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Abstract: In this work we calculate and simulate the different ingredients needed to obtain the matter density profile of 

the large-scale structure we observe now days in a qualitative way. This work begins assuming that the seeds of the early 

universe were small fluctuations that lived inside a homogeneous FLRW background, and which are studied using the 

Linear Perturbation Theory, these fluctuations then grew because of gravitational instability, in this way giving birth to 

what we see today: galaxies, clusters of galaxies, etc. The key difference of this work compared with other works lays in 

the fact that we introduce 
2
 as a scalar field candidate to dark matter, and as one of the main ingredients needed to obtain 

the large-scale structure we see today. We then solve the obtained set of equations like a dynamical system in which we 

introduce new dimensionless parameters that describe the cosmology of the different studied quantities, this shows us that 

both; the gravitational potential and the fluctuations on the scalar field are the main ingredients to the spectrum of the 

density contrast, the last one being responsable of the description of matter distribution we observe these days. Also, we 

have developed the non linear regime with the sphericall collapse formalism in order to compute the parameters of 

virialized structure with our hypothesis. Finally, we show how the quantum effects of the same scalar field can explain the 

value of the cosmological constant.  

Keywords: Scalar field, sphericall collapse, structure formation. 

1. INTRODUCTION 

One of the most fundamental problems in modern 

Cosmology is to know the nature of dark matter. The 

standard model of cosmological structure formation in the 

Universe is Lambda cold dark matter ( CDM). Most of all 

cosmological observations support it, like the large-scale 

structure of the Universe and the spectrum of CMB, but this 

paradigm has some problems at galactic scales, like the 

central densities in LSB galaxies and the number of satellite 

galaxies. 

The Cosmic Microwave Background radiation (CMB) is 

one of the main proves about the homogeneous and isotropic 

models in the Big Bang theory. The anisotropies seen in the 

CMB are related with small perturbations that are found in a 

perfectly smooth background, and are believed to be the 

seeds in the formation of galaxies and large-scale structure in 

the Universe. We then assume that in the past existed small 

deviations in such homogeneties in our Universe. 

There are several alternative models propposed in order 

to solve the problems of CDM, some of these models are: 

warm dark matter, auto-interacting dark matter, f (R)  

Gravity (see [1] for an excellent introduction to this field) 

and Modified Gravity (MoG) [2], being these two last 

theories very close related with the Scalar-Tensor-Theories 

of gravity (STTG). At this point it is worth to remark that the 

scalar field appearing in these theories can be interpreted as a 
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source or as part of the curvature. In this paper we will adopt 

a minimally coupled scalar field, with a 
2

 scalar field 

potential, minimally coupled to matter, being this the most 

simple version of the STTG, called the Scalar Field Dark 

Matter (SFDM) model [3-12]. We study SFDM in order to 

investigate if this model is able to explain the formation of 

structure. SFDM supposes that dark matter is a minimally 

coupled real scalar field with a scalar potential that interacts 

only gravitationally with the rest of the matter. The 

motivation of this model is that it be behaves like CDM and 

it could solve many problems of the standard model in 

addition to which it could form gravitational structures. 

For cosmological models that involve SFDM, it is 

usually assumed that the SF does not show density 

fluctuations on cluster scales or below. This is because in 

Linear Perturbation Theory, the mass of the SF is very small 

and because of this, it does not feel small fluctuations. If the 

scene changes, and the mass of the SF does feel the 

fluctuations, we then also have to take into account non-

linear perturbations, that could modify the evolution of the 

perturbations in the dark matter, and this affect the evolution 

in structure formation. 

The main objective in introducing a SF model as dark 

matter is to assume that such dark matter is a scalar field that 

involves a minimally coupled potential of the form  

V ( ) =
1

2
m2 2  

where the mass of the scalar field  is defined as 
 
m = &&V =0 .  

and the dark matter is affected by radiation only indirectly, 

through the gravitational potential. 
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If we want to study these anisotropies we need to know 

how the perturbations that act upon the dark matter evolve. 

This can give us the possibility of giving the energy density 

necessary to obtain the amount of matter observed in 

galaxies an required to study the rotation curves in stars, as 

to give the correct distribution of dark matter in them. 

