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Abstract: By looking for possible violation of the generalized second law, we might be able to find regions in the space 

of theories and states that do not allow holographic dual descriptions. We revisit three proposals for violation of the 

generalized second law in the simplest Higgs phase of gravity called ghost condensate. Two of them, (i) analogue of 

Penrose process and (ii) semiclassical heat flow, are based on Lorentz breaking effects, by which particles of different 

species can have different limits of speed. We show that processes in both (i) and (ii) are always slower than accretion of 

ghost condensate and cannot decrease the total entropy before the accretion increases the entropy. The other proposal is to 

use (iii) negative energy carried by excitations of ghost condensate. We prove an averaged null energy condition, which 

we conjecture prevents the proposal (iii) from violating the generalized second law in a coarse-grained sense. 

INTRODUCTION 

The second law of thermodynamics defines the arrow of 
time, stating that entropy does not decrease. Similarly, the 
attractive nature of gravity defines the arrow of time for a 
black hole at least classically. Nothing can escape from a 
black hole and, as a result, the area of a black hole horizon 
cannot decrease [1]. This classical-mechanical statement is 
known as the area law or the second law of black hole 
thermodynamics, and it is believed that a black hole has 
entropy proportional to the horizon area [2]. Quantum 
mechanically, however, a black hole emits Hawking 
radiation [3] and, hence, the area of a black hole horizon can 
decrease. Therefore, the second law of black hole 
thermodynamics does not hold quantum mechanically. 
Instead, it is believed that the total entropy, i.e. the sum of 
black hole entropy and matter entropy outside black hole, 
does not decrease [4]. This statement about a system 
including a black hole and matter is called the generalized 
second law. One must, however, be aware that the 
generalized second law has been proven only in some 
limited situations [5]. 

As already stated, a black hole is believed to have 
entropy proportional to the horizon area. The proportionality 
coefficient can be determined by substituting the Hawking 
temperature for black hole temperature in the first law of 
black hole thermodynamics, a relation analogous to the first 
law of thermodynamics. The black hole entropy 

bh
S  is then 

determined as  

 

Sbh =
kBc

3

4GN

Ah ,          (1) 

where 
h
A  is the horizon area, 

B
k  is the Boltzmann constant, 

 is the Planck constant, 
N
G  is the Newton constant, and  

 
 

*Address correspondence to this author at the Institute for the Physics and 
Mathematics of the Universe (IPMU), The University of Tokyo, 5-1-5 
Kashiwanoha, Kashiwa, Chiba 277-8582, Japan; Tel: 04-7136-4946; Fax: 
04-7136-4941; E-mail: shinji.mukohyama@ipmu.jp 

c  is the speed of light. The fact that this formula includes 

N
G ,  and 

B
k  hints some deep relations among gravity, 

quantum mechanics and statistical mechanics. For this 

reason, many people believe that black hole entropy is a key 

concept towards our understanding of quantum gravity. 

The AdS/CFT correspondence [6], being one of the most 
outstanding recent triumphs of string theory, stemmed from 
research in microscopic counting of black hole entropy. It is 
a concrete realization of the so called holographic principle 
that insists equivalence between a gravitational theory in 
1+d  dimensions and a non-gravitational field theory in d  

dimensions. While the AdS/CFT correspondence applies to 
gravity with a negative cosmological constant, it is not 
known whether there exists a holographic principle 
applicable to gravitational theories with a zero or positive 
cosmological constant. For example, it is thought that the so 
called dS/CFT correspondence [7], if it really exists, would 
lead to a non-unitary CFT. Moreover, it is believed that a de 
Sitter spacetime in string theory is only meta-stable and 
should decay into more stable configurations after a certain 
timescale [8] (see also [9]). How this could be understood in 
a field theory dual to de Sitter gravity is not clear. Since our 
universe today is thought to have a positive cosmological 
constant, it is obviously important to investigate whether 
there really exists a holographic principle applicable to 
gravitational theories with positive cosmological constant 

1
. 

Note, however, that absence of holographic dual would not 
necessarily imply inconsistencies of a theory or/and a state. 

