
Send Orders for Reprints to reprints@benthamscience.ae

 Open Computer Science Journal, 2015, 2, 1-10 1

 2352-6270/15 2015 Bentham Open

Open Access

No Silver Bullet – The Evolutionary Model

Daniel Galin
*

28 Yehuda Halevi st., Raanana, 43556, Israel

Abstract: This paper’s objective is to present an evolutionary model that better explains the behavior of the gap between

software engineering (SE) essence difficulties and SE capabilities, and adds an evolutionary dimension to Brooks’s

approach regarding the gap. In his 1987 landmark paper, Brooks argues that software projects incorporate inherent

essence-conceptual difficulties that are unchanging and irreducible. He concludes that SE developments hardly contribute

to SE capabilities to handle SE essence difficulties. Thus, there is no solution to SE essence difficulties. In Brooks’ words,

“there is no silver bullet (SB)”, as the gap between SE essence difficulties and SE capabilities, (hereafter named “the SB

gap”), is unchangeable and irreducible. We argue that the SB gap is the result of two evolutionary processes, that affect

SE simultaneously: (a) continuously growing SE essence difficulties and (b) continuously growing SE capabilities. Thus,

the size of the gap is not irreducible and unchangeable as in Brooks’s argument. Periods of rapid SE development, rapid

growth of SE capabilities may cause a reduced size of the gap. However, in periods where economic developments cause

a higher growth rate of SE essence difficulties, a larger gap may result. It is noteworthy that the smaller the gap, the better

the software development performance is in terms of reliability, productivity and simplicity.

Keywords: Software engineering, software engineering capabilities, design tools and techniques, requirement specifications,
change of requirements, project management.

1. INTRODUCTION

 In his 1987 paper, Fredrick Brooks [1] describes the
familiar software project with its typical surprises of missed
schedules flawed products as being analogous to the mystical
behavior of werewolves, whom hunters have no success in
killing:

 Of all the monsters that fill the nightmares of our
folklore, none terrifies more than werewolves, because they
transform unexpectedly from familiar into horror. One seeks
a bullet of silver that can magically lay them to rest.

 Now, more than twenty years later, we can add to
Brooks's legendary analogy as follows:

 Later in our dreams, the hunters who want to lay the
werewolves to rest continue to improve their rifles, making
them more accurate and their ammunition more lethal. They
also develop better optics for their field glasses. At the same
time, the werewolves have changed, too. The new
generations seem to be smaller in size, quicker to escape,
and even better at detecting the hunters. In addition, they
have developed new ways to surprise us, with horror shows
combined with running maneuvers of changing directions.
All these changes help them to continue escaping the
hunters' bullets. During this period, equipped with more
advanced weapons, the hunters try over and over again to
hit the werewolves, but with no success. So, unfortunately,

*Address correspondence to this author at the 28 Yehuda Halevi st.,

Raanana, 43556, Israel; Tel: 972-9-7713750; Fax: 972-9-7745802;

E-mail: dgalin@bezeqint.net

up until now, there have been no lethal hits. Now, as before,
one seeks a bullet of silver that can magically lay them to
rest.

 This paper’s objective is to present an evolutionary
model that describes and explains the behavior of the gap
between software engineering (SE) essence difficulties and
SE capabilities. This gap is “responsible” for the unsolved
essence difficulties of SE projects, This model presented
here, supported by theoretical and empirical literature, tries
to add an evolutionary dimension to Brooks’ approach
regarding this gap.

 In his landmark 1987 paper, Brooks [1] presents his

conclusion that the nature of software development projects

incorporates difficulties of two types: (1) inherent essence-
conceptual abstraction difficulties (“SE essence difficulties”)

and (2) difficulties characterized by syntax errors and other

technical non-essential errors (“SE accidental difficulties”).
Brooks claims that SE essence difficulties, which mainly

affect the specifications, design and testing stages of the

software development process, are unchanging and
irreducible. The other type of SE difficulties, the SE

accidental difficulties are typical to the programming stage,

and are comparatively easy to solve. Brooks argues that SE
essence difficulties are caused by “inherent properties of this

irreducible essence of modern software systems: complexity,

conformity, changeability and invisibility”. In order to
examine his construct, Brooks analyzed a wide range of SE

technologies and methodologies developments. He found

that, while these improvements, contribute almost entirely to
better handling of SE accidental difficulties, they hardly

2 Open Computer Science Journal, 2015, Volume 2 Daniel Galin

contribute to the solving SE essence difficulties, Accordingly
SE essence difficulties are unchanged, and so there is no
solution for SE essence difficulties. In Brooks’s words, there
is no silver bullet, as the gap between SE essence difficulties
and SE capabilities, hereafter named “the SB gap”, is
unchanged and irreducible. Twenty years later [2], in a 2007
retrospective examination of SE developments since the
publication of his 1987 paper, Brooks concludes that his
approach regarding SE essence difficulties is still valid.
Furthermore he finds that “most of the proposed radical
improvements continue to address only accidental
difficulties”. In other words, SE essence difficulties continue
to be irreducible and unchanged.

 Brooks’s analytical axiomatic article has incited many
reactions by both supporters and opponents. Berry [3-5],
Jeffrey [6] and Spinellis [7] support Brooks’s conclusions.
Berry [3, 4] refers to the phenomenon of SE essence
difficulties as the inevitable pain of software development.
He argues there are still no solutions for SE essence
difficulties. He also claims that the never-ending requirement
changes during the software development process and later,
add tremendously to SE essence difficulties. In another
paper, Berry [5] argues that SE developments create SB
situations that quickly solve all the formerly too-tough
problems that the silver bullet lets us solve. Doing this
brings to a new frontier of not-easily-solved problems. In
other words, growing SE capabilities drives the adoption of
growing SE essence difficulties. Jeffrey [6] presents the
human factor, including cultural differences between
developers, clients and users, as an additional source of SE
essence difficulties. Spinellis [7] and Bell [8] found that new
methodologies and technologies, although often considered
SBs by the developers, were not successful and SE still
suffer from SE essence difficulties.

