns in two consecutive rows. Vertical 

points can be similarly identified by our attack algorithm. If 

an unexpected number of starts or ends is found then our 

algorithm skips the CAPTCHA. 

4.2.2. Line Pattern Pixel Removal 

 All lines are exactly two black pixels wide and the area 

around them has much lower intensities than the area around 

characters. The area around each pixel of the intermediate 

stage line pattern is examined in the initial challenge (Fig. 

6a). If the pixels before and after the two black ones are 

white and no more than two of their common neighbours are 

grey, then the two black pixels are removed. 

 This algorithm is not able to remove some line pixels 

(blue areas in Fig. 6d) because there is speckled noise added 

to the image and the pattern confuses line intersections with 

line pixels close to characters. Those pixels create small 

objects with very large density. The image is scanned for 

objects that meet those criteria which are then removed. 

4.2.3. Removing Pixels from Columns where Characters 
are Joined  

 The heights h  of the object at each column (difference 
between first and last black pixel in the column) are 
calculated and used to calculate the first derivative of heights  

h[i] = h[i] h[i +1]  

and columns with large gradient are removed (Fig. 6e). 

 

Fig. (6). Slashdot solution stages. (a) original images (b) 

thresholded images (c) line pattern is detected (d) the remaining 

line fragments (e) columns with large height gradient differences (f) 

segmentation columns identified by scanning  h  for positive runs 

that are followed by negative runs (g) segmentation lines between 

crests (h) images after segmentation finishes (i) first stage of 

merging characters (j) second stage of merging. 
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 Character joins often have small ‘v’ like shapes that are 
less common inside a character. The characters that have 
similar shape are characters that have thick lines. Hence 
when the line of a join is identified all the pixels of the line 
have independent probability of being removed. This tends 
to preserve thick characters since not all of their pixels are 
removed but disconnects character joins. The middle points 
of the joins are identified by scanning  for positive runs 
that are followed by negative runs. The runs must be of 
medium size, three to six pixels (Fig. 6f). 

 For each column the total number, ctot, of pixels in the 

current column and in the two neighbouring columns is 

calculated. A run of increasing and then decreasing ctot is 

called a crest. Most characters consist of exactly two crests 

and all segmentation points are found at points between the 

end of the previous and the start of the next crest. 

 For each object that is too long to consist of a single 
character the crests are examined. Objects that have four 
crests are segmented at the join between the second and the 
third crest. Objects that have three crests are segmented at 
the join between the widest crest and the two other crests. If 
an object with more than four crests is found the challenge is 
skipped. The two columns at the join are examined and the 
one that has the least pixels is chosen and its pixels are 
removed in a similar way as above (Fig. 6g). 

The line pixels that were not previously removed are iterated 

and each pixel has independent probability 
 

7

17
 to be 

removed. This is done because character-to-character joins 

contain less pixels in a column than internal character joins 

(see Fig. 6h for the final result of segmentation). 

4.2.4. Join Character Fragments 

 Characters with lines of small thickness are often 

fragmented but the fragments overlap in a lot of columns. 

Objects whose bounding boxes overlap in more than 
 

3

10
 of 

their columns are merged together (Fig. 6i) and then 

neighbouring objects of the same height and density are also 

merged (Fig. 6j). 

 

4.3. reCAPTCHA 

 reCAPTCHA challenges consist of two words (Fig. 7), 
with one being the word that needs to be entered correctly 
(the control word) and the answer given for the other word is 
used as an OCR solution for digitising books. If the 
submitted string for the control word is at edit distance one 
or zero from the actual string of the control word, the user is 
regarded as human and the answer to the other string is 
stored by the system [22]. 

 Based on the characteristics summarised in (Table 1) and 
an empirical analysis of reCAPTCHA samples (a few 
hundred challenges from the training set), we surmised that 
the string that has been distorted by a wave transform is used 
as the control word and we concentrated our efforts on 
implementing an algorithms that recognises it.  

 reCAPTCHA occasionally uses other versions of the 
challenges that consist of a wavy word and the image of a 
number (Fig. 8). In some of those challenges, both words are 
required to solve the challenge which is the case for the 
challenges that are sent after a false submission. We only 
focused on the common reCAPTCHA challenges and we 
achieved a precision of 5% against the wavy word. Although 
this is not substantially above the target minimum of 1%, it 
shows that there are a number of potential vulnerabilities 
with this CAPTCHA. 

