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1. INTRODUCTION 

It is observationally supported that the current expansion 

of the universe is accelerating [1, 2]. The scenarios to 

account for the current accelerated expansion of the universe 

fall into two broad categories [3-11]. One is to introduce 

"dark energy"' in the framework of general relativity. The 

other is to study a modified gravitational theory, e.g., )(RF  

gravity, in which the action is represented by an arbitrary 

function )(RF  of the scalar curvature R  (for reviews, see 

[6-11]; and for a new approach, see [12]). 

On the other hand, various observational data [13] imply 

that the ratio of the effective pressure to the effective energy 

density of the universe, i.e., the effective equation of state 

(EoS) 
effeffeff

/pw , may evolve from larger than -1 (non-

phantom phase) to less than -1 (phantom phase [14, 15]). 

Namely, it crosses -1 (the phantom divide) at the present 

time or in the near past. A number of models to realize the 

crossing of the phantom divide have been proposed (for a 

detailed review, see [4]). 

There are also several studies for the crossing of the 

phantom divide in the framework of )(RF  gravity [16-22]
1
 

(for related works, see [25]). An explicit model with 

realizing a crossing of the phantom divide has been 

constructed in Ref. [26] and its thermodynamics has been 

examined [27]. Moreover, in Ref. [28] it has been illustrated 

that multiple crossings of the phantom divide can occur in 

)(RF  gravity as the scalar field theories such as an oscil-

lating quintom model [29] or a quintom with two scalar 

fields [30] in the framework of general relativity (see also 

[31, 32]). 
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1The equivalence between )(RF  gravity and the scalar-tensor theory has 

been indicated in Ref. [23]. The crossing of the phantom divide in scalar-

tensor theories has been investigated in Ref. [24]. 

In this paper, we study a model of )(RF  gravity in which 

a crossing of the phantom divide can be realized by taking 

into account the presence of cold dark matter. We 

demonstrate the behavior of )(RF  gravity around a crossing 

of the phantom divide. In our previous work [26], an analytic 

solution of )(RF  gravity to realize a crossing of the phantom 

divide without matter has been derived. In this work, as a 

further investigation, we examine a solution of )(RF  gravity 

to realize a crossing of the phantom divide with cold dark 

matter. We use units of 1===
B

hck  and denote the 

gravitational constant G8  by 2

Pl

2
/8 M  with the Planck 

mass of 191/2

Pl
101.2== GM GeV. 

The paper is organized as follows. In Sec. II, we explain 

the reconstruction method of )(RF  gravity proposed in Ref. 

[33]. In Sec. III, we study a model of )(RF  with realizing a 

crossing of the phantom divide by using the reconstruction 

method and investigate the behavior of )(RF  gravity around 

a crossing of the phantom divide. Finally, conclusions are 

given in Sec. IV. 

2. RECONSTRUCTION METHOD 

First, we explain the reconstruction method of )(RF  

gravity proposed in Ref. [33]. The action of )(RF  gravity 

with matter is as follows:  

 

S = d 4x g
F(R)

2 2
+Lmatter ,           (1) 

where g  is the determinant of the metric tensor μg  and 

 
Lmatter  is the matter Lagrangian. By using proper functions 

)(P  and )(Q  of a scalar field , the action in Eq. (1) can 

be rewritten to  

 

S = d 4x g
1

2 2
P( )R+Q( )[ ] +Lmatter .       (2) 

The scalar field  may be regarded as an auxiliary scalar 

field because it has no kinetic term. From Eq. (1), the 

equation of motion of  is given by  
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.
)()(

=0
d

dQ
R

d

dP
+             (3) 

Substituting )(= R  into the action in Eq. (2) yields the 

expression of )(RF  as  

.))(())((=)( RQRRPRF +           (4) 

From Eq. (2), the field equation of modified gravity is 
derived as  

 

1

2
gμ P( )R+Q( )[ ] Rμ P( ) gμ �P( )+ +

+[ ] + μ P( )+ 2Tμ
(matter ) = 0,            (5) 

where 
μ

 is the covariant derivative operator associated 

with 
μg , 

 
� gμ μ

 is the covariant d'Alembertian for a 

scalar field, and )matter(

μT  is the contribution to the energy-

momentum tensor form matter. 