 Several authors, among them Blaha [9], Glott et al. [10]
and Sharma et al. [11] agree with Brooks’s conclusions but
offer a variety of SE methodologies and technologies, which
are expected to mitigate the effects of SE essence
difficulties. Blaha presents the application of reverse
engineering as a tool for analyzing the database quality of
proposed software products, as an additional source for
better handling of SE essence difficulties. This may serve,
according to Blaha as “copper bullets”, which could improve
SE capabilities significantly, yet not become the much
needed SB. Glott et al. like Blaha, address the reliability
aspects of SE essence difficulties, and claim that the
application of models of second-generation quality metrics
will significantly improve the quality of selected software.
Based on their professional experience in India, Sharma et al
[11], suggest experienced management as a tool with which
to achieve meaningful improvement of SE capabilities.

 The 20th anniversary of Fred Brooks’ 1987 paper
occasioned a discussion panel, whose subject was whether
the findings presented in the 1987 paper are still valid after
20 years [2, 12, 13]. Fred Brooks, who himself participated
in the panel, expressed his belief that no change had occurred
during the past two decades. Moreover, he claimed that SE
advancements had contributed to reducing SE accidental
errors in the development process, but had no significant
effect on SE essence difficulties. All of the other anniversary

panel participants agreed that the SB had not been created or
discovered over the two-decade period, since Brooks first
published the paper. Almost all of the participants mentioned
object-oriented methodology as the major tool that could
bring us closer to finding the SB. Some of the participants
stressed the importance of craftsmanship and education as
the method by which to achieve simplicity in software
structure and its implementation, thus getting closer to the
SB.

 Among the better known authors who disagree with

Brooks are Harel [14], Cox [15] and Dromey [16]. They

believe their suggestions for new SE technologies or

methodologies, when fully implemented, will substantially

reduce - or even close - the current SB gap. Harel analyzes

the history of software development since the 1950’s and

concludes that the continuous growth of SE capabilities,

contributed to solve SE accidental difficulties, but also SE

essence difficulties He sees a brighter future for system

development by implementation of a framework composed

of modular development, visual representation and the use of

computerized tools. Cox claims that a SB could be achieved

by applying the principles of object-oriented development

processes and creating an advanced trade of software

modules. Dromey expects a major reduction in SE essence

difficulties as a result of reducing, or possibly eliminating,

the complexity of software development processes. This, he

argues, can be accomplished by splitting project

requirements, dealing with them "one by one", and finally

integrating the resulting designs.

 To sum up, both supporters and opponents of Brooks'
ideas agree that: (a) The inherent software development
essence difficulties are the cause of reliability, productivity
and simplicity problems related to SE projects. (b) During
the two decades since the publication of Brooks’s paper, the
numerous SE developments during this period have
significantly contributed to enhancing SE capabilities,
mainly in regard to solving SE accidental / random
difficulties, but not enough to solve SE essence difficulties.

 Based on the above review, if we follow Brooks’
approach, one may question, why haven’t the cumulative
result of the many developments of SE methodologies and
technologies, during the last two decades, finally solved the
problem of SE essence difficulties, and provide us with the
much needed SB

 The answer to the above question lies in the fact that
both, the SE essence difficulties and SE capabilities are not
irreducible and unchanging but changing over time. Their
simultaneously evolutionary changes explain the fact of
substantial possible changes in the size of the SB gap over
time periods

 In the next section, I will propose and describe an
evolutionary SB gap model. This model expands Brooks’s
approach regarding the SB gap by adding a time dimension
to the SB gap discussion. The two sections that follow
discuss the various factors and processes that generate and
affect the evolution of SE essence difficulties and the
evolutionary growth of SE capabilities to handle SE essence
difficulties.

No Silver Bullet – The Evolutionary Model Open Computer Science Journal, 2015, Volume 2 3

2. THE EVOLUTIONARY GAP MODEL

 According to the evolutionary SB gap model, the SB gap
is the result of two independent simultaneous evolutionary
processes:

(a) The continuously growing SE essence difficulties,
becoming more rigorous over the years, and (b) The
continuously enhancing SE capabilities, trying to handle the
growing SE essence difficulties.

 According to the model, the gap between these two
evolutionary processes, at any point of time, the SB gap, is
not of constant size. In periods of rapid SE development,
rapid growth of SE capabilities is observed, causing a
reduction in the size of the SB gap. However, in periods
where economic developments cause a higher growth rate of
SE essence difficulties, a larger SB gap may result. It should
be mentioned that the smaller the SB gap, the better the
software development performance is in terms of reliability,
productivity and simplicity.

3. THE EVOLUTIONARY CHARACTERISTICS OF
SE ESSENCE DIFFICULTIES

 Four simultaneous processes create the evolutionary
growth of SE essence difficulties: (1) The enhancement of
projects’ requirement specifications; (2) The effect of shorter
time schedules of software development projects; (3) The
increased frequency of customers demands for changes of
the requirement specifications, while the project is being
carried out and after its completion. (4) The higher
dependence on IT systems for operation, control and
management of organization, results in a lower tolerance to
SE errors. These four processes are discussed in further
detail below.

 Each of these processes cause growing essence
difficulties which result in reduced achievements in one or
more of the areas of productivity, reliability and simplicity.

3.1. The Enhancement of Projects’ Requirement
Specifications

 The phenomenon of enhancement of projects’
requirement specifications has four main characteristics,
each of which increases SE essence difficulties. Newer
software products are characterized by:

• Increased algorithm complexity, a greater number of
parameters and variables, more complex relationships
between variables, and more complicated calculations.