 The intuition behind our algorithm for reading the wavy 
word is that letters are constructed by connecting different 
lines with the great majority of the letters having lines that 
are perpendicular to the median line the word. The algorithm 
tries to find those lines and then by examining the area 
between them it decides where the end of the current 
character is. It constructs a divisions that will create the least 
possible damage to the characters. 

4.3.1. Algorithm Outline  

 1. Identify the boundaries of the two words  

 2. Select the wavy word and discard the other  

 3. Check the inclination of letters of the challenge  

 4. Up-sample the image to allow more fine-grained 
processing. The image is scaled by a factor of 4 in each 
dimension.  

 5. Dilate it to reduce the thickness of character lines  

 6. Blur it using Gaussian kernels to remove the noise 
around characters  

 7. Threshold it to get binarised image  

 8. The positions of i,j are identified and the letters are 
removed from initial consideration 

 

Fig. (7). Example of the most common variant of a reCaptcha 
challenge. 

Table 1. Characteristics of the two most common types of 

reCAPTCHA words. 

 Single font used across challenges   Challenges have different fonts  

 Random sequence of characters   English word  

 Wavy transformation   Similar to scanned printed text  

 Collapsed (vertically squashed) 

characters  

 Large distances between 

characters 

 

Fig. (8). A newer reCAPTCHA challenge with a picture of a 

number. 
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 9. Starting from the left, the end of the current letter is 
identified and a line is drawn removing the rest of the 
character:  

 (a) Find the current starting line  

 (b) Find up to three unique character lines  

 (c) Calculate the next segmentation line  

 (d) Remove all the pixels between the start line and the 
dividing line and save them for recognising the character  

 (e) If we did not reach the end continue until a dividing 
line has been computed  

 10. If at any point the next segmentation cannot be 
calculated, then fail  

 11. The letters are recognised, including any i, j  that 

were previously identified 

4.3.2. Find the Boundaries of the Words  

 The positions of the words are constant: the left-most 

word is positioned at the top of the image whereas the right-

most word is positioned at the bottom of the image. Hence 

the end point of the first word can be recovered by moving 

from x =
2

3
width  backwards as long as there are empty 

columns or columns that have:  

  
bot tom distanc e >

2

3
height  

 

top distanc e >
1

3
height  

 The start of the second word can be recovered similarly.  

4.3.3. Select the Wavy Word and Discard the Other  

 If one of the words has more than three columns with no 

pixels we can safely assume that it is not the wavy word. In a 

different case, the word whose letters' distances have the 

largest coefficient of variation from the bottom of the image, 

is selected. Columns that have height (distance between the 

first and last pixel of the column) lower than the median 

height are not included in the calculation in order to discard 

character arcs. The included heights are shown in (Fig. 9).  

4.3.4. Further Pre-processing Steps  

 The resulting image (Fig. 13b) contains a single object or 

multiple objects, not necessarily divided at character-to-

character joins. This is because character-to-character joins 

are made to look like characters' internal points (darker 

pixels) and some internal character joins have very high 

intensities. This does not allow us to use the pixels' 

intensities to identify the joins and hence thresholding the 

image removes no useful information. 

4.3.5. 
 
`i ,`j Removal  

 The removal of ` i ',` j  ' provides the later stages of the 
algorithm with useful information since it defines the 
boundaries of the nearby characters. Their positions can be  
 

 

Fig. (10). Enlarged detail of the area that is scanned for the selection of the best line that describes the current ` i ' or ` j '.  

 

Fig. (9). The red lines represent the distances that are included in 

the calculation of the coefficients of variation of the two words. 
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identified since their dots almost always form a separate 
object that has specific dimensions. 

 The image is scanned for the dots of j,`i`  which are 
objects that have  

  
width < 16 px height < 12 px  

and for any column that they span there is no black pixel 
above them. 

 Starting from the middle of the dot (Fig. 10) at its lowest 
row we test all the lines that have inclination smaller than 45 
degrees from the perpendicular (dotted light blue line). A 
candidate line that describes the line of the ` ' must have the 
first black pixel less than 20 px  from the start (the blue 
area). From those lines the one that contains more black 
pixels is selected to describe the ` i ' 

 The red lines in (Fig. 11) are the parallels to the selected 

line that describes the ` i ' (the light blue line) and they start 

from neighbouring pixels of the dot's corners. The area 

between the two red lines is assumed to belong to the letter 

and it is removed from further consideration.  