As a first step towards this outstanding problem, it is 
intriguing to try to find a way to identify regions in the space 
of theories and states that do not allow holographic dual 
descriptions. One possible strategy is to use the generalized 
second law. In theories and states that have holographic dual 
descriptions, a black hole is presumably dual to a thermal 
excitation and, thus, the generalized second law is expected 

                                                
1See [10] for an attempt towards a holographic description of a theory with 

exactly zero cosmological constant in background with a negative spatial 

curvature. 
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to be dual to the ordinary second law of thermodynamics. 
Therefore, violation of the generalized second law would 
indicate lack of holographic descriptions since the ordinary 
second law of thermodynamics should hold in non-
gravitational theories. For this reason, by looking for 
possible violation of the generalized second law, we might 
be able to find regions in the space of theories and states that 
do not allow holographic dual descriptions. 

This approach could be particularly useful for theories 
which cannot be embedded in asymptotically anti de Sitter 
(AdS) spacetime, where the AdS/CFT correspondence is 
well formulated. If a gravitational theory is formulated in 
asymptotically AdS spacetime then we can analyze and 
possibly constrain the theory by using properties of the CFT 
which is expected to be dual to it. However, if a theory 
cannot be embedded in asymptotically AdS spacetime, then 
we cannot use this strategy and should look for other ways. 
As explained in the previous paragraph, the generalized 
second law may provide such a possibility. 

Actually, it is known that the simplest Higgs phase of 
gravity called ghost condensate [11-13] cannot be embedded 
in asymptotically AdS spacetime. The reason is very simple: 
the coefficient of canonical time kinetic term for excitations 
around ghost condensate vanishes if the condensate is 
spacelike. On the other hand, in Minkowski and de Sitter 
backgrounds, ghost condensate is timelike and gives a 
healthy time kinetic term to excitations around the 
condensate. It should also be noted that, because of Jeans-
like infrared instability, ghost condensate is not eternal 
unless cosmological constant is positive. For this reason, 
ghost condensate presumably provides a good testing ground 
for our strategy using the generalized second law as a 
criterion for existence/non-existence of holographic dual. 

In the literature there are already three proposals to 
violate the generalized second law by ghost condensate. The 
purpose of this paper is to revisit those proposals to see if 
they really violate the generalized second law. The 
conclusion is, unfortunately from the viewpoint of 
developing the strategy explained above, that they do not. 

The rest of this paper is organized as follows. Sec. 0 
explains a black hole solution in ghost condensate. Sec. 0 
revisits the proposal by Eling, Foster, Jacobson and Wall 
[14] based on a classical process analogous to Penrose 
process and shows that it does not decrease the total entropy. 
In Sec. 4 we review the analysis in [15], showing that 
semiclassical heat flow proposed by Dubovsky and 
Sibiryakov [16] does not violate the generalized second law. 
In Sec. 5 we prove a spatially averaged version of the null 
energy condition, which we conjecture prevents negative 
energy from violating the generalized second law in a 
coarse-grained sense. Sec. 6 is devoted to a summary of this 
paper. 

2. BLACK HOLE AND GHOST CONDENSATE  

The Schwarzschild metric with the horizon radius 
g
r  is 

written in the Lemaître reference frame as  

gμ dx
μdx = d 2

+
rgdR

2

r( ,R)
+ r2 ( ,R)d 2 , r( ,R) =

3

2
rg (R )

2/3

. (2) 

The vector 
μ

 defined by  

μ =
μ

+
R

μ

       (3) 

satisfies the Killing equation, 0=μgL , and is 
normalized as  

gμ
μ = f (r), f (r) 1

rg
r
.    (4) 

A particle following a radial geodesic is characterized by 
the mass m  and the conserved energy E  associated with 
the Killing vector 

μ
 as  

m2 = gμ pμ p = (p )2
r

rg
(pR )

2 ,  

E = μ pμ = p pR ,           (5) 

where μp  is the 4 -momentum covector of the particle. 
These equations have two branches of solutions:  

p =
E

f
1± 1 f 1 f

m2

E2
,   

pR = E p .                 (6) 

For 0>E , the “ + ” sign corresponds to out-going 
geodesics and the “ ” sign corresponds to in-coming 
geodesics. For 0<E , the `` '' sign corresponds to out-
going geodesics and the ``+ '' sign corresponds to in-coming 
geodesics. 