• Growing interface requirements – namely, software-
software, software-firmware (software embedded in
electronic equipment) and firmware-firmware. We
refer here to standard requirements from new software
packages to provide a wide range of interface
capabilities according to international standards,
required interface with leading software packages, and
required interface with firmware embedded in the
equipment by principal manufacturers.

• More requirements for intra-organizational integration
of individual systems into one integrated system.
Representative examples of such integrations are the

ERP (Enterprise Resources Planning) and CRM
(Customer Relationship Management) software
systems, which combine the functions of several intra-
organizational software systems.

• Increased requirements for inter-organizational
integration abilities of software systems. Typical
higher SE essence difficulties of this type evolve in
the development of software systems for supply chain
management (SCM) services. Another area of inter-
organizational integration is initiated by governmental
agencies for the operation of systems in the area of
taxation, which serve both the public and government
agencies.

 Linda Northrop [2] describes the enhancement of
requirements: “current trends are leading us to systems of
unthinkable scale in not only line of code, but in the amount
of data stored, accessed, manipulated and refined, the
number of connections and interdependencies, the number of
hardware and computational elements, the number of system
purposes and user perception of these purposes, the number
of routine processes, the number of interactions and
emergent behaviors, and the sheer number of people
involved in some way”. She explains the increase in
projects’ requirements as follows: “our global appetite for
complex software and software-intensive systems continues
to increase at a rate comparable to the increases in the
computational capacity of hardware”.

The evolution of software systems, in both size and
complexity, can be seen by analyzing the growth of the
number of software lines of code from a software system’s
release to its subsequent release. Sue and Neamtiu [17]
examine the size growth of a sample of 7 software
applications over several years. The results are shown in
Table 1.

 Similar findings were reported by Robles et al. [18].
They analyzed reasonably large and representative samples
of stable software systems, large in the number of lines of
code, with an active community and user base, and also
studied the software systems’ evolution. Most of these
software systems show a clear linear growth pattern.

 An alternative way to study the evolution of software size
and complexity is by examining the number of modules in
subsequent software system releases. Turski [19, 20]
discusses Lehman’s laws of software evolution. In [19],
Turski presents a typical example of software system growth
over 21 releases.

Release No. Size (number of modules)

1 977

6 1492

11 1832

16 2091

21 2315

 In the first release, there were 977 modules, while in the
21st release there were 2,315 modules; this means an
average growth of 70 modules in the number of software

4 Open Computer Science Journal, 2015, Volume 2 Daniel Galin

modules, compared to its former release, and about a 137%
growth rate over 20 releases. Similar results of steady growth
were found for software systems based on open source
software, specifically related to the Linux kernel and its
many releases over 14 years ([21, 22]). The evolution of
software complexity is also discussed by Arthur [23]. He
proposes three causes for software systems’ growing
complexity: an increase in the diversity of the “species”
served by the system, an increase of structural sophistication,
and additional functionality to overcome performance
limitations.

3.2. The Effect of Shorter time Schedules of Software

Projects

 The continuous trend of decrease of project time
schedules has been typical of all types of software projects
over recent decades. It is the general belief that project
schedules of the same magnitude are cut by 50% every 2-4
years. The implications of this trend on SE capabilities to
handle SE essence issues are severe:

• In general, shorter project time schedules means
less time available for reviewing and testing. Thus,
the ability to fully solve SE essence difficulties is
reduced.

• The requirement to complete projects within ever
shorter time constraints leads to a need to employ a
larger development team. Larger development
teams, in turn, eventually causes a need for more
cooperation and coordination efforts, which is
harder to achieve.

• Furthermore, shorter time schedules, in many cases,
forces the developer to use partners or
subcontractors or outsourcing services for parts of
the project. These types of project organization
require higher control efforts and cause
coordination difficulties. Thus, this situation is
involved with higher risks for software essence
errors.

3.3. The Effects of More Requirement Changes

 The increased frequency of customer demands for
changes of requirements specification during the
development process and after the project has been

completed, typical to the last decade, yields lesser ability to
cope with SE essence difficulties:

• The handling of more changes of requirements
specifications during software development, adds to
the project’s SE essence difficulties. It increases the
work burden and time pressures on the project
teams, leading to inability to perform all the
required reviewing and testing of the software
system. As a result, a project that was involved with
many changes is expected to be characterized by
high rate of unsolved SE essence difficulties.

• Demands for changes after the project was
completed usually create SE essence difficulties
that are harder to solve, as they are usually
performed by less experienced team.

 The severe negative effect of a higher frequency of
changes of the requirement is discussed by Berry [3],
Williams et al. [24] and Rahman et al. [25]. Berry argues
that “a typical software development method is effective in
its first application development problem. However, once
developers have built and developed a version with its
method, the requirements begin to change, whether from E-
type system pressures or client and user demand. When an
inevitable change comes along, modifying the method,
documenting artifacts is so painful that developers avoid
doing it the right way, by carefully tracking the change’s
effects. Instead, they create a quick patch that increases the
system’s brittleness”. Williams et al. [24] and Rahman et al.
[25] refer to the risks involved in late changes of
requirements of schedule delay and additional costs, which
are harder to maintain in the future. On top of these impacts,
a severe risk discussed in these studies is that of the
“snowball effect”, which relates to additional changes in
other parts of the project needed on top of the original
initiated change. The original change task is completed only
once the entire series of additional changes has been
satisfactorily completed. They suggest a risk assessment
study prior to a decision to perform a requested change of
requirements.

3.4. Lower Tolerance to SE Errors

 The IT advancements, especially the introduction of
integrated software systems, inevitably create growing
reliance and dependence of users on these systems, for the

Table 1. Application size evolution.