We assume the flat Friedmann-Robertson-Walker (FRW) 
space-time with the metric,  

ds2 = dt 2 + a2 (t)dx 2 ,             (6) 

where )(ta  is the scale factor. In this background, the 

components of (0,0)=),(μ  and ),(=),( jiμ  ,3)1,=,( Lji  

in Eq. (5) read  

6H 2P( (t)) Q( (t)) 6H
dP( (t))

dt
+ 2 2 = 0,      (7) 

 

2
d 2P( (t))

dt 2
+ 4H

dP( (t))

dt
+ 4 &H + 6H 2( )P( (t))++ +

,0=2))(( 2 ptQ ++              (8) 

where aaH /= &  is the Hubble parameter with t/= &  and  

and p  are the sum of the energy density and pressure of 

matters with a constant EoS 
i

w , respectively, with i  being 

some component of matters. After eliminating )(Q  from 

Eqs. (7) and (8), we get  

( ) .0=))((2
))(())(( 2

2

2

ptPH
dt

tdP
H

dt

tPd
+++ &          (9) 

The scalar field  may be taken as t=  if it is redefined 

properly. By representing )(ta  as  

( ))(~exp=)( tgata                  (10) 

in terms of a constant of a  and a proper function of )(~ tg  

and using ( )dgdH )/(~= , we rewrite Eq. (9) to be  

)(
)(~

2
)()(~)(

2

2

2

2

P
d

gd

d

dP

d

gd

d

Pd
+  

( ) ( ) ( )[ ] ,0=)(~13exp1
132

gwaw
i

i
w

ii

i

+++
+      (11) 

where 
i
 is a constant. Moreover, from Eq. (7), we obtain  

d

dP

d

gd
P

d

gd
Q

)()(~
6)(

)(~
6=)(

2

 

+ 2 2

i

ia
3 1+wi( ) exp 3 1+wi( ) %g( ) .       (12) 

We note that if we redefine the auxiliary scalar field  by 

)(=  with a proper function  and define 

))(()(
~

PP  and ))(()(
~

QQ , the new action  

 

S = d 4x g
%F(R)

2 2
+ Lmatter ,

       (13) 

,)(
~

)(
~

)(
~

QRPRF +          (14) 

is equivalent to the action in Eq. (2) because )(=)(
~

RFRF . 

Here,  is the inverse function of  and we can solve  

with respect to R  as ))((=)(= 1
RR  by using 

)(= R . Consequently, we have the choices in  like a 

gauge symmetry and therefore we can identify  with time 

t , i.e., t= , which can be interpreted as a gauge condition 

corresponding to the reparameterization of )(=  [26]. 

Thus, if we have the relation )(= Rtt , in principle we can 

obtain the form of )(RF  by solving Eq. (11) with Eqs. (4)) 

and (12). 

We also remark that a crossing of the phantom divide 

cannot be described by a naive model of )(RF  gravity. To 

realize the crossing, )(RF  needs to be a double-valued 

function, where the cut could correspond to 1=
eff

w . 

However, the crossing can be performed by the extension of 

)(RF  gravity, whose action is given by )()( QRP + . 

3. MODEL 

Next, we examine a model of )(RF  with realizing a 

crossing of the phantom divide by using the reconstruction 

method and investigate the behavior of )(RF  gravity around 

a crossing of the phantom divide. 

3.1. Crossing of the Phantom Divide 

To illustrate the behavior of )(RF  with realizing a 

crossing of the phantom divide, we consider the case in 

which the Hubble rate )(tH  is expressed as [34]  

,
11

= +
ttt

nH

s

                          (15) 

where n  is a positive constant and 
s

t  is the time when the 

Big Rip singularity [35] appears as will be shown later
2
. 

                                                
2Other kinds of finite-time future singularities have been studied in Ref. [36] 
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In the FRW background, the effective energy density and 

pressure of the universe are given by 22

eff
/3= H  and 

 
peff = 2 &H + 3H 2( ) / 2 , respectively. The effective EoS 

effeffeff
/= pw  is defined as [6]  

,
3

2
1

2eff
H

H
w

&
            (16) 

which implies that a crossing of the phantom divide occurs 
when the sign of H&  changes. 

When 0t , i.e., t << ts , )(tH  in Eq. (15) behaves as 

H (t) ~ n / t  and therefore   
&H ~ n / t 2 < 0 . In this limit, it 

follows from Eq. (16) that the effective EoS is given by 

( ) 1.>32/1=
eff

+ nw  Such behavior is identical with that in 

the Einstein gravity with matter whose EoS is greater than 

1. This is the non-phantom phase. On the other hand, when 

s
tt , we find 

 
H (t)~ n / ts t( )  and hence 

  
&H ~ n / ts t( )

2
> 0 . 