The evolution of these fluctuations with specified 

magnitude are defined by several fundamental parameters, 

like: the cosmic density , the cosmological constant  and 

the relative contributions of radiation, and the densities of 

dark and visible matter in the universe. We then define the 

relative fluctuations on the mass density as  where  

is the mass density in the Universe. 

We develop the theory and the numerical simulations to 

obtain such spectrums, based on all the facts mentioned 

earlier, and making reference to the non-perturbed model 

(without fluctuations) as the background from which we 

evolve the small perturbations to what we see today. 

2. THE STATISTIC OF A BEC 

In this section we review the condensation of an ideal 

Bose gas of N  particles of mass m  contained in a volume 

V  with temperature T  and with only a portion 
0

 of the 

system in the ground state. In order to see that and to be self 

contained, let us start from its grand partition function Q , 

which is given by  

 Q(z,V ,T ) =
p

1

1 ze p
,      (1) 

where the fugacity z = e μ  is defined in terms of the 

chemical potential μ  and =1 /T . In this paper we use the 

fundamental constants 
 
h = c = kB =1 .  

Then, the state equation for an ideal Bose gas is  

 
PV

T
= logQ =

p

log(1 ze p ).     (2) 

Thus the grand partition function directly gives the 

pressure P as a function of z , V , and T . 

The particle number N  and the internal energy U  are  

 N = z
z
logQ =

p

ze p

1 ze p
,      (3) 

 U = logQ =
p

pze
p

1 ze p
, .     (4) 

Where p  is the single-particle energy with momentum p  

and the average occupation numbers < np >  are given by  

 < np >=
ze p

1 ze p
,       (5) 

which satisfy the conditions  

 N =
p

< np >,         (6) 

 U =
p

p < np > .         (7) 

Now we let V 0  taking the limit of continuity, and 

replace sums over  p by integrals over  p, we the obtain the 

following equation of state.  

 
PV

T
=

2V

(2 )2 0
dp p2 log(1 ze p2 /2m ) log(1 z),  

 N =
2V

(2 )2 0
dp p2

ze p2 /2m

1 ze p2 /2m
+

z

1 z
.     (8) 

These equations can be written into the equivalent form  

 
PV

T
=
V
3
g5/2 (z) log(1 z),    (9) 

 N =
V
3
g3/2 (z)+

z

1 z
,       (10) 

where = 2 / mT  is the thermal wavelength, and  

 g5/2 (z) =
4

0
dx2 log(1 ze x2 ),  

 g3/2 (z) = z z
g5/2 (z).          (11) 

Therefore internal energy is found from the formulas (2) 

and (4)  

 U =
3

2

TV
3
g5/2 (z).       (12) 

and a consequence the relation U=3/2PV is fulfilled.  

From equation (5) we see that  

 < n0 >=
z

1 z
,        (13) 

which is the average occupation number for a single particle 

with occupation level 0=p . Equation (10) can also be 

written as  

 3 < n0 >

V
= 3 N

V
g3/2 (z).      (14) 

This equation tell us that 
< n0 >

V
> 0  and therefore the 

temperature and the specific volume are such that 

3 N

V
> g3/2 (z) . This means that a finite fraction of the 

particles will be in the ground state with p = 0 , i.e., the 

Bose gas condensates. In the region of condensation, the 

fugacity 1:z  and the functions g(z)  goes to the Riemann  

function gl (z) (l) . 
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And the thermodynamical surface which separates the 

condensation region from the rest of the P V T  space, is 

given by  

 c
3 N

V
= g3/2 (1) = 2.612,     (15) 

thus 
c

 can be interpreted as the value for which the 

thermal wavelength is of the same order of magnitude as the 

average interparticle separation. Equation (15) defines the 

critical temperature for which the Bose condensate forms. 