First release
Program

Time Frame

(Years)
Year Size (LOC)

Last release size

(LOC)
Total size growth

Annual size

growth

Samba 15 1993 5,514 1,045,928 X189.7 X1.42

Sendmail 15 1993 25,912 87,842 X3.4 X1.085

Bird 9 2000 169,306 321,689 X1.9 X1.074

OpenSSH 9 1999 12,819 52,284 X4.1 X1.17

SQLite 8 2000 17,273 65,108 X3.65 X1.18

Vsftpd 8 2001 6,774 15,711 X2.32 X1.11

Quagga 5 2003 41,623 47,511 X1.14 X1.03

No Silver Bullet – The Evolutionary Model Open Computer Science Journal, 2015, Volume 2 5

operation, control and management of organizations. Thus,
organizations became less and less tolerant to SE essence
errors, even to minor ones. Organizations that once could
tolerate an error that paralyzed the operation of a minor
application for a short time, are no more able to tolerate it.
Due to systems’ integration, any error affects now the whole
integrated software system. This trend raises the need for
higher perfection of the software development process,
which naturally adds to the difficulty of solving the SE
essence difficulties.

 Mens et al. [26] describes the dependence on software as
general: this dependence “takes place in all sectors of
society, including government, industry, transportation,
commerce, manufacturing and the private sector”. They
claim that the low quality of software and specifically
software maintenance are the challenges of SE, and list
relevant areas of research and development for SE.
Supported by other researchers’ findings, Duggan [27]
discusses the increased reliance of business on IT and lists
several reasons: (a) “To support missions and priorities,
either for strategic enhancement or competitive necessity.
This accentuates the challenges that face IS developers”; (b)
“Organizational drives to apply more sophisticated
technologies and establish flexible communication networks
to accommodate a variety of data and processing distribution
strategies, multimedia operations and integrated systems”;
and (c) “Increased security concern that now attends the
greater movement of data”.

4. THE EVOLUTIONARY PROCESS OF GROWING

SE CAPABILITIES

 During the last four decades, SE has been characterized
by a continuous flow of developments of methodologies and
techniques. This resulted in growing capabilities and was
expressed by rapid growth in productivity. Studies on SE
productivity growth trends by Jones [28] show about 150%
growth in average productivity over the 20-year period of

1985-2005. While in 1985, 1.29 staff months were required
to complete a project of an estimated 10 function points,
only 0.52 staff months were needed to complete the same
project in 2005. The US average software development
productivity of software projects from 1960 to 2010 are
presented in Table 2.

 The advancement of software development tools explains
a great part of this productivity change. Based on results by
Jones [29], we find that completing the above-mentionesd10-
FP project employing Assembler language would require
10.5 staff months, while employing Cobol would require 4
staff months. However, only 1 staff month was needed when
a spreadsheet was used. Even if we assumed that most
productivity growth was gained by eliminating SE accidental
difficulties, a substantial improvement in handling SE
essence difficulties was still achieved. As mentioned above
in the Introduction, this improvement in handling SE essence
difficulties is noted by Berry [5], accompanied by new SE
essence difficulties.

 As shown above, SE has experienced a continuous flow

of new SE technology and methodology developments over

the last decades. Will this SE capability improvement

continue? Besides the expected new SE methodologies and

technologies, one can expect the additional contribution of

already-existing SE tools. A great part of the known SE

developments has still not contributed their full potential to

improved SE capabilities, but are expected to do so in the

future. We may assume that the current contribution of any

of these developments to SE capabilities in handling SE

essence difficulties is minimal. However, some of these SE

developments will succeed in fulfilling their potential, and

contribute much more to further extend SE capabilities to

handle SE essence difficulties.

 The four examples (out of many SE developments)
presented below, demonstrate current SE developments that
have not yet realized their full potential. These four SE
developments are:

Table 2. US average software development productivity of software projects from 1960 to 2010 (FP per staff month, months needed

for a10-FP project).

Year Function Point (FP) per Staff Month Staff Months Needed to Complete a 10-FP Software Project

1960 1.25 8.0

1965 1.93 5.2

1970 2.63 2.6

1975 4.83 2.07

1980 5.96 1.67

1985 7.75 1.29

1990 11.75 0.85

1995 14.00 0.71

2000 17.43 0.57

2005 19.25 0.52

2010 20.93 0.48

6 Open Computer Science Journal, 2015, Volume 2 Daniel Galin

1. COTS software and software reuse

2. CASE tools

3. Automated testing

4. Open source software

 Common to the above-mentioned four software
engineering areas is their long presence in the SE market,
and their slow rate of implementation, much below the
predicted expectations. Still the continuous growth in the use
of these SE developments, together with extensive research
efforts the near future, are expected to yield extended SE
capabilities or even a breakthrough, at least in some, if not
all, of these four areas.

4.1. COTS Software and Software Reuse

 The use of purchased or reused software, in its variety of
forms, is probably a very effective, if not the most effective,
response to growing SE essence difficulties. These SE
practices include purchase of software packages (COTS
software), purchase of software components for their
integration in required applications, as well as software
reuse. Common to all these courses of action is their reliance
on software that has already been tested and corrected,
according to defects identified in previous tests and by
earlier users. It should be noted that applying COTS software
and software reuse do not completely eliminate SE essence
difficulties for the development teams. These teams still
have to cope with SE essence difficulties related to the
analysis of the requirement specifications and their fit with
regard to the proposed software package. Still, the major part
of the analysis, design and testing of SE essence specific
difficulties is saved. Applications of these practices can
cause: (a) Substantial reductions of the required development
resources; (b) A lower rate of SE essence errors; (c) A
shorter project schedules and better schedule keeping; and
(d) A smoother development process, due to increased
standardization, resulting from repeated use of the same
software package components.

