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Abstract: A review is provided about the current research on magnesium/magnesium alloys corrosion in the industry. 

Except for reviewing the kinds of corrosion on galvanic corrosion, stress corrosion, and corrosion fatigue, its 

corresponding mechanisms are also explained, such as the influence of metallurgical factors, and environmental factors. 

Furthermore, the protection of magnesium/magnesium alloys corrosion is presented, for instance, surface 

treatment/modification, coating and so on. Also, because the continuing challenges associated with the use of magnesium 

alloys, more considerations about future applications and research directions are given according to the properties 

improvement of magnesium alloys for the eco-friendly requirements. 
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1. INTRODUCTION 

 The current challenge involves the increasing use of light 
alloys in high-technology constructional materials, with the 
aim of both reducing mass and saving energy. The related 
typical application areas include vehicle construction, 
aeronautics and the space sector, along with the mechanical 
engineering and electrical industries. Moreover, the 
increasing concerns on environmental protection and 
sustainable economic development draw a great deal of 
attention in reducing greenhouse gas emissions [1-5]. 

 Due to the low density, good heat dissipation, good 
damping, and good electro-magnetic shield, magnesium 
alloys have the extensive and increasing applications because 
of their lightest of all structural metallic materials [1-9]. For 
years, automobile makers have studied the relationship 
between vehicle mass and fuel economy for decades in order 
to meet the demands for more economic use of fuel and 
lower emissions in a time of growing environmental impact. 
As an interesting innovation, more and more parts, such as 
the crank case, camshaft sprocket, gearbox housing, several 
covers, and the arm of an electric generator, in automobiles 
have been replaced by magnesium and its alloys [2, 4, 6-9]. 

 However, it is well known that magnesium and its alloys 
are of the hexagonal crystal structure. Hence, the multi-slip 
planes jeopardize their formability at ambient temperature 
because of the localized slip and build-up stresses at the 
deforming grain boundaries [10]. In moist air, magnesium 
and its alloys always form a thin surface film. This natural 
outer layer is not dense, because its corresponding Pilling-
Bedworth ratio  0.81, which indicates that the underlying 
metal can not be completely covered. As a result, 
magnesium and its alloys are highly susceptible to corrosion. 
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 In the past, the corrosion behavior of magnesium alloys 
is the overriding factor to prevent their applications. 
However, a further attractive factor of magnesium alloys is 
they act as a substitute for polymers, which the satisfactory 
recycling solutions have not been found yet. Although the 
reduction of the critical contents of Ni, Fe, Cu etc. 
influenced the application of magnesium alloys, they still 
lack the self-healing layer for protecting effectively. In both 
alloying and manufacturing, efforts need to be directed 
towards composition and its corresponding microstructure 
involved the grain size and alloy temper/heat treatment to 
reduce the corrosion susceptibility. Also, according to the 
corrosion requirements, physical (such as grinding, abrading, 
particle blasting, polishing and brushing) and chemical 
(organic solvents/emulsions, alkaline, acid) treatment 
methods are generally taken. Furthermore, after appropriate 
preliminary treatment, a conversion layer should be formed 
with the appropriate organic or inorganic coatings [1-5, 9, 
10]. The minimization of corrosion by surface conditioning 
or coating has given satisfactory results in some applications, 
but a systematic evaluation of the physical and chemical 
basis is still required for a full optimization. 

 In the meantime, with the requirements of a green 
environment for our quality of lives, recycling Mg alloys 
scrap is becoming more and more important. The rapidly 
growing market of magnesium die-castings increases 
steadily the magnesium scrap, typically due to end-of-life of 
vehicles and scrap from manufacturing processes. Properly 
recycling magnesium scraps from both die casting returns 
and post-consumer scrap in a closed loop manner ensures the 
environmentally sound and cost effective applications of 
magnesium alloys in automotive industry. Therefore, 
recycling processes for magnesium scraps need to be capable 
of regaining the original chemical composition and 
cleanliness of the magnesium alloys. Furthermore, industry 
also bears the objective to minimize the life cycle costs, the 
energy consumption and the emission of CO2 of the 
magnesium products in mind [1-10]. It is thus important for 
the industry to improve continuously the friendliness of the  
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process in recycling the magnesium scraps by establishing 
the recycled alloy specifications and by developing the 
efficient technologies for recycling die caster returns and 
post-consumer scrap. 