4.3.6. Check the Inclination of the Wavy Word 

 In order to increase the probability of correct decisions in 
subsequent steps and decrease the number of cases the 
algorithm needed to consider, only challenges with the 
majority of characters inclined left are examined (56% of 
total challenges). 

 Starting from the left top of the current image and going 
to the right, top lines at different inclinations are examined 
and two counters are maintained, representing lines that 
contain more than 20 px  and have positive and negative 
gradient respectively. (Fig. 12) shows the lines that are 
counted in this calculation. 

4.3.7. Find the Initial Line 

 The tangent to the left side of the first character line is 
the first guide line to be calculated. This is the line that has 

the most black pixels. In the case of ties the last line to be 
encountered is selected. 

4.3.8. Find Three Guide Lines 

 In a window equal to the maximum width of a character, 
all lines with inclination to the perpendicular of 5

o

 to + 70 
are checked and the best lines that describe the characters' 
vertical lines are selected. Lines at small positive angles are 
checked first, then those at small negative angles and finally 
those at large positive angles. In each iteration the angles are 
checked in order of increasing magnitude. Lines that have 
more than 20 black pixels and fewer than 4 white pixels are 
compared against all the previously found lines. The 
resulting lines are sorted by x-coordinate and the first three 
are used as the guide lines.  

4.3.9. Next Segmentation Line 

 The starting line is only used if there are enough black 
pixels between the start line and the first guide line. The 
areas between consecutive guide lines are examined to 
identify whether the area is a part of a character or is the join 
between two characters. 

 The first area that does not contain a part of a character is 
examined in order to find the most likely segmentation line 
that passes through it. If two areas between guide lines are 
examined the character can only be an ` m ', hence if the two 
areas behind it can be recognised as two arcs the 
segmentation line is just after the last guide line. If the 
algorithm is not able to identify a possible segmentation line 
it fails. 

4.4. BotDetect (Wavy Chess) 

 BotDetect CAPTCHA challenges (Fig. 14a) have two 
different layers, the first is a background that resembles a 
chess board with wavy dividing lines. The left-most top-

 

Fig. (11). The blue line is the best line to describe the line of the 

` i s as calculated from the above algorithm. The area between the 

red lines is the estimated area of the ` i '. 

 

Fig. (12). Left: lines with positive orientation gradient. Right: lines 
with negative gradient. 

 

Fig. (13). Major steps in solving a reCAPTCHA challenge: (a) 

Initial challenge (b) The wavy word after pre-processing is done (c) 

The calculated segmentation lines (d) The extracted characters of 
the challenge  
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most rectangle is sometimes black and sometimes white and 
the colour of neighbouring rectangles alternates. There are 
two rows of rectangles and a variable number of columns 
(four to eight). The text string is superimposed onto this 
background through inversion. The character-set consists of 
nineteen Latin letters and six Arabic digits. Three different 
fonts are used but each challenge has characters from a 
single font. Characters of the same challenge have the same 
width, but width differs between challenges. 

 Characters have black and white areas that are aligned 
along a different grid of straight lines at regular distances. 
The horizontal line is positioned at the centre of the image.  
 

The start of the grid does not match the start of the image but 
it has the same number of columns as the background grid. 
Characters are pasted at positions such that there is a small 
part that has the same colour as the background. The size of 
this patch is such that it does not interfere much with human 
readability but it is not possible to extract character parts 
with flood-filling segmentation. 

 There is no published attack for the current version of the 
scheme. El Ahmad et al. [25] attacked an earlier version of 
scheme that had straight rather than wavy lines by 
identifying the chess board and then, if the majority of pixels 
was black, they reversed the intensities of pixels. The 
designers of the scheme have addressed these issues since 
now the letters and the background change intensities at 
different positions. The algorithm would need to identify the 
chess board of both the background and the foreground in 
order to be effective. The wavy lines and the merge of the 
two patterns in unpredictable ways would make this difficult. 
Our algorithm finds an approximation of the background 
grid, reverses the grid, and then it uses the fact that all 
challenges have five letters of the same width to achieve 
precision 88%. 

4.4.1. Algorithm Outline 

 1. Create an approximation of the chess grid  

 2. Identify the rectangles where pixel intensities are 
inverted  

 3. Correct the inversion  

 4. Find the start and end of the character's string  

 5. Divide the area between the start and end into five 
equal chunks  

 6. Recognise each letter and combine them to produce 
the final result 

4.4.2. Grid Approximation 

 We scan the top-most row and the black pixels (intensity 
< 100) whose neighbour is white (> 230) or vice versa are 
identified. The grid is created from vertical lines at those 
points and a horizontal line in the middle of the challenge. 