 The application rate of COTS software, purchased
software components, and software reuse is still relatively
low compared to their evaluated potential. The level of
software reuse has been continuously growing over the last
decades, as presented by Jones [30] for the period 1955-2005
and as predicted for 2015. See Table 3 for reuse percentages.

 In their 1995 paper, Garlen et al. [31], while believing

that the future of software development productivity depends

on software reuse, discuss the difficulties in realizing the

reuse potential. They claim that the main reason for

difficulties in matching reused software in a new software

project is the incompatibility in programming language,

operating platform and database scheme. More than ten years

later, in 2009, Garlen et al. [32] and Andersen [33], facing

the still low implementation of software reuse, once again

discuss the mismatch issues of software reuse as the reason

why the potential of software reuse is still far from being

realized. A variety of methodologies to extend software

reuse, including the building of software reuse infrastructure,

prioritizing of candidate reuse projects, and establishing

software reuse libraries, are offered by Sutcliffe et al. [34]

and Sherif et al. [35]. Another way to promote reusable

software discussed by Augustwamy and Frakes [36] is

through the designing and building of reusable components

that will be easier to apply. In an empirical study, he

examines design principles that could guide the developers

of reusable software components.

 CBSD (COTS Based Software Development) is

considered to be the next revolution in software

development, with the advantages of lower costs, shorter

timetables and higher quality. It is also expected to

contribute to easier maintenance and be based on

replacement with new enhanced COTS components [37].

Much research has been dedicated to analyzing the current

challenges of CBSD in the finding and selection of

appropriate COTS product implementation. The difficulties

of selection and systematic identification of the needed

COTS products are considered the main barrier to wider

implementation of CBSD. Methods for improving the

selection process are discussed by many authors, to mention

just few [37-43]. The documentation quality of COTS

components, namely incomplete and inaccurate

documentation, as well as communication with vendors, are

mentioned as difficulties in the integration and testing stages

of implementing CBSD projects [38], and [44]. Another

reason preventing wider implementation is the expected high

efforts needed to select and identify the appropriate COTS

components that cause developers to prefer self-

development. The application of COTS implementation

efforts’ estimation method can promote COTS use [45].

Table 3. Software Reuse - 1955-2015.

Year % of Software Reuse Level

1955 0-5%

1965 0-5%

1975 0-10%

1985 0 -15%

1995 0-25%

2005 0-40%

2015 (predicted) 0.85%

No Silver Bullet – The Evolutionary Model Open Computer Science Journal, 2015, Volume 2 7

4.2. CASE Tools

 It is expected that over the next few years, applications of
new or improved computer-aided SE (CASE) tools will
improve general software development performance.
Today’s CASE tools enable teams to automate segments of
the software development process with no defects;
specifically, to automate the design generation out of
requirement specifications, and the automated code
generation out of design. Other CASE tools provide updated
and accurate documentation and support coordination among
members of large development teams. Thus, while the
current CASE tools mainly contribute to solving accidental
SE difficulties, they also contribute, to some extent, to
reducing SE essence difficulties by reducing rates of design-
generated errors, improved documentation and coordination.
The success rates of CASE applications in the nineties were
disappointing. Research results identified the main causes for
low implementation as follows: they were not user-friendly,
offered low management support, and a lack of voluntariness
[46]. This low implementation rate is still discussed a decade
later [47]. Much research effort has been dedicated to the
development of methods to overcome the difficulties of
wider implementation of CASE tools (some typical
examples, [48-51].

4.3. Automated Testing

 The improvement in testing techniques, especially by
automated testing, as well as improved development tools
and design reviews, have improved SE capabilities by
reducing the defect rates and saving correction efforts. Based
on Jones’s [30] results, Table 4 presents the defect rates in
the US for the years 1955-2005 and a prediction for 2015.

 The higher percentages of defects removed and the lower
numbers of defects delivered helped SE cope with users’
growing dependence on the regular operation of software
systems and their lower tolerance to SE errors.

 Automated testing provides for a better error
identification rate compared with manual testing, as related
to SE accidental errors as well as SE essence errors.
Currently, automated testing tools do not serve all types of
software. Moreover, the planning and defining of the
automated testing plan (the scenarios) still requires
numerous manual resources. Thus, surveys of testing
methods application find that, although the contribution of

automated testing is already substantial, it’s still far below its
full potential [52-54]. Research efforts into the development
of tools for automating software testing include the
development of tools for specific programming languages,
the analysis of organizational aspects, as well as economical
aspects [55-59].

4.4. Open Source Software

 Open source software (OSS) provides software
developers with free access to a great variety of ready-to-use
software program codes, while allowing one to make
changes and adaptations to suit individual needs. Similarly to
the application of COTS software, the application of OSS -
which others have already developed, tested and corrected -
presents a sizeable potential for reducing the required
development resources. It should be noted that applying OSS
still requires the developers to handle SE essence difficulties
involved in analyzing the fit of the proposed OSS package to
the customer’s requirement specifications and in performing
the necessary adaptations, Still, the major part of the
analysis, design and testing of SE essence difficulties are
saved. It is expected that software development, based on
OSS, will become one of the major answers to the challenges
of growing SE essence difficulties. A technical and
economical evaluation should lead to the adoption of OSS
[60].

 Growing application rates of open source software OSS,
due to the development of culture and institutions dedicated
to OSS implementation [61-63] have been noted in the last
few years. Case studies of OSS development applying open
source tools are encouraging, despite the identified
interoperability and adaptability problems and other
limitations of these tools [64]. The accumulation of open
source components leads to the growing difficulty of
maintaining open source libraries and repositories, especially
the categorization of components. The development of tools
for maintaining these libraries, including the automatic
categorization of components, are the focus of current
research projects [65].