 Nowadays, with the large number of bioanalytical assays 
implementation related to biocompatible/biodegradable 
properties of magnesium alloys in microfluidics, the fast 
degradation or decomposition rate of magnesium and its 
alloys in human bioenvironment is a new change, and the 
detailed mechanism of corresponding corrosions will be a 
more significant challenge. The kind of magnesium and its 
alloys corrosion and its related protections are expressed in 
detail as follows. 

2. MAGNESIUM/MAGNESIUM ALLOYS CORROSION 

 Because of the effect of air pollutants and the existence 
of salts, there are various kinds of corrosion of the 
magnesium and its alloys. 

2.1. Galvanic Corrosion (Contact Corrosion) 

2.1.1. Conditions for Galvanic Corrosion 

 Galvanic corrosion is also known as contact corrosion. 
There are four basic conditions for active galvanic corrosion: 
(i) an anode (the magnesium); (ii) a cathode (a dissimilar 
metal); (iii) direct electrical contact and (iv) an electrolyte 
between the anode and cathode [1-5]. Magnesium alloys will 
lose as the sacrificial anode and wear away in such active 
environments. Fig. (1) shows the internal galvanic corrosion 
of the semi-solid processing (SSP) AZ91D [11]. 

2.1.2. General Solution 

 There are two ways to protect magnesium and its alloys 
from galvanic corrosion. (1). Minimize the chemical 
potential difference between the magnesium/magnesium 
alloys and the dissimilar materials; (2). Maximize the circuit 
resistance. 

 For minimizing the potential differences, a number of 
metals show significant cathodic polarization in couple with 

magnesium and its alloys (do not have anodic tendency) in 
salt water environments – for example aluminum alloys such 
as 5056, 6061, 5052 and 6063. In addition to aluminum tin, 
cadmium and zinc also polarize, and show good 
compatibility [12]. These metals are commonly used 
coatings on steel fasteners to minimize the galvanic 
corrosion. Otherwise, magnesium and its alloys will be 
corroded if the steel fasteners were used in an uncoated state 
[13]. However, for the maximizing the resistance in the 
galvanic circuit, the options are relatively few [14, 15]. 

2.2. Stress Corrosion 

2.2.1. Mechanisms and Types 

 For pure magnesium, it is immune to stress corrosion 
cracking (SCC) in atmospheric and aqueous environments 
[1, 4, 5, 16]. For magnesium alloys, two kinds of 
mechanisms have been mainly involved SCC: (i) 
discontinuous crack propagation at the crack tip under the 
effect of mechanical fractures; (ii) continuous crack 
propagation at the crack tip under the effect of anodic 
dissolution. According to the many mechanisms proposed in 
these years, hydrogen embrittlement (HE) is best supported 
by experimental evidence listed as follows: (1) crack 
initiation and propagation are accompanied by hydrogen 
evolution; (2) immersion in a cracking solution before the 
stress is applied produces a fracture similar to a SCC 
fracture; (3) the effect of pre-immersion in a cracking 
solutions is reversed by vacuum annealing or exposure to 
room temperature air; (4) testing in gaseous hydrogen results 
in the same crack characteristics produced in an aqueous 
solution test; (5) SCC occurs at crack velocities and only 
adsorbed hydrogen will be present at the crack tip [17-29]. 
The detailed stress corrosion cracking (SCC) of AZ91 in 
double distilled water at the strain rate 3 10-7 s

-1
 is shown in 

Fig. (2) [22]. 