 The colour of the left-most top-most rectangle is the 

same as the value of left-most, top-most pixel. If the pixel is 

white the values of the pixels in the even rectangles of the 

first line and of the odd rectangles in the second row are 

flipped (
  
i
new

= 255 i ). If it is black, intensities of the 

complement rectangles are flipped.  

4.4.3. Segmentation 

 Characters are connected to each other because of lines 
created from the previous steps. The start of the characters is 
the left-most column with more than 10 px  and the end of 
the characters is the right-most such column. 

 Each challenge has exactly five characters of the same 
width. Hence the start and end points of each character can 
be computed by dividing the total distance occupied by the 
character into 5 parts of equal width.  

 

Fig. (14). The solution stages of our BotDetect (Wavy Chess) 

attack: (a) initial CAPTCHA (b) grid approximation (c) reversal of 

the chess effect (d) starting and ending lines (e) segmentation lines 
(f) Extracted characters. 
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start
i
= start

0
+

wor d width

5
i  

 Sometimes characters cover the top most row and bogus 
points are found. Hence any challenges where more than 
seven such points are found are skipped. 

 The recogniser (Fig. 15) uses a main classifier and 
several sub-classifiers of character classes. Characters of all 
three fonts used in BotDetect CAPTCHAs are recognised. 

4.5. JCAPTCHA library - Hotmail and Gmail 
CAPTCHAs 

 We also examined the security of CAPTCHAs produced 
by the JCAPTCHA library that can be used at the server side 
of web applications and websites. A major disadvantage of 
the JCAPTCHA schemes is that for an accurate 
implementation of the challenges one needs to have the exact 
typeface that the developer of the scheme was using when he 
implemented the library. 

 We examined the Hotmail scheme, which was easily 
attacked using techniques similar to [29], and the Gmail 
scheme (see Fig. 16 for examples), for which no successful 
attack could thus far be developed. The challenges were 
most of the times not recognisable by humans as well. 

Gmail challenges consist of a seven letter phonetic word. 
Characters are red, blue or green and they are merged with 
each other, forming a single object. Vertical lines of 
characters overlay each other. An algorithm similar to our 
reCatpcha attack cannot be used since there are neither thin 
line segments nor areas created by character joins, hence it is 
very difficult to accurately identify segmentation lines. A 
vertical morphology analysis similar to our Slashdot solver 
cannot be used either, since characters have similar 

morphology in both character-to-character joins and internal 
joins.  

 The algorithm
1
 for attacking the Hotmail CAPTCHAs is 

presented below. (Fig. 17) shows the initial challenge and 
the results of segmentation. 

 

 

Fig. (17). Top: The initial Hotmail challenge. Bottom: Segmented 
character are shown in different colours.  

4.5.1. Algorithm Outline  

 1. Threshold the image in order to remove the 
background  

 2. Extract the connected components of the image  

 3. Remove connected components that are too small  

 4. Remove connected components that satisfy  

 
  
(a < 600 < 0.22) (a < 250 < 0.35)  

where  is the pixel count and  

=
a

width height
 

 5. Examine wide objects and check if they have a column 
with small pixel count  

 6. If they do, then divide the object into two at that 
column, otherwise the challenge is skipped  

 7. If exactly 8 objects were found recognise the letters 
and return the string, otherwise skip the challenge  

5. RESULTS 

 We evaluated our algorithms by checking the number of 
correctly solved challenges on a test set. The achieved 

                                                
1http://jCAPTCHA.sourceforge.net/ 

 

Fig. (15). Structure of the character recogniser for our BotDetect (Wavy Chess) attack. 

 

Fig. (16). Two Gmail challenges produced by the JCAPTCHA 

library. No sufficiently robust attack against Gmail CAPTCHAs 
has yet been devised. Top: abliter. Bottom: neethed. 
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precisions suggest that the CAPTCHA schemes we were 
able to break have obvious vulnerabilities that need to be 
addressed. 

 The time needed to solve a single challenge is very small 
compared to the time that humans need to solve the 
corresponding challenges. This allows for the use of even 
more complex transformation at different parts without 
worrying about time limitations.  

 The learnability of the algorithms was also examined in 
order to see the number of labelled challenges that is needed 
for training the algorithms to achieve the desired 
performance. In most cases that number was very small, 
allowing the rapid development of new algorithms when 
minor changes are made to the CAPTCHA scheme. 