5. DISCUSSION
 The SB gap evolutionary model provides a
comprehensive description and explanation to the changing
behavior of the SB gap. The SB gap is defined, as a product

Table 4. Average defect rates in US software projects, 1955-2015.

Year Average Defect Removal % Delivered Defects per Function Point

1955 80% 1.40

1965 83% 1.02

1975 85% 0.75

1985 87% 0.58

1995 90% 0.40

2005 92% 0.28

2015 (prediction) 96% 0.10

8 Open Computer Science Journal, 2015, Volume 2 Daniel Galin

of two independent processes of evolution that govern SE
essence difficulties and SE capabilities. While a few parts of
the evolutionary model have been discussed in several
previous publications our model is a comprehensive one.
The model explains the changes in the size of the SB gap. It
increases and it decreases along the time as a result of
development in the SE essence difficulties and SE
capabilities. Thus, it enhances and in a way changes the
approach of irreducible and unchanging SE essence
difficulties presented by Brooks and others. Fig. (1)
illustrates the comparison between Brooks’ approach and the
SB gap evolutionary model.

 Are there ways to reduce the SB gap at the global level
and at the software developer level? Some global initiatives
to develop new technological tools and methodologies,
already happened in the past through international
professional organizations and may be expected in the
future. Examining the software developer level, we find that
the software developer has some ways to reduce the SB gap

in his organization. Some reduction of the relevant SE
essence difficulties may be achieved by ruling out
unreasonable requirements listed in new project
specification. The software developer could in many cases,
adopt the project schedule to an applicable time table and
avoid unbearable time pressures during the development.
Additional route to avoid increase of SE essence difficulties
is by controlling the change requirements board that will act
as an effective filter for filtering out requirements that are
not urgent or those that are expected to add negligibly to the
project’s contributions. The software developer may also
affect the size of the SB gap by increasing the SE
capabilities by adopting new and advanced SE tools.

6. CONCLUSIONS AND FUTURE RESEARCH

 A theoretical-qualitative approach served as the basis for
the irreducible and unchanging perception of SB gap, as
identified by Brooks’s1987 ideas [1], and the perception of

(A). The SB gap – according to Brooks’s approach.

(B). The SB gap - according to the SB gap evolutionary model.

Fig. (1). The SB Gap – A Comparison.

SB
Gap

1987 2007 Year

SE Essence Difficulties

SE Essence
Difficulty

Level

SE
Capabilities

Level

SE Capabilities

SB
Gap

1987 2007 Year

SE Essence
Difficulty

Level

SE
Capabilities

Level
SE Capabilities

SE Essence Difficulties

No Silver Bullet – The Evolutionary Model Open Computer Science Journal, 2015, Volume 2 9

my evolutionary SB model. Empirical-quantitative research
has not yet been conducted to support these perceptions.
Empirical longitudinal studies will enable a better estimation
of the extent of SE essence difficulties compared to SE
accidental errors and improve the evolutionary model.

 Some ideas for future empirical research:

 1. Evaluation of the various stages of the software
development life cycle as sources of SE essence difficulties.
In other words, estimating the relative contribution of the
requirement specification, the design stage, the programming
and testing stages to SE essence difficulties.

 2. The study the evolutionary behavior of SE essence
difficulties and SE capabilities and the measurement of the
average rate of enhancements over the last decades. Such
empirical studies could contribute to SE theory and can,
practically, direct the developers of SE technology to solve
the important issues of SE essence difficulties, and to
intensify the process of reducing the SB gap.

CONFLICT OF INTEREST

 The authors confirm that this article content has no
conflict of interest.

ACKNOWLEDGEMENTS

 Declared none.

REFERENCES

[1] F. P. Brooks, "No silver bullet- essence and accidents of software

engineering”, Computer, vol. 20, no. 4, pp. 10-19, 1987.
[2] S. D. Fraser, F. P. Brooks, M. Fowler, R. Lopez, A. Namioka, L.

Northrop, D. L. Parnas and D. Thomas, "No silver bullet reloaded –
a retrospective on essence and accidents of software engineering",

in Companion to the 22nd ACM SIGPLAN conference on Object-
oriented programming systems and applications companion

(OOPSLA '07), New York, NY, 2007, pp. 1,026-1,030.
[3] D. M. Berry, "The inevitable pain of software development,

including extreme programming caused by requirements
volatility”, in International Workshop on Time-Constrained

Requirements Engineering (T-CRE), Essen, Germany, 2002, pp. 9-
19.

[4] D. M. Berry, "The inevitable pain of software development: why
there is no silver bullet”, in Radical Innovations in Software and

Systems Engineering in the Future, Proceedings of the 2002
Monterey Conference, Selected Papers, M. Wirsing, S. Balsamo

and A. Knapp, Eds., LNCS, Springer, 2004, pp. 50-74.
[5] D. M. Berry, “The software engineering silver bullet conundrum”,

IEEE Softw., vol. 24, no. 2, pp. 18-19, 2008.
[6] H. J. Jeffrey, “Addressing the essential difficulties of software

engineering”, J. Syst. Softw., vol. 32, no. 2, pp. 157-179, 1996.
[7] D. Spinellis, “Silver bullets and other mysteries”, IEEE Softw.,

vol. 23, no. 3, pp. 22-23, 2007.
[8] A. E. Bell, “Software development amidst the whiz of silver

bullets”, Commun. ACM, vol. 51, no. 8, pp. 20-24, 2008.
[9] M.Blaha, “Copper bullet for software quality improvement”,

Computer, vol. 37, no. 2, pp. 21-25, 2004.
[10] R. Glott, A.-K. Groven, K. Haaland and A. Tannenberg, “Quality

Models for Free/Open Source Software – Towards the Silver
Bullet?”, in The 36 EUROMICRO Conference on Software

Engineering and Advanced Applications, 2010, pp. 438-446.
[11] N. Sharma, K. Singh and D. P. Goyal, “Experience-based Software

Process Improvement”, in Information Intelligence, Systems
Technology and Management - 5th International Conference

(ICISTM), Gurgaon, India, 2011, pp. 71-80.
[12] S. D. Fraser and D. Manci, “No silver bullet: software engineering

reloaded”, IEEE Softw., vol. 24, no. 1, pp. 91-95, 2008.