 Moreover, according to the crack propagation routine, 
SCC can be classified as two types: One is transgranular 
SCC (TGSCC), and the other is intergranular SCC (IGSCC). 
Both kinds of crack propagation have been reported for 

a b 
 

Fig. (1). SSP AZ91D-Galvanic corrosion after 72 h of immersion in ASTM D1384 water, pH=8.2: (a) composition mode and (b) 

topographic mode [11]. 
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magnesium alloys over years, however, transgranular failure 
with significant secondary cracking, or branching, is the 
most common mode of failure [21, 24, 25, 29]. 

2.2.2. Conditions for Stress Corrosion Cracking 

 There are three conditions for SCC: (i) long-term tensile 
stress above a critical level; (ii) a susceptible alloy; and (iii) 
in a SCC inducing environment. 

2.2.3. Environments of Stress Corrosion Cracking 

 In atmospheric exposures rainfall, dew, high humidity, 
deionized water, NaCl + K2CrO4, H2SO4, HNO3, NaOH, 
NaC1, NaNO3, Na2CO3, KF, KCl etc., SCC of Mg alloys 
will be occurred [29]. 

2.2.4. Elements Susceptive to Stress Corrosion Cracking 

 Magnesium alloys containing Al are considered the most 
susceptible to SCC in air, distilled water and chloride-
containing solutions. With the increment of aluminum 
content, the tendency to SCC is increased correspondingly. 
Therefore, magnesium alloys such as AZ61, AZ80, and 
AZ91 with 6, 8, and 9% aluminum, respectively, show 
higher susceptibility to SCC, while AZ31, a 3% aluminum 
alloy used in wrought product applications, is considered to 
show good resistance [17-24]. 

 Zirconium and rare earth elements are considered only 
mildly susceptible, while magnesium alloys without 
aluminum or zinc, are the most SCC-resistant, such as ZK60, 
ZE41. Whereas, magnesium alloys with manganese addition 
show good resistance to SCC [30, 31]. 

2.2.5. General Solution 

 In accordance with the SCC occurrence conditions, to 
prevent SCC in practical application, it is necessary to design 
continuous loads of 30–50% of the yield stress and employ 
the effective corrosion barrier finishes, combine with the less 
susceptible alloys. Design precautions should also include 
limiting the stresses in bolting and riveting components 
together, and the use of heat treatments to relieve the stresses 
induced by welding [29]. 

2.3. Corrosion Fatigue 

 Corrosion fatigue is the combined action of an aggressive 
environment and a cyclic stress leading to premature failure 
of metals by cracking [32, 33]. Several surveys of corrosion 
failures in different industries have shown that 20–40% of 
the failures experienced have been due to corrosion fatigue 
[34-36]. Since many mechanically loaded parts are often 
subjected to prolonged cyclic stresses in an active medium, it 
is of significant importance to prevent the corrosion fatigue 
of magnesium alloys. 

2.3.1. Corrosion Fatigue Conditions 

 Same as other materials, fatigue properties of magnesium 
alloys are depended on a number of factors such as the 
mechanical process induced roughness, surface defects, 
residual compressive stresses, as well as the environmental 
exposures [37-39]. Moreover, the fatigue life of magnesium 
alloys in corrosive solutions such as NaCl, CaCl2 is always 
less than that in air [40-47]. Also, the degradation in fatigue 
strength for high-strength extruded AZ80 and die-cast 
AZ91D alloys in NaCl solution is more distinct than that of 

 

Fig. (2). Detailed SCC of AZ91 in double distilled water at the strain rate 3 10
-7

 s
-1

 [22]. 
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AZ31 and AM20-AM40 alloys because of a higher 
percentage of the second phase (Mg17Al12) in AZ80 and 
AZ91D alloys [40, 41, 45, 46]. In the meantime, the NaCl 
environment enhances pit formation and growth resulted in 
the drastic reduction in fatigue limit more than in the CaCl2 
environment, due to the high Cl