We only consider the period 
s

tt <<0  because H  should be 

positive. In this case, the scale factor is given by 

 
a(t)~ a ts t( )

n . Thus, when 
s

tt , a , namely, the 

Big Rip singularity appears. In this limit, the effective EoS is 

given by ( ) 1.<32/1=
eff

nw  Such behavior is identical 

with the case in which there is a phantom matter with its EoS 

being smaller than 1. This is the phantom phase. Moreover, 

from Eq. (16), we see that the effective EoS 
eff

w  becomes 

1 when 0=H& . Solving 1=
eff

w  with respect to t  by 

using Eq. (15), we find that the effective EoS crosses the 

phantom divide at 
c

= tt  given by /2=
c s

tt . As a 

consequence, in case of Eq. (15), a crossing of the phantom 

divide can occur. We show the time evolution of 
eff

w  in 

Fig. (1) with 
0

/
~

ttt , where 
0

t  is the present time. In all 

figures, we take 10=n  and 
0

tt
s

 with 2.0= . In this 

case, 
0c

= tt . From Fig. (1), we see that at the present time, 

a crossing of the phantom divide from the non-phantom 

phase ( 1>
eff

w ) to the phantom one ( 1<
eff

w ) can be 

realized. 

 

Fig. (1). Time evolution of 
eff

w  for 10=n  and 2.0=  with 

0
/=

~
ttt .  

3.2. Behavior of  F(R)  Gravity Around a Crossing of the 

Phantom Divide 

In what follows, we take t= . From Eqs. (10) and (15), 

( )dttgdH )/(~=  and ( )226= HHR +& , we obtain  

,ln=)(~

tt

t
ntg

s

          (17) 

a(t) =
1( ) t

ts t

n

,            (18) 

R =
6nts

t 2 ts t( )
2 2n 1( ) ts + 2t ,

       (19) 

where we have taken a = 1( )
n  so that the present value of 

the scale factor should be unity. 

We define 
s

ttX /  and solve Eq. (19) with respect to X . 

If n  is much larger than unity, we can neglect the second 

term on the right-hand side of Eq. (19) and therefore obtain 

the approximate solutions  

,
2

~
411

)
~

(
1/2

± R
RX           (20) 

where  

( )
.

126
=

~
2

nn

Rt
R

s            (21) 

For the lower sign and the upper one in Eq. (20), X  

varies as 1/2<0 X  and 1<1/2 X , respectively. 

For simplicity, we consider the case in which there exists 

a matter with a constant EoS /= pw . In this case, Eqs. (11) 

and (12) are rewritten to  

 

4 %R5/2 1 4 %R 1/2( )
d 2P( %R)

d %R2
 

 

+2 %R2 3 10 %R 1/2( ) m n 1 4 %R 1/2 dP( %R)

d %R
± 2n %R 1 4 %R 1/2P( %R)

 

+ts
2 2 (1+w) 1( )

1± 1 4 %R 1/2

1m 1 4 %R 1/2

3n(1+w)

= 0    (22) 

and  

Rd

RdP
RR

n
RPR

n

n
RQts ~

)
~

(~
41

~

12

2
)

~
(

~

12
=)

~
(

~ 1/222
m  

( )
( ) ,~

411

~
411

1
123

1
)(13

1/2

1/2
22

wn

s

R

R
t

nn

+

±
+

m

   (23) 

respectively, where 
 
%ts ts / 6n 2n 1( ) . Here,  

corresponds to the present energy density of the matter. In 

particular,  

we use the present value of cold dark matter with 0=w   

for , i.e., 
c

0.233=  [1], where 

( ) 4472

0c
GeV103.97=8/3= GH  is the critical energy 

0 0.5 1 1.5 2
t
�

�1.06

�1.04

�1.02

�1

�0.98

�0.96

�0.94

w
e
f
f
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density and 42

0
102.13= hH GeV [37] with 0.70=h  [38], 

[39] is the present Hubble parameter. From Eqs. (4) and  

(21), we have  

 

F( %R)

2 2
=

1

2 2 %ts
2
P( %R) %R+ %ts

2Q( %R)( ).        (24) 

We examine )
~

(RF  by solving Eqs. (22)-(24) 
numerically. 