Ghost condensate in the Schwarzschild background [17] 
is approximated by  

= M 2 ,         (7) 

where  is the scalar field responsible for ghost condensate 
and M  plays the role of the order parameter of spontaneous 
Lorentz breaking. To be precise, the Schwarzschild metric is 
just an approximate solution valid within a certain time 
scale. Actually, ghost condensate slowly accretes towards 
the black hole and, as a result, the black hole mass evolves as 
[17] 

 

Mbh Mbh0 1+
9 M 2

4MPl
2

3MPl
2 v

4Mbh0

2/3

,     (8) 

where 
bh

M  is the Misner-Sharp energy evaluated at the 

apparent horizon, v  is the advanced null time coordinate 

normalized at infinity (the ingoing Eddington-Finkelstein-

type null coordinate), 
0bh

M  is the initial value of 
bh

M  at 

0=v , and  ( =O(1) > 0 ) is a coefficient of a higher 

derivative term. Note that the positivity of  stems from 

stability of spatially inhomogeneous excitations of ghost 

condensate and, thus, must be respected. The same formula 

(as well as the positivity of ) applies to the gauged ghost 

condensate [18]. 

3. ANALOGUE OF PENROSE PROCESS  

Eling, Foster, Jacobson and Wall (EFJW) [14] proposed 
a process analogous to Penrose process to violate the 
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generalized second law in theories with Lorentz violation. 
(See also [19]). By applying the EFJW process to a black 
hole in ghost condensate, one might think that the 
generalized second law would be violated. On the contrary, 
in this section we shall show that the EFJW process is 
inefficient and always dominated over by accretion of ghost 
condensate. 

EFJW consider two classes A and B of particles. 

Particles in the class A follow geodesics of the metric μAg , 

and those in the class B follow geodesics of the metric 

μBg , where μBAg ,
 are defined up to constant conformal 

factors as  

gA,Bμ = uμu + cA,B
2 (gμ + uμu ),     (9) 

BA
c
,

 (
BA
cc ) are positive constants representing limits of 

speed, and μu  is a unit timelike vector representing the 
preferred time direction. Without loss of generality, we can 
assume that  

.<
BA
cc          (10) 

Note that, in the following discussions, ambiguities due 
to undetermined constant conformal factors can be absorbed 
into normalization of mass and energy of particles in each 
class. Moreover, only dimensionless quantities such as mE/  
and f  are important in the following discussions and such 
ambiguities will cancel with each other in any physical 
statements. 

In the case of ghost condensate, the preferred direction is 

specified as Xu /= μμ , where  is the scalar field 

responsible for the ghost condensate and μ

μ
=X . 

Here, it is assumed that μ  is non-vanishing and timelike. 

The order parameter of the spontaneous Lorentz breaking is 

M  defined by the vacuum expectation value of X  as  

.=
4

MX       (11) 

For example, see (7). Any Lorentz breaking effects, such 

as deviation of 
BA

c
,

 from unity, are induced by non-

vanishing M  and should vanish in the limit 

0/
22

Pl
MM . Therefore, we have 

2
  

cA,B =1+O
M 2

MPl
2
.       (12) 

This is in accord with the fact that quantum corrections 

via gravitational interactions generate direct couplings 
3
 of 

matter fields to μ  unless protected by symmetry and 

induce Lorentz breaking effects. Since the strength of 

                                                
2Since MPl  is defined by GN = MPl

2
, odd powers of MPl  do not show 

up. Odd powers of M  do not show up either since M  is defined by 

μ M 2
. 

3Note that  appears only via its derivatives because of the shift symmetry. 

gravitational interaction is GN = MPl
2

 and the background 

value of μ  is proportional to 
2

M , such induced effects 

must be proportional to some positive powers of M 2 /MPl
2

 

at leading order. The constant conformal factors and the 

normalization of mass and energy, mentioned in the previous 

paragraph, are also 1+O(M 2 /MPl
2 ) . 

