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1. INTRODUCTION  

 The motion of a point mass, moving in the gravitational 
field of two fixed attracting centers, is an old problem first 
posed by Euler [2-4] in 18th century, as an intermediate step 
towards the solution of the famous 3-body problem. Euler 
integrated the equations of motion for the 2-dimensional 
case, i. e., the case where the point mass moves on a plane 
containing the two attracting centers. The problem has been 
used in the calculation of satellite trajectories in the 
gravitational field of the Earth (Alexeev [5], Marchal [6, 7]), 
for some recent papers, we can refer [8-10]. The Least 
Action Principle of Fermat-Maupertuis is the most basic 
principle in our nature, so in this paper, we try to use it to 
study the 2-fixed center problems. For Newtonian 2 and 3 
body problems, we refer to [9, 11, 12].  

 Assume two particles P1, P2  R
n with masses 1  > 0 

and  > 0 are fixed at x-axis, the origin of the inertial 

systems is located at the center of 
   
P

1
P

2
and 

   
| P

1
P

2
|  = 1.  

 Assume the particle q  R2 with mass m3 > 0 is moving 

under the Newtonian gravitational force of P1 = (
 

1

2
, 0) and 

P2 =(
 

1

2
, 0).  

 The equation of motion for m3 is  

  

q =
u

q
 (1) 

where q = (x1, x2).  

  

U (q) =
1 μ

| q P
1

|
+

μ

| q P
2

|
 (2) 

We define Lagrangian action  
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f (q) = (

1

2
| q |2 +U (q)) dt,

0

T

 (3) 

where 

  

q A =

q = (x
1
, x

2
)

x
i

W
1,2 (R / TZ , R),

q(t) P
1
, P

2
t R,

q(t +T / 2) = q(t) or q( t) = q(t)

 (4) 

and 

   

W
1,2 (R / T i Z , R) =

x | x, x L
2 (R, R)

x(t +T ) = x(t)
.  (5) 

 We have the following result:  

Theorem 1.1. Let  =1/2, then the global minimizers of f (q) 

on the closure  of  are just the origin.  

2. PROOF OF THEOREM 1.1  

Lemma 2.1. (Palais [13]). Let  an orthogonal 
representation of a finite or compact group G in the real 
Hilbert space H such that for   G,  

f(   x) = f(x),  (1)  

where f : H  R. Let  

Fix = {x  H|   x = x,    G}  (2)  

 Then the critical point of f in Fix is also a critical point 
of f in H.  

 By Lemma 2.1, we have  

Lemma 2.2. Let  =1/2, then the critical point of f(q) in  
is a noncollision T -periodic solution for (1).  

 In order to prove Theorem 1.1, we need some famous 
inequalities.  
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Lemma 2.3. (Poincare-Wirtinger [14]). Let q  W1, 2 (R/TZ, 

Rn) and 
  

q(t) dt
0

T

 = 0; then  

  

(i) | q(t) |2
2

T0

T
2

| a(t) |2 dt;
0

T

 (3) 

 (ii) inequality (3) takes the equality if and only if  

  
q(t) = cos

2

T
t + sin

2

T
t, , R

n .  (4) 

Lemma 2.4. (Jensen [14]).  

(1 )  Assume  is a convex function on [r, R],   r  R 

 + , 
  
f̂

ˆ 

and p are integrable functions on [c, d],  

  c  d  + , r  
  
f̂ (x)  R, 

  
p̂ (x)  0, x  [c, 

d] and 
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 > 0, then  
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c

d
 (5) 

(2 )  Inequality (5) takes the equality if and only if 

  
f̂ (x) = const.  (6)  

Lemma 2.5. ([12]) For mi > 0,  > 0, we have 
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and the above inequality takes the equality if and only if  

|qi(t)  qj(t) | = (t) > 0,   1  i  l, l + 1  j  N,  (8)  

 Now we prove Theorem 1.1.  

  

q t +
T

2
= q(t) or q(t) =  q(  t) implies 

  
q
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(t) dt = 0,

0

T

 

so by Poincare-Wirtinger inequality, we have  
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 By (7), we have  
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 By Jensen’s inequality we have  
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 (11) 

where  

  
s2

= [| q P
1

|2
0

T

+ | q P
2

|2 ]dt  (12) 

 We notice that (s) is a strictly convex smooth function 
on s > 0 and (s)  +  as s  0

+ and s  + , so (s) 
attains its infimum at some s0 > 0.  

 We notice that the inequality (11) take the equalities if 
and only if Poincare Writinger’s inequality and (7) and 
Jensen’s inequality take the equalities simultaneously, hence 
we have  

  
q(t) = cos

2

T
t + sin

2

T
t, , R

n ,  (13) 
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1
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2
|,  (14) 
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2
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 By (14) and (15) we have  
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1
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2
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Let  = (a1, b1),  = (a2, b2). Then 
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Let t = 0 and t = T/2 we have Then 

  
(a

1
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2
)2
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1

2
= ( a

1
+

1

2
)2
+ ( b

1
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Then 

1 = 0 (19) 

Let t = T/4,  
  

3

4
T , we have  
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2
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2
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Hence 

a2 = 0   (21)  

By a1 = a2 = 0 and (17), we have 

  

b
1
cos

2

T
t + b

2
sin

2

T
t

2

=const  (22) 

Let t =0, 
  

T

4
, we have  

  
b

1

2
= b

2

2
 (23) 

Hence by (22) and (23) we have  

  

b
1

2
+ b

1
b

2
sin

4

T
t = const  (24) 

b1 = b2 = 0 (25) 
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So  

q(t)  0   (26)  
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