-
 concentration and low pH 

value [46]. Literature [47] studied the corrosion fatigue 
behavior under different oil environmental exposure. It 
shows that the mineral oil environment causes an increase in 
the lifetime of AZ91 and AM51 in comparison with the gear 
oil. As above-mentioned, the corrosive environment results 
in a significant reduction in the fatigue performance of 
similar samples. However, many years ago, literature [48] 
shows the effect on fatigue performance does not seem to 
correlate consistently with the severity of the environment in 
some cases. For example, the bending fatigue limit for 
AM50 die cast samples tested in air and seawater was 
repeatedly found to be 105 MPa, but when tested in 
deionized water the endurance limit was reached at stress 
amplitudes as low as 70 MPa. Earlier studies [49] present 
AZ61A and AZ31A sheet bending at 1500 cycles per min in 
both a dry air exposure and in a 0.01% sodium chloride 
spray. It shows that in air at 107 cycles the observed fatigue 
strength was 103 MPa and 117 MPa and in the salt spray the 
corresponding data was 34 MPa and 40 MPa respectively. 
Fig. (3) shows the fracture surface of extruded AZ31 alloy 
after a corrosion fatigue test in 3.5% NaCl solution in the 
crack origin area with pitting (a) and in the area of dimpled 
fracture (b) [41]. 

2.3.2. General Solution 

 To protect magnesium alloys from the corrosion fatigue 
effectively, a suitable coating is always adopted [29, 48-50]. 

 Simultaneously, it should be noted that other types of 
magnesium alloys corrosion such as pitting corrosion, 
filiform corrosion, and crevice corrosion similar to 
aluminum corrosion will be occurred during the processing. 

3. INFLUENCES OF METALLURGICAL FACTORS 
ON MAGNESIUM ALLOYS AND PROTECTIONS 

 The metallurgical factors affected the corrosion 
performance of a magnesium part are composition and its 

corresponding microstructure involved the grain size and 
alloy temper/heat treatment [51, 52]. 

3.1. Composition 

 According to reference [53], aluminum, manganese, 
sodium, silicon, lead and tin do not have the detrimental 
effect on the basic corrosion resistance of primary 
magnesium at levels up to 5% by weight. Furthermore, 
beryllium, cerium, praseodymium, thorium, yttrium and 
zirconium can be applied to resist the salt-water corrosion at 
levels exceeding their solid solubility or up to a maximum of 
5%. However, calcium, cadmium, silver, and zinc have the 
moderate accelerating effects on the corrosion rate, while 
cobalt, copper, iron, and nickel have extremely severe 
accelerating effects. In order to achieve good corrosion 
performance from a magnesium alloy, only compatible 
elements are accepted and contaminant elements such as 
iron, nickel, and copper must be controlled to low levels. 
Recent research [54] shows magnesium alloys AM70 with 
Sn addition (which had been immersed in 5 wt.% NaCl 
solution for 70 h) has a faster corrosion rate after long term 
immersion in terms of the weight loss or anodic dissolution 
rate. Nevertheless, it is interesting that the modified AM70 is 
less susceptible to localized corrosion attack. It should be 
noted that with the development of magnesium and its alloys 
application, the zirconium family of alloys is normally used 
in low-pressure sand cast or permanent mold cast 
applications. However, the Mg alloys based on neodymium, 
yttrium [55], terbium [56], gadolinium and rare earths with 
zirconium [57-64], WE43, WE54 etc., have shown higher 
properties of the corrosion resistance. Fig. (4) shows the 
surface features of the corroded specimens after the 
immersion test in 5% NaCl solution and removal of the 
corrosion products. It shows that specimen with 0.42 % Zr 
addition has almost no corroded area, with only some small 
corrosion pits [57]. Due to the cost of these elements, its 
corresponding magnesium alloys have been limited to 
premium aerospace applications and other weight critical 
applications, where good mechanical properties at elevated 
temperatures are required. 