[13] D. Manci, S. D. Fraser and W. Opdyke, “No Silver Bullet: A

Retrospective on the Essence and Accidents of Software
Engineering”, in Companion to the 22nd ACM SIGPLAN conference

on Object-oriented programming systems and applications
companion (OOPSLA '07). New York, NY, 2007, pp. 758-759.

[14] D. J. Harel, “Biting the silver bullet – toward a brighter future for
system development”, Computer, vol. 25, no. 1, pp. 8-20, 1992.

[15] B. Cox, “No silver bullet revisited”, Am. Prog. J., pp. 1-8, 1995.
[16] R. Dromey, “Climbing over the "No Silver Bullet" Brick Wall”,

IEEE Softw., vol. 17, no. 2, pp. 118-120, 2000.
[17] S. D. Sue and I. Neamtiu, “Studying Software Evolution for

Taming Software Complexity”, in Proceedings of the 21st Software

Engineering Conference (ANSWEC) Auckland, 6-9 April, 2010,

pp. 3-12.
[18] G. Robles, J. J. Amor, G. Barahona and I. Herraiz, “Evolution and

Growth in Large Libre Projects”, in Proceedings of the 2005
International Workshop on Principles of Software Evolution

(IWPSE’05), 2005, pp. 1-10.
[19] W. M. Turski, “The reference model for smooth growth of software

systems revisited”, IEEE Trans. Softw. Eng., vol. 22, no. 8, pp.
814-815, 2002.

[20] W. M. Turski, “Reference model for smooth growth of software
systems”, IEEE Trans. Softw. Eng., vol. 28, no. 8, pp. 599-600,

1996.
[21] A. Israeli and D. G. Feitelson, “The linux kernel as a case study in

software evolution”, J. Syst. Softw., vol. 83, no. 3, pp. 485-
501,2010.

[22] M. W. Godfrey and Q. Tu, “Evolution in Open Source Software: A
Case Study”, in The 14th IEEE International Conference on

Software Maintenance ICSM”00), 2000, pp. 131-142.
[23] W. B. Arthur, “On the Evolution of Complexity”, 1993,

 http//ideas.repec/p/wop/safiwp/93-11-070.html
[24] B. J. Williams, J. Carver and R. Vauglin, “Change Risk

Assessment: Understanding Risks Involved in Changing Software
Requirements”, The 2006 International Conference on Software

Engineering Research and Practice, ACM: New York 2006.
[25] M. A. Rahman, R. Razali and D. Singh, “A risk model of

requirements change impact analysis”, J. Softw., vol. 9, no. 1, pp.
76-81, 2014.

[26] T. Mens, M. Wermelinger, S Ducasse, S. Demeyer, R. Hirshfeld
and M. Jezayeri, “Challenges in Software Evolution”, in Principles

of Software Evolution, Eight International Conferences on
Software Evolution, 5-6 September 2005, pp. 13-22.

[27] E. W. Duggan, “Silver pellets for improving software quality”,
Inform. Res. Manage. J., vol. 17, no. 2, pp. 1-23, 2004.

[28] C. Jones, “Applies Software Measurement, Global Analysis of
Productivity and Quality”, 3rd ed., McGraw Hill: New York, 2008,

pp. 265-268.
[29] C. Jones, “Programming productivity”, McGraw Hill: New York,

1986, pp.150-152.
[30] C. Jones, “The Technical and Social History of Software

Engineering”, Addison-Wesley: Upper Saddle River, NJ, 2014.
[31] D. Garlan, R. Allen and J. Ockerbloom, “Architectural

mismatch:why reuse is so hard”, IEEE Softw., vol. 12, no. 6, pp.
17-26, 1995.

[32] D. Garlan R. Allen and J, M, Ockerbloom, “Architectural
mismatch: why reuse is still so hard”, IEEE Softw., vol. 26, no. 4,

pp. 66-69, 2009.
[33] M. S. Andersen, “Architectural Mismstch Issues in Identity

Management Deployment”, in ECSA’10 Proceedings of the Fourth
European Conference on Software Architecture, New York, 2010,

pp. 31-33.
[34] A. Sutcliffe, G. Papamargaritis and L. Zhao, “Comparing

requirements analysis methods for developing reusable components
llibraries”, J. Syst. Softw., vol. 79, no. 2, pp. 273-289, 2006.

[35] K. Sherif, R. Appan and Z. Lin, “Resources and incentives for the
adoption of systematic software reuse”, Int. J. Inform. Manage.,

vol. 26, no.1, pp. 70-80, 2006.
[36] R Anguswamy and W B Frakes “A Study of Reusability

Complexity and Reuse Design Principles”, in Proceedings of
ESEM’12 Proceedings of The ACM-IEEE international Symposium

on Empirical software Engineering and Measurement, 2012, pp.
161-164.

[37] P. Vitharana, “Risks and challenges of component-based software
development”, Commun. ACM, vol. 46, no. 8, pp. 67-73, 2003.

10 Open Computer Science Journal, 2015, Volume 2 Daniel Galin

[38] M. Morisio, C. E. Seaman, A. T. Parra, V. R. Basili, S. E. Kraft,

and S. E. Condon, “Investigating and ImprovIng a COTS-Based
Software Development Process”, in International Conference of

Software Engineering (ICSE, ’00), 2000, pp. 31-40.
[39] A. Cechich and M. Piattini, “Early detection of cots component

functional suitability”, Inform. Softw. Tech., vol. 49, no. 2, pp. 108-
121, 2007.