5.1. Data 

 Sample challenges for each scheme were downloaded 
from their websites using automated scripts. The scripts 
downloaded challenges and randomly divided them into 
three sets (Training, Validation, Test). Wikipedia and 
Slashdot challenges were collected from their sign-up page 
whereas reCAPTCHA and BotDetect challenges were 
downloaded from their online demo. Hotmail samples were 
generated using the JCAPTCHA library. 

 The servers were occasionally responding to our scripts 
with the same images, and such duplicates were discarded. 
All challenges were then manually labelled with groundtruth. 

 A subset of the training set was used to design the 
algorithms and the accuracy of the algorithms was refined 
against this validation set. 

 The sizes of the sets are outlined in Table 2. Training sets 
of approximately 2500 samples were used and the 
performance of the algorithms was checked against a test set 
of 800 or more challenges. 

5.2. Evaluation 

 We applied the following metrics:  

Precision =
#true pos itive

#true pos itive + #false pos itive
 

Recal l =
#true pos itive

#true pos itive + #falsenegat ive
 

Accuracy =
#correct solut ions

#total solut ions
 

 The performance of the character recognisers was 
evaluated against artificially created characters similar to 
those encountered in CAPTCHA challenges and characters 
extracted by the segmentation algorithms from training set 
images. All classifiers achieved accuracies of > 99%. 

 Table 3 summarises the precision, recall and accuracy 
levels achieved by our algorithms for each scheme. Table 4 
summarises precisions reported by other published attacks, 
and (Fig. 18 and 19) illustrates precision of our methods 
relative to others. 

 Our attacks against Hotmail, Slashdot and Wikipedia 
perform similarly or better than other published attacks, the 
attack against reCAPTCHA algorithm achieves precisions 
higher than the 1% threshold for a scheme being broken. 
With precision 88% on BotDetect, which is comparable to 
human precision [5], the use of the BotDetect scheme is 
unlikely to provide any security against attacks such as ours.  

 The attack against reCAPTCHA (5%) does not deal with 
book words, but after a wrong answer both words must be 
answered correctly and reCaptcha uses additional metrics 
that might reduce our precision. In any case, our results show 
that there are definite vulnerabilities in the reCAPTCHA 
scheme also. 

 Only the Gmail CAPTCHA has not yet proved 
vulnerable to our attacks. 

5.3. Learnability 

 To evaluate how the efficacy of our solvers depends upon 

the amount of available data, challenges from the training 

sets were randomly divided to create smaller training subsets 

of 100, 200, 300, 500, 750 and 1000 challenges. Similarly, 

validation sets equal to 
 

1

5
 of the corresponding training 

corpus were created. In order to create the training and 

validation letter corpora the following procedure was used:  

 1. For each challenge set iterate over the challenges and 
solve them  

 2. If the number of characters return is equal to the 
number of characters of the groundtruth  

 (a) Assume that the challenge is segmented correctly.  

Table 2. The number of samples used for training, validating, and testing each CAPTCHA breaker. 

   Training Set   Validation Set   Test Set  

 Wikipedia  2075  411  800  

 Slashdot  2038  282  800 

 reCAPTCHA  2712  205  1044  

 BotDetect  2573  300  1000  

 Hotmail  2500  500  1000  
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Table 3. Performance statistics of our CAPTCHA attack algorithms. 

 Precision (%) Recall (%) Accuracy (%) Answered (%) 

Wikipedia 72 ± 3 100 67 93 

Slashdot 44 ± 4 88 26 53 

reCAPTCHA 5 ± 3 100 0.11 25 

BotDetect 88 ± 2 96 81 91 

Hotmail 68 ± 5 42 50 31 

  

Table 4. Precisions reported by other published attacks. 

Scheme Precision Published Source 

3*Hotmail 3*0.61 
 Segmentation accuracy 0.95, all challenges have eight characters, each character is 

recognised correctly with probability 0.95 [29]. 

Wikipedia 0.25 2*Precision recorded in [6] 

Slashdot 0.35  

  

 

Fig. (18). Precisions achieved by our attacks relative to previously published attacks and 1% target benchmark (the darker area of each bar). 
 

 (b) Extract the characters. 

 (c) Label each character according to its position.  

 Then the character recogniser of the scheme was trained 

using training, validation pairs. The precision was calculated 

against the full test corpus of the respective CAPTCHA 

scheme. 