 Moreover, related references [64-67] show because of Si 
and Ca addition, new phases are found, i.e. intermetallics 

a b  

Fig. (3). Fracture surface of extruded AZ31 alloy in the crack origin area with pitting (a) and in the area of dimpled fracture (b) in 3.5% 

NaCl solution [41]. 
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containing Si-Mn, Mg-Si, Mg-Zn and Mg-Si-Ca phase. At 
the same time, all phases exhibited higher potential 
differences relative to magnesium matrix indicating a 
cathodic behavior. Results show the additions to Mg-Zn-Mn 
wrought alloys can significantly improve SCC resistance to 
some extent, which also depends on the other critical 
alloying elements such as zinc and the microstructure. 

3.2. Grain Size 

 The rapid solidification process can refine the 
microstructure to improve the materials corrosion properties. 
Reference [68] expressed the relationship between corrosion 
behavior and microstructure of Mg-Zn-Y alloys prepared by 
rapid solidification at various cooling rates. It shows that 
variation in the cooling rate has strong influences on the 
corrosion behavior of Mg-Zn-Y alloys. An increase in the 
cooling rate delays the occurrence of filiform corrosion, owe 
to grain refinement and formation of a supersaturated single 

-Mg phase solid solution in the mg alloys. Moreover, by the 
rapid solidification, the mechanism of corrosion can be 
changed essentially; from pitting corrosion of Mg-A1 
magnesium alloys into overall corrosion [69]. As the 
traditional method, aluminum and zirconium, these two 
elements play the critical role of nucleating the formation of 
magnesium grains during solidification resulted in 
reasonably finer grain structures, higher mechanical 
properties, and superior the corrosion resistance. Contrarily, 
in literature [70] for comparison and more fully understand 
the behavior of die cast AZ91D authors studied the corrosion 
to its microstructure using slowly solidified high purity 
AZ91, Mg-2%Al, Mg-9%Al, low purity magnesium and 
high purity magnesium in 1 N NaCl at pH11 at the same 
time. Results show that the skin of die cast AZ91D has better 
corrosion resistance than the interior. This is attributed to a 
combination of (1) a higher volume fraction of the  phase; 
(2) a more continuous  phase distribution around finer  
grains, and (3) lower porosity in the skin layer than in the 
interior of the die cast. 

3.3. Alloy Temper/Heat Treatment 

 The common alloy tempers include F, T4, T5 and T6. It 
is clearly evident that the F and T4 corrosion rates are 
significantly greater relative to the standard high purity die 
cast performance depended on grain size, refining process, 
and considerable variations related to each result. However, 

in the T5 and T6 tempers, the variations are much reduced 
and the corrosion rates are nearly same as high pressure die 
cast material. 

4. PROTECTIONS 

4.1. Preliminary Surface Treatment 

4.1.1. Types 

 In accordance with the corrosion requirements, physical 
(such as grinding, abrading, particle blasting, polishing and 
brushing) and chemical (organic solvents/emulsions, 
alkaline, acid) treatment methods are generally taken. For 
physical treatments, it should be carried out immediately 
before the surface treatment itself is applied except for die 
cast with great precision. 

4.1.2. Attention Items for the Initial Surface Treatment 

 For initial surface treatment, items listed as follows 
should be noticed. 