We suppose that μg  is the Schwarzschild metric shown 

in (2) and that μμ =u  (see (7)). In this case, both μAg  

and μBg  are Schwarzschild metric with different horizon 

radii:  

,),(
),(

= 22

,

,

2

,2

, ++ dRr
Rr

dRr
ddxdxg BA

BA

BgA

BA

μ

μ
  (13) 

where  

rA,B ( ,R) = cA,B
1 r( ,R) =

3

2
rgA,B (R )

2/3

,  

 rgA,B = cA,B
3 rg .             (14) 

The vector 
μ

 defined by (3) still satisfies the Killing 
equation for gA,Bμ , L gA,Bμ = 0 , and is normalized as  

gA,Bμ
μ = fA,B (r), fA,B (r) 1

rgA,B
rA,B

=1 cA,B
2 rg
r
.  (15) 

Let us prepare two in-coming massive particles outside 

the horizons: one in the class A with mass 
A
m  and the other 

in the class B with mass 
B
m . Since they are prepared 

outside the horizon, they have positive energies, EA > 0  and 

EB > 0 . We suppose that these particles meet at 
0

= rr  

satisfying fA (r0 ) < 0 < fB (r0 ) , i.e. in the region between the 

horizon for the class A and that for the class B, and split into 

two massless particles: one in the class A in-coming with 

negative energy EA < 0  and the other in the class B out-

going with positive energy EB > 0 . Note that a particle in 

the class A can have negative energy at 
0

= rr  since it is 

inside the horizon for this class. On the other hand, a particle 

in the class B cannot have negative energy at 
0

= rr  since it 

is outside the horizon for this class. Since the total energy 

conserves and EA  is negative, EB = EA + EB EA  is larger 

than the initial total energy EA + EB . This is the EFJW 

process. 

Actually, the EFJW process is kinematically forbidden 

unless
 
EA /mA =O( fB ) 1 . To see this, note that EFJW 

invokes the conservation of momentum covector, which is 

summarized as  

 EA + EB = EA + EB ,  

 pA + pB = pA + pB .           (16) 
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Here,  

pA,B =
EA,B

fA,B
1 1 fA,B 1 fA,B

mA,B
2

EA,B
2

,  

 pA ,B =
EA ,B

fA,B
1+ 1 fA,B ,        (17) 

and )( 0,, rff BABA . Note that (12) and BA ff <0<  

imply that  

fA,B =O
M 2

MPl
2
.        (18) 

It is easy to solve equations (16) with respect to 
A
E  as  

EA =
CAEA +CBEB

C
,       (19) 

where  

CA =| fA |+ fB+ | fA | 1 fB fB 1+ | fA | 1+ | fA |
mA
2

EA
2
,  

 CB =| fA | 1 fB 1+ 1 fB
mB
2

EB
2
,  

 C =| fA | 1+ 1 fB + fB 1+ 1+ | fA | .     (20) 

Here, we have re-expressed fA  as | fA | . EFJW suppose 

that EA,B > 0  and EA < 0 . This indeed requires that 

CA < 0 , since CB  and C  are positive definite. This 

necessary condition is rewritten as  

EA
2

fBmA
2
<

1+ | fA |

2(1+ 1 fB ) fB +
| fA |

fB
(1+ 1 fB )

2
<O(1),  (21) 

and shows that the EFJW process is kinematically forbidden 

unless 
 
EA /mA =O( fB ) 1 . This also shows that the initial 

massive particle in the class A must be released from a point 

very close to the horizon where r = rg [1+O( fB )] . 

Therefore, before starting the process, we need to keep such 

a particle at rest in the vicinity of the horizon. 

It is also easy to see that (19) combined with EA > 0  and 
EB > 0  implies that  

EA

fBmA

<
fB 1+ | fA |

C

EA
2

mA
2
+ | fA |.     (22) 

This, combined with (21), leads to  

EA

fBmA

<O(1).      (23) 

This means that the amount of negative energy carried by 

the final massless particle in the class A is rather 

low:
 
| EA | /mA =O( fB ) 1 . 