In Figs. (2 and 4), we depict )
~

(RP  and )
~

(
~ 2

RQts  as 

functions of R
~

. We have used 
00

1/Ht . Figs. (2 and 4) 

show the case of )(=<<0 0c ttt , i.e., 1/2<<0 X  and that of 

s
tttt <<)(= 0c

, i.e., 1<<1/2 X , respectively. We have 

numerically solved Eq. (22) in the range of R
~

 as 

18.0
~

16.0001 R . Here, we have taken the initial conditions 

as 1.0=16.0001)=
~

(RP  and 0=)
~

16.0001)/(=
~

( RdRdP  so that 

around the time when a crossing of the phantom divide 

occurs 
c

t , F(R) / 2 2( )  could contain the term R / 2 2( ) , 

namely, the ordinary Einstein-Hilbert action. We note that at 

c
= tt , i.e., 1/2=X  and hence 16.0=

~
R , we cannot solve 

Eq. (22) numerically. We therefore investigate the behavior 

of )(RF  gravity around a crossing of the phantom divide. By 

using Eq. (24), we show the behavior of 
 
F( %R) / 2 2( )  in Figs. 

(3 and 5), which show the case of )(=<<0 0c ttt , i.e., 

1/2<<0 X  and that of 
s

tttt <<)(= 0c
, i.e., 1<<1/2 X , 

respectively. For 2.0= , because 
0c

= tt , 1/2<<0 X  and 

1<<1/2 X  correspond to the past and the future, 

respectively. Furthermore, we illustrate 

 
weff ( %R) = 1+ 2 / 3n( ) 1 2X( %R)( )  in Fig. (6). The time evolution 

of R
~

 is given in Fig. (7). From Figs. (6 and 7), we see that a 

crossings of the phantom divide can be realized. The results 

in the all figures are shown by dimensionless quantities. 

 

Fig. (3). Behavior of 
 
F( %R) / 2 2( )  as a function of R

~
 for 

)(=<<0 0c ttt . Legend is the same as Fig. (2).  

 

Fig. (2). )
~

(RP  and )
~

(
~ 2

RQts  as functions of R
~

 for )(=<<0 0c ttt . We have taken 10=n , 2.0=  and 
c

0.233= .  

 

Fig. (4). )
~

(RP  and )
~

(
~ 2

RQts  as functions of R
~

 for 
s

tttt <<)(= 0c
. We have taken 10=n , 2.0=  and 

c
0.233= .  
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From Figs. (3 and 5), we see that before a crossing of the 

phantom divide, )
~

(RF  decreases in terms of R
~

, while that 

after the crossing, )
~

(RF  increases in terms of R
~

. The latter 

behavior is reasonable because in the Hu-Sawicki model [40] 

of )(RF  gravity, which passes the solar system tests, )(RF  

increases around the present curvature. For 2.0= , the time 

when a crossings of the phantom divide is the present time, 

and it follows from Eqs. (19) and (21) that the present value 

of R
~

 is 16.0=
~

0
R . We remark that such behavior is typical 

for a general class of viable )(RF  gravities introduced in 

Ref. [41] to which the Hu-Sawicki model belongs. This class 

of modified gravities can satisfy the solar system tests and 

unify inflation with the late-time cosmic acceleration. As 

viable models of )(RF  gravity, e.g., the models in Refs. [41-

47] are also proposed. In addition, investigations to solve the 

problem of a curvature singularity in )(RF  gravity [17, 46, 

48-52] have recently been executed in Refs. [53-59]. 

Theories without a singularity were also constructed in Ref. 

[17]. 

Finally, we mention the stability for the obtained 
solutions of the phantom crossing under a quantum 
correction coming from the conformal anomaly. In Ref. [26], 
it has been shown that the quantum correction of massless 
conformally-invariant fields could be small when a crossings 
of the phantom divide occurs and therefore the solutions of 
the phantom crossing could be stable under the quantum 
correction, although the quantum correction becomes 
important near the Big Rip singularity. 

4. CONCLUSION 

In the present paper, we have investigated a model of 

)(RF  gravity in which a crossing of the phantom divide can 

be realized. In particular, we have illustrated the behavior of 

)(RF  gravity around a crossing of the phantom divide by 

taking into account the presence of cold dark matter. The 

demonstration in this work can be interpreted as a 

meaningful step to consider a more realistic model of )(RF  

gravity, which could correctly describe the expansion history 

of the universe. 
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s
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