(1) Detrimental elements (Ni, Cu, Fe, etc.) and some 
remain emulsified salts (Cl

-
) should be avoided, 

which will make serious corrosion under the 
protective coating and form the hydrogen; 

(2) Removal of functional cast crust is should be avoided; 

(3) Impurity of blasting particles should be avoided; 

4.2. Senior Surface Treatment 

4.2.1. Surface Conversion Coatings 

 After appropriate preliminary treatment, a conversion 
layer will be formed by (1) electroless electrochemical 
treatments such as in chromate or free chrome (Mn, V, Mo 
and W) solutions [1-5]. Where, reference [71] describes the 
conversion coating treatment on pure commercial Mg, 
AZ61A, AZ80A and AZ91D formed by a permanganate-
phosphate solution. Results show that the conversion coating 
has an equivalent or slightly better passive capability than 
the conventional Cr

6+
 based conversion treatment of AZ 

series alloys, but an inferior capability for the pure Mg 
specimen; (2) Anodic oxidation [72-74]. Anodic oxide 
coatings, a conventional method for aluminum protection 
applied to magnesium, are porous and rough with a coarse 
surface structure. Because of its Pilling-Bedworth ratio, the 
anodic finish must be sealed. Furthermore, the anodic oxide 

 

 

Fig. (4). Corroded surface photographs of magnesium alloys with various Zr addition after immersion in the 5% NaCl solution for 72 h and 

removal of the corrosion products: (a) 0 % Zr; (b) 0.33 % Zr; (c) 0.42 % Zr [57]. 
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coatings are lack of hardness resulted in the lower wear 
resistance. Also, its cost is almost twice as high as those for 
conversion coatings provided by electroless electrochemical 
surface treatment due to the time-consuming handling, the 
consumption of electrical energy and a prolonged coating 
time; (3) Anodic plasma-chemical reaction in the electrolyte, 
such as anodic spark deposition (ASD), anodic spark 
discharge, microarc oxidation (MO), electrical breakdown 
and plasmachemical oxidation [75-80]. By this type of 
methods, with suitable electrolytes and aqueous solutions 
(the anions fluoride, phosphate, borate, silicate etc.), it offers 
a coating of a crystalline ceramic nature, the thickness and 
hardness suitable for protection against both corrosion and 
wear without any need for further treatment. Moreover, 
besides the excellent corrosion and wear-prevention 
properties, coatings also display a high amount of resistance 
to heat and radiation exposure [81]. (4) Galvanic-deposit 
coatings. Because the slightest imperfection in a metallic 
coating of this type can lead to serious galvanic corrosion, 
the visible pitting of the underlying magnesium alloy will 
appear and spread drastically, as a result, the metallic coating 
will be peeled off. However, there is a tendency to use 
galvanically deposited coatings in applications in the 
electronics industry, such as on the casings of laptop 
computers and mobile telephones. Reference [82] describes 
the electroless nickel-phosphor coatings to pure Mg, AZ31 
and AZ91 Mg alloys. After studying the deposition rate, 
nucleation process, chemical composition and microstructure 
of the electroless Ni coatings, it is found that Ni deposition is 
initiated on the phase or grain boundary areas due to the 
galvanic coupling effect. Also, the mechanism of Ni 
deposition on Mg alloys has been put forward, i.e. chemical 
replacement and subsequent autocatalytic reactions. (5) 
Physical methods such as PVD (Physical Vapour 
Deposition), arc-PVD, plasma-oxidation and arc- PVD ion 
implantation etc. [83-91]. By these methods, additional 
alloyed boundary layers, containing highly stable chemical 
compounds such as spinel MgAl2O4 are introduced. 
However, as an object of the current research, there is not 
actual application procedure available for magnesium alloys. 
(6) Organic coating treatment [92-98]. In literature [94] 
authors describe the utilization of thin film deposited in 
Plasmas fed with hexamethyldisiloxane–oxygen (HMDSO–
O2) mixture for the corrosion protection of Mg alloys. 
Results show that by plasma enhanced chemical vapor 
deposition, the corrosion resistance of Mg alloy (94.16% 
Mg, 3.42% Y, 2.41% Nd) has been improved significantly. 
(7) Other methods. The methods mentioned above cannot 
cover the entire surface treatment methods for magnesium 
protection. Attempts are currently being made to coat 
magnesium alloys by other methods, such as laser treatment 
[99-101], thermal spray coating [102], etc. 