[40] M. Torchiano and M. Morisio, “Overlooked facts on COTS-based
development”, IEEE Softw., vol. 21, no. 2, pp. 89-93, 2004.

[41] K. R. P. H. Leung and H. K. N. Leung, “On the efficiency of
domain-based cots product selection method”, Inform. Softw. Tech.,

vol. 44, no. 12, pp. 703-715, 2002.
[42] L Mariani, “Dynamic detection of cots components

incompatibility”, IEEE Softw., vol. 24, no. 5, pp. 76-85, 2007.
[43] M Tivoli and P Inveradi, “Failure-free coordination synthesis for

computer -based architecture”, Sci. Comput. Prog., vol. 71, no. 3,
pp. 181-212, 2006.

[44] S. Mahmood and A. Khan, “An industrial study on the importance
of software component documentation:a system integrator’s

perspective”, Inform. Process. Lett., vol. 111, no. 12, pp. 583-590,
2011.

[45] T. Wijsyassiriwardhane, R. Lai and K. C. Kang, “Effort estimation
of component –based software development – a survey”, IETE

Softw., vol. 5, no. 2, pp. 216-228, 2011.
[46] J. Livari, “Why are case tools not used?”, Commun. ACM, vol. 39,

no. 10, pp. 94-103, 1996.
[47] L. C. Norman and D. Lending, “Case tools: understanding the

reasons for non-use”, ACM SIGCPR Comput. Personnel, vol. 19,
no. 2, pp. 13-26, 1998.

[48] P. Campos and N. Numes, “Towards useful and usable interaction
design tools: canon sketch”, Interact. Comput., vol. 19, no. 5-6, pp.

597-613, 2007.
[49] B. Lundell, “Changing perceptions of case technology” J. Syst.

Softw., vol. 72, no. 2, pp. 271-280, 2004.
[50] M. E. McMurtrey, V. Grover, J. T. C. Teng and N. J. Lightner,

“Job satisfaction of information technology workers: the impact of
career orientation and task automation in a case environment of

management information systems” J. Manage. Inform. Syst., vol.
19, no. 2, pp. 273-302, 2002.

[51] E. J. Barry, C. F. Kemermer and S. A. staughter, “How software
automation affects software evolution: a longitudinal empirical

analysis”. J. Softw. Maint. Evol-R., vol. 19, no. 1, pp. 1-31, 2007.
[52] J. Lee, S Kang an D Lee, “Survey of software testing practices”,

IET Softw., vol. 6, no. 2, pp. 275-282, 2012.

[53] J. Kasurinen, O. Taipale and K. Smolander. “Software test

automation practice: empirical observations”, Adv. Softw. Auto.,
Special Issue on Test Automation, pp. 1-18, 2010.

[54] A. Bertolino, “Software Testing Research: Achievements,
Challenges and Dreams”, in Proceeding of FOSE’07 2007 Future

of Software Engineering Conference, 2007, pp. 85-103.
[55] S. Anzi, B. Dolby. J. Jensen and A. Moller, “ A Framework for

Automated Testing of Javascript Web Applications”, in Software
Engineering (ICSE) 2011 33rd International Conference,

Honolulu, HI, pp. 571-580.
[56] R. Ramler and K. Wolfmaier, “Economic Perspectives in Test

Automation: Balancing Automated and Manual Testing with
Opportunity Cost”, in AST’06 Proceeding of the 2006 International

workshop on automation of Software test, 2006, pp. 85-91.
[57] D. Amaltifano, A. R. Pasolino, P Tramoltana, S. De Carmine and

A. Memon,”Using GUI Ripping for Automated Testing of Android
Applications”, in ASE’2012 Proceedings of the 27th IEEE/ACM

International Conference on Automated Software Engineering,
2012, pp. 258-261.

[58] W. K. Kista, E. S. Sundmark and D. K. Lundkvist,.“Technical Debt
in Test Automation”, in 2012 IEEE Fifth International Conference

on Software Testing ,Verification and Validation (ICST), Montreal,
Canada, 2012, pp. 887-892.

[59] P. A. da Mota Silveira Neto, I. do Carmo Machado, J. D.
McGregor E. S. de Almeida and S. R. de Lemos Meira, “A

systematic mapping study of software product lines testing”,
Inform. Softw. Tech. , vol. 53, no. 5, pp. 407-423, 2011.

[60] C. Neumann and C. Breidert, “The challenges of using open source
as reuse strategy, upgrade”, Eur. J. Inform. Prof., vol. 6, no. 3, pp.

38-42, 2005.
[61] S. V. Engelhard and A. Freytag, “Institutions, culture and open

source”, J. Behav. Organ., vol. 95, no. C, pp. 90-110, 2013.
[62] M. Zschoch, “The success of open source”, Can. J. Polit. Sci., vol.

40, no. 1, pp. 250-252, 2007.
[63] B. Fitzgerald, “The transformation of open source software”, MIS

Quarterly, vol. 30. no. 3, pp. 587-596, 2006.
[64] R. van Wendel de Joode and T. M. Egyedi, “Handling variety: the

tension between adaptability and interoperability of open source
software”, Comput. Stand. Int., vol. 24, no. 1, pp. 109-121, 2005.

[65] S. Kavaguchi, P. K. Gang, M. Matsushita and K. Inoue, “An
automatic categorization system for open source repositories”, J.

Syst. Softw., vol. 79, no. 7, pp. 939-95, 2006.

Received: June 02, 2014 Revised: November 12, 2014 Accepted: December 12, 2014

© Daniel Galin; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-

nc/3.0/), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