EFJW treats all particles participating the process as test 

particles. Therefore, in order to justify this treatment their 

gravitational backreaction to the geometry must be small 

enough. Let 
 
r (| fA | + fB ) rg  be the difference between 

horizon radii for the class A and the class B. The 

corresponding proper distance is
 
l 2 rg r . In order to 

justify the test particle treatment, l  must be sufficiently 

longer than the gravitational radius of each massive particles. 

This requires that  

 

mA,B

1

2
MPl

2 l 2Mbh | fA | + fB .     (24) 

As already stated at the end of the paragraph before the 

last, before starting the process, we need to keep the initial 

particle with mass 
A
m  at rest at r = rg [1+O( fB )] . By 

demanding that this initial condition should not disturb the 

geometry in the vicinity of the horizon, we obtain a similar 

condition on 
A
m .  

   
m

A
M

bh
O( f

B
).      (25) 

Using (18) in (23) and (24) (or (25), we obtain  

 

| EA | Mbh O
M 2

MPl
2 .      (26) 

This shows that the amount of negative energy sent to the 
black hole by the EFJW process is rather low. As EFJW 
states, it takes time of order 

g
r  to perform this process since 

particles need to travel this distance 
4
. During this time scale, 

ghost condensate accretes into the black hole, according to 
the formula (8). This amounts to the increase of the black 
hole mass given by  

 Mbh |v=rg ~ Mbh

M 2

MPl
2 .      (27) 

This is much larger than the amount of negative energy 
(26). Therefore, we conclude that the EFJW process is too 
inefficient to decrease black hole entropy in ghost 
condensate. This conclusion trivially extends to gauged 
ghost condensate since the accretion rate is the same. 

4.  SEMICLASSICAL HEAT FLOW  

For the Schwarzschild background (2), the effective 

metric gAμ  for particles in the class A and the effective 

metric gBμ  for particles in the class B have different surface 

gravity and, thus, different Hawking temperatures 
bhA
T  and 

TbhB . Without loss of generality, we can assume that 

TbhA < TbhB . 

By using the semiclassical heat flow due to Hawking 

radiation, Dubovsky and Sibiryakov (DS) [16] proposed a 

                                                
4As already stated, the initial massive particle in the class A should be kept 

at rest near the horizon. We need to supply it from somewhere else and 

somehow stop it near the horizon. This already takes time scale of order rg . 
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process to violate the generalized second law in ghost 

condensate. DS consider two shells surrounding the black 

hole, one with temperature TshellA  interacting with particles in 

the class A only and the other with temperature TshellB  

interacting with particles in the class B only. By tuning these 

temperatures of the shells, one can satisfy  

 TbhA < TshellA < TshellB < TbhB ,     (28) 

and ensure that the net energy flux from the shell A to the 
black hole is equal to the net energy flux from the black hole 
to the shell B. In this case, energy is transfered from the shall 
A to the shell B via the black hole while black hole mass 
remains unchanged. Since the shell A has lower temperature 
than the shell B, this process appears to violate the 
generalized second law. This is the DS process. 

As shown in [15], however, the DS process is suppressed 

by the factor M 2 /MPl
2

 and, as a result, is much slower than 

the Jeans instability of ghost condensate. Indeed, it is even 

slower than accretion of ghost condensate 
5
. Therefore, black 

hole entropy increases due to accretion before the DS 

process starts operating. Here, we shall briefly review the 

argument of [15]. 

As already stated, the scale M  is the order parameter of 

spontaneous Lorentz breaking and the Lorentz symmetry 

should recover in the M 2 /MPl
2 0  limit. This is the reason 

why the deviation of limits of speed from unity is suppressed 

by M 2 /MPl
2

, as shown in (12). This implies that differences 

among various temperatures in (28) are suppressed by 

M 2 /MPl
2

. In particular, we have  

TshellA,B TbhA,B = Tbh O
M 2

MPl
2
,    (29) 

where 
bh
T  is the temperature of the metric μg , and the net 

energy flux from the shell A or B to the black hole is  

Fshell bh ~ ±Tbh
2 O

M 2

MPl
2 ,      (30) 

where the “ + ” sign is for the shell A and the “ ” sign is for 
the shell B. Note that the net energy flux from each shell to 
the black hole vanishes when temperatures of the black hole 
and the shell agree, i.e. in the limit M 2 /MPl

2 0 . 