4.2.2. Welding and its Treatment 

 For magnesium alloys welding such as laser welding, gas 
tungsten arc welding, stirring friction welding etc. [29, 79, 
103-106], it should be carefully selected because the high 
temperatures during the processing can burn cathodic 
contaminants into the surface. The practical usages should be 
carefully evaluated, included both the mechanical strength 
and the impact on the internal and surface quality of the 
affected area. Surface contaminants can be dealt with, but 

cathodic contamination within the weld will be a much more 
severe problem. Furthermore, all welds should be stress 
relieved to avoid the SCC failures. 

5. NEW CHALLENGES 

5.1. Biocorrosion 

 Magnesium alloys have the good biocompatibility and 
potential biodegradable materials in hard tissue implants, 
because they have lighter weight, greater fracture toughness 
than ceramic biomaterials such as hydroxyapatite, closer 
elastic modulus and compressive yield strength o to the 
natural bone. Moreover, magnesium is essential to human 
metabolism included bone tissues. Therefore, with the Mg 
alloys applications in vitro and in vivo assessments, the 
major drawback of magnesium, the low corrosion resistance 
in human body becomes an urgent issue on biomaterial 
applications [107-115]. Although some promising techniques 
such as additional elements, coating etc. have been studied in 
recent years [112-117], the systemic researches are still 
needed imperatively. 

5.2. Corrosion of Recycling Scraps 

 Due to the distinguished characteristics of magnesium 
alloys, the average annual growth rate of Mg alloys die cast 
is 15% in automotive industry since the early 1990s [1-10]. 
The usage of magnesium alloys in cars will continue to rise 
at an even faster pace in the next decade. This implies that 
the scrap of Mg alloys from both manufacturing stage (new 
scraps) and end of servicing life of vehicles (old scraps) will 
grow very fast. As a result, it is crucial to develop the 
recycling friendly alloy specifications or use more efficient 
technologies for protecting die cast returns and post-
consumer scraps from corrosion to improve continuously the 
recycling friendliness of magnesium. 

6. Future Prospects 

6.1. Traditional Methods Improvement and New 

Techniques 

 New Mg alloys or improved alloys including cast and 
wrought alloys with better properties such as finer grain, new 
phases should be developed. Also, more feasible, reliable, 
maintainable and cheaper protection systems and higher 
techniques should be investigated and developed on the basis 
of the methods primarily for the surface treatment of 
aluminum. 

6.2. New Chance 

 Since the first Lab-on-a-Chip systems, requiring the 
interplay of a number of different disciplines such as 
microfluidics, bioanalytics, or microfabrication, appeared in 
1990s, the progress in microfabrication has reached a certain 
level. Nowadays, with the large number of bioanalytical 
assays implementation closely related to progress in 
microfluidics, being the art of handling fluids and controlling 
flow in microscale geometries according to the biocompa-
tible/biodegradable properties of magnesium alloys, the fast 
degradation or decomposition rate of magnesium in human 
bioenvironment should be taken into consideration, and the 
corresponding systems should be designed effectively and 
studied in detail. 
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CONCLUSIONS 

 A review of the current research on magnesium/ 
magnesium alloys corrosion its corresponding mechanisms 
in the industry such as galvanic corrosion, stress corrosion, 
and corrosion fatigue has been expressed. At the same time, 
the protection of magnesium/magnesium alloys corrosion 
(surface treatment/modification, coating, etc.) is also 
presented. Because of the well-known characteristics of 
magnesium and its alloys (highly susceptible to corrosion) 
and the continuing challenges, therefore new Mg alloys or 
improved alloys including cast and wrought alloys with 
better properties such as finer grain, new phases should be 
developed, more feasible, reliable, maintainable and cheaper 
protection systems and higher techniques must be 
investigated to match with the practical applications. 
Moreover, according to the eco-friendly requirements, more 
considerations on recycling should be given both in 
industrial environment and bioenvironment. 
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