 All algorithms apart from reCAPTCHA achieve 
precisions higher than 7% when trained with no more than 
100 challenges and their performance increases as the 
training set increases. It can be seen that those schemes are 
not only weak but they require minimal data collection to be 

broken. The first correctly solved reCAPTCHA challenge 
occurs when the training set is 1000. The expensive data 
collection and labelling increases the total cost of the 
attacker and hence it increases the percentage above which 
the breaker will be profitable. 

5.4. Time 

 Each challenge must be answered in less than 30s [27] 
which is close to the human average [5]. The time taken by 
our program (total of segmentation and recognition) are 
significantly lower than that limit. Median solution times are 
lower than 250 ms for all schemes and there is no challenge 
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that requires more than 600 ms. Fig. (20) shows box charts 
of time overheads for each algorithm. 

 A lot of reCAPTCHA challenges (44%) return almost 
immediately because the characters are inclined to the right 
and the challenge is skipped. This is the reason for the low 
median time. Other schemes have much lower variability 
mainly because of changes in the size of the image or more 
connected/disconnected letters that need to be corrected. 
Bottom outliers in Slashdot and BotDetect are due to failure 
in grid reconstruction. It is clear that there are no issues with 

time and algorithms can safely use more time consuming 
methods. 

CONCLUSION 

Achievements 

 We have achieved the following main tasks: 

 • Improvements made to known attacks against Hotmail, 
Wikipedia, and Slashdot challenges  

 

Fig. (19). Analysis of learnability (dependence of precision on training set size). 

 

Fig. (20). Time distribution box plots of our attacks algorithms for each CAPTCHA scheme. 
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 • Successful attacks against BotDetect's Wavy chess, 
reCAPTCHA and the new Wikipedia scheme  

 • Implementation of a library that includes customisable 
segmentation algorithms and customisable character 
recognisers. The library can serve as a tool for further 
investigating CAPTCHA security.  

Suggested CAPTCHA Improvements 

 Based on the results of our implementation and 
evaluation and the knowledge we have gained from the 
research in this area, we have the following suggestions for 
improving CAPTCHA security. 

 CAPTCHA providers need to avoid any regularities in 
the algorithm that they use to construct the challenges. The 
lines of Slashdot were easily recreated once the pattern used 
to create them was identified and the darker area around 
characters helped in removing lines without damaging 
characters. Similarly the regularities of BotDetect's chess 
effect and the same width of characters in a challenge helped 
break it. Additionally they need to vary the challenges more 
significantly. This would force the attackers to have a very 
generic algorithm and this will make tuning of the hyper-
parameters difficult. In all but reCAPTCHA, finding a set of 
hyper-parameters that was giving sufficient precision against 
a scheme did not require more than a couple of hours. 
Because of the in-class variability of reCAPTCHA 
challenges, even though the precision of the algorithm was 
22% against the validation set, it dropped to 5% against the 
test set. 

 CAPTCHA providers can also try to identify possible 
data collection from attackers and try to introduce greater 
latency or present potential bots with unforeseen difficulties. 
A category of challenges that fail even if a correct answer is 
given but have characteristics that are different from the 
regular challenges (eg. different font, characters not used in 
regular challenges) can be used for this purpose. Those 
challenges must not be easily spotted in order not to be 
excluded from the training set. 

 Furthermore, challenges that are very difficult (or 
impossible) for human users and likely to be unsolvable by 
automated techniques can be sent to potential bots. Humans 
will be expected to skip the challenge whereas bots will 
attempt an answer. Challenges that contain nonsense letters 
or pictograms can serve this purpose. 

Future Outlook 

 It is unclear whether some of the currently used 
CAPTCHA schemes serve their purpose. An attacker with a 
similar tool to ours that implements CAPTCHA breaking 
methods can attack several schemes with minimal work. The 
number of required challenges before a successful algorithm 
is produced is small and the number of parameters to be 
tuned is not large. CAPTCHAs need to use more randomness 
and variability in all features. 

 Of the three schemes (Wikipedia, Slashdot, BotDetect) 
that were broken with very high precision, only Wikipedia 
recently changed their scheme but it does not defend against 
our algorithm. Our algorithms show that reCAPTCHA, the 
most commonly used CAPTCHA, is not invincible either. Its 

security is provided not only from the challenge but from the 
metrics that they keep about website users. Alternative 
CAPTCHAs that use non-standard, easier to use challenges 
are gaining credibility 

2
. 

 It is likely that challenges will get easier to solve (with 
varying difficulty for different users) and bots will be 
categorised by their behaviour against challenges and not 
only by their ability to solve them. 
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