DS argue that the sum of entropy of the shell A and 

entropy of the shell B decreases since energy moves from the 

shell A with lower temperature to the shell B with higher 

temperature. However, the temperature difference is again 

suppressed by M 2 /MPl
2

 and, thus, the rate of decrease of 

shells' entropy is  

dSshells
dt

=
1

TshellB

1

TshellA
Fshell bh ~

Fshell bh

Tbh
O

M 2

MPl
2 . (31) 

                                                
5In [15], comparison with the time scale of accretion was explicitly illus-

trated for gauged ghost condensate only, but it holds also for ungauged 

ghost condensate since the quoted accretion rate is common for gauged and 

ungauged ghost condensate. 

 Combining this with (30), we obtain  

dSshells
dt

~ Tbh O
M 4

MPl
4 .      (32) 

This is highly suppressed. Indeed, it takes the time scale 

DS
t  defined by  

  

t
DS

~ T
bh

1
M

Pl

4

M
4

     (33) 

for the DS process to decrease shells' entropy just by one 
unit. 

Now, the formula (8) tells us that the black hole entropy 

significantly increases by accretion of ghost condensate in 

the time scale 
DS
t . On the other hand, the shells' entropy can 

decrease just by one unit in this time scale. Therefore, the 

total entropy including the black hole entropy increases and 

the DS process does not violate the generalized second law 

[15]. This conclusion trivially extends to gauged ghost 

condensate since the accretion rate is the same. 

5.  NEGATIVE ENERGY  

As a yet another proposal to violate the generalized 
second law, let us consider negative energy carried by 
excitations of ghost condensate [20]. In this section we shall 
see that an averaged energy condition holds, and we 
conjecture it protects the generalized second law. 

Let us consider the action of the form  

I = dx4 gP(X), X = μ

μ .    (34) 

The stress-energy tensor is  

Tμ = ( + P)uμu + Pgμ ,      (35) 

where  

= 2P X P, uμ =
μ

X
.      (36) 

The equation of motion is  

μJμ = 0,        (37) 

where  

Jμ 2P μ      (38) 

is the current associated with the shift symmetry and the 
corresponding charge is conserved. 

Ghost condensate is characterized by a non-vanishing 

timelike vacuum expectation value of μ  as in (11). In the 

language of the action (34), it corresponds to the value of X  

where P = 0 . Actually, P = 0  is a dynamical attractor of 

the system in an expanding universe. In the flat Friedmann-

Robertson-Walker (FRW) background the equation of 

motion (37) for a homogeneous  is t (a
3P t ) = 0  and 

implies that  
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P t

1

a3
0 (a ),     (39) 

where a  is the scale factor of the universe. There are two 

choices: P 0  or t 0 . The later corresponds to the 

trivial Lorentz invariant background and the former 

corresponds to the ghost condensate. The ghost condensate 

is, in this sense, a dynamical attractor of the system. 

Fluctuations around the ghost condensate background obtain 

a time kinetic term with the correct sign if P > 0 . On the 

other hand, the leading spatial kinetic term comes from 

higher derivative terms such as 
 
(W )2 . For the correct sign 

of the higher derivative term, those fluctuations are stable 

and have a healthy low energy effective field theory. Hence, 

ghost condensate is characterized by the background 

X = M 4
 ( > 0 ) satisfying P (M 4 ) = 0  and P (M 4 ) > 0 . 

The scale M  is the order parameter of spontaneous Lorentz 

breaking and also plays the role of the cutoff scale of the low 

energy effective field theory for excitations of ghost 

condensate 
6
. 

In the ghost condensate background, + P = 2P X  

vanishes and thus μT  acts as a cosmological constant. This 

is the reason why Minkowski and de Sitter spacetimes are 

exact solutions in ghost condensate
7
. If we consider 

fluctuations around the ghost condensate background then 

we notice that 
 
+ P = 2P X;2M 4P (M 4 ) X +O( X 2 ) , 

where X = X M 4
. This means that + P  is positive for 

X > 0  and negative for X < 0 . Therefore, the null energy 

condition can be violated by excitations of ghost condensate. 

In the following, however, we shall prove a spatially 
averaged version of the null energy condition. 

The Lagrangian P  is expanded as  

P = M 4 p0 +
1

2
p2

2
+O( 3 ) ,

X

M 4
1,   (40) 

where p0 = P(M
4 ) /M 4

 and p2 = M
4P (M 4 ) =O(1) > 0 . 

Thus, we obtain  

+ P M 2Jμu
μ = 2P X 1

M 2

X
= M 4 p2

2
+O( 3 ) .  (41) 

In the regime of validity of the effective field theory, 

 
| | 1  and the right hand side is non-negative. Therefore, 

by integrating ((41)) over a spacelike hypersurface 

orthogonal to 
μ
u , we obtain  

d ( + P) M 2Q,       (42) 

                                                
6Extra modes due to higher time derivative terms have frequencies around or 

above M  and, thus, are outside the regime of validity of the low energy 

effective field theory.  
7Anti de Sitter spacetime is not a solution in ghost condensate with higher 

derivative terms, essentially because there is no flat FRW slicing in anti de 

Sitter spacetime. Spacelike condensate leads to instability of excitations 

around the condensate. 

 where Q  is the conserved charge associated with the shift 
symmetry:  

.=
μ

μuJdQ        (43) 

As stated in the third paragraph of this section, P = 0  is 

a dynamical attractor in an expanding universe. Thus, it is 

very natural to set Q = 0 . Moreover, if Q < 0  today then 

P  was negative with large absolute values in the past. Since 

a large negative P  leads to UV instabilities of the system, 

negative Q  is strongly disfavored. Actually, with the exact 

shift symmetry, it is impossible to have a negative Q  

without introducing UV instabilities
8
. Therefore, it is 

necessary to assume that the shift charge Q  initially 

vanishes or starts with a positive value 
9
. In this case we 

obtain  

d ( + P) 0.       (44) 

This is the averaged null energy condition. 

The averaged energy condition states that negative 
energies are always accompanied by larger positive energies. 
This is somehow similar to the so called quantum 
inequalities and the quantum interest conjecture [23] in 
ordinary quantum field theory: even in Minkowski spacetime 
the ordinary field theory can have negative local energy, but 
negative energy is always accompanied by larger positive 
energy. Since direct couplings between ghost condensate and 
matter fields are suppressed by the Planck scale (cf. the third 
paragraph of Sec. 0), excitations of ghost condensate interact 
with ordinary matter only gravitationally. This implies that 
those positive and negative energies cannot be separated 
from each other by hand. Therefore, although one could 
decrease black hole entropy by gravitationally exciting a 
lump of negative energy and sending it into a black hole, 
larger positive energy should follow it and eventually 
increase the black hole entropy. For this reason, we 
conjecture that the averaged energy condition protects the 
generalized second law in a coarse-grained sense 

10
. 

6. SUMMARY  

We have revisited three proposals to violate the 
generalized second law by ghost condensate: (i) analogue of 
Penrose process, (ii) semiclassical heat flow, and (iii) 
negative energy. The proposals (i) and (ii) are based on 
Lorentz breaking effects, by which particles of different 
species can have different limits of speed. We have shown 
that processes in both (i) and (ii) are always slower than 
accretion of ghost condensate and cannot decrease the total 
entropy before the accretion increases the entropy. We have 
also proved an averaged null energy condition, which we 

                                                
8If the shift symmetry is softly broken then it is possible to have a negative 

Q  without instabilities in expanding universe [21]. 
9Negative energy solutions presented in [22] are inconsistent with any initial 

conditions with 0Q  and thus are excluded by this condition. 
10In ordinary thermodynamics, entropy can fluctuate both upwards and 

downwards by order unity but will eventually increase. Thus, in ordinary 

thermodynamics the second law holds only in a coarse-grained sense. 
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conjectured prevents the proposal (iii) from violating the 
generalized second law in a coarse-grained sense. 
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