This temperature is given by  

 Tc =
2

m5/3 g3/2 (1)

2

3

,      (16) 

where = m N /V  is the density of the Bose gas. At 

constant temperature, equation (16) defines a critical density  

 c =
m g3/2 (z)

3
.        (17) 

Thus, the region of condensation of the Boson gas is 

determined by T < Tc  or > c  

After the Bose gas condensates most of the bosons lie in 

the ground state, the scalar field starts to oscillate around the 

minimal of its potential and the scalar field starts to behave 

as dust [13]. Thus, after the scalar field decouples from the 

rest of the matter, the temperature of the BEC's goes like  

 ,=

2

0(0)

a

a
TT

BECBEC
      (18) 

where TBEC
(0)

 is the actual temperature of the BEC's and 

a0 = 1  the value of the scale factor at the present. 

In the same way, as the BEC's behave as matter, their 

density goes like BEC = BEC
(0) / a3 , where BEC

(0)
 is the actual 

matter content of BEC's in the universe. With this result 

equation (16) can be also transformed into the form  

 Tc =
2

m5/3
BEC
(0)

crit

(3 / 2)

2

3 1

a2
,       (19) 

 = 6.2 10 31 ( BEC
(0) h2 )2/3

(m /GeV )5/3
1

a2
GeV ,    (20) 

where BEC
(0)

 is the actual rate of BEC's and crit  is the 

critical density of the universe. 

If the actual standard model of particles scheme could be 

extended to higher temperatures, we have to expect that the 

scalar field which forms the BEC, interacts with the rest of 

the particles to a temperature over some temperature Ts . 

Because the physics of the elemental particles is well known 

till temperatures like GeV, we do not expect that so an exotic 

particles as these scalar fields appear under temperatures like 

TeV.  Here we have two possibilities, the first one is that the 

scalar field has never had interaction with the rest of the 

particles and it evolves independently from the rest of the 

fields, with only a gravitational interaction. In this case the 

scalar field condensate from the beginning of the universe. 

The second possibility is that in the early universe the scalar 

field lived unify with the rest of the particles in a thermal bad 

and in some moment in its evolution, separates from the 

interaction. If this is the case let us suppose here that the 

scalar field which forms the BEC decouples from the rest of 

the matter at a temperature over TeV. Under this 

temperature, this scalar field has almost no interaction with 

the rest of the matter. If we expect that this scalar field forms 

a BEC, its critical temperature must be lower than the 

temperature of the scalar field decoupling. This fact gives us 

an upper bound of the mass m  of the scalar field  

 m < 10 17 eV .        (21) 

On the other hand, from numerical simulations [14] we 

know that scalar fields form gravitationally bounded objects 

with a critical mass given by  

 

  

Mcrit ~ %m
mpl
2

m
,        (22) 

where mpl  is the Planck mass and  %m  is a factor such that 

 %m 0.6  for complex scalar fields (boson stars) and real 

scalar fields (oscillatons). With the value given in (21), the 

scalar field can form a gravitationally bounded BEC with a 

critical mass given by  

 Mcrit > 1.491 1064GeV ,      (23) 

 = 2.658 1040 gr,        (24) 

 
 
=13.36 106M

e
.        (25) 

This is an interesting result, if there exist a scalar field 

and plays any role in the universe at this moment, this scalar 

field must have a mass lower than the mass given in (21) and 

they are forming gravitationally bounded BEC's with masses 

around the mass given in [15]. 

3. SELF-GRAVITATING BEC 

In this section we give some general features of the 

gravitational collapse of the BEC, we pretend only to show a 

generic behavior of any self-gravitating BEC. The BEC 

cosmology have been studied by [16] and many numerical 

simulations of this collapse are given in [15, 17, 18] and by 

besides. [19] found that BEC in the ground state are very 

stable under different initial conditions. After the Bose gas 

condensates the gravitational force makes the gas collapse 

and form self-gravitating objects. Let us suppose that the 

halo is spherically symmetric, which could not be to far from 

the reality. In that case, the space-time metric reads  

 ds2 = e2 dt 2 +
dr2

1
2MG

r

+ r2d 2 ,    (26) 
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where the function = (r)  is essentially the Newtonian 

potential and M =M (r)  is the mass function given by  

 M = 4 r2 dr,  

 
d

dr
=G

M + 4 r3

r2 1
2MG

r

.         (27) 

The Einstein field equations reduce to equations (27) and 

the Oppenheimer-Volkov equation  

 
dP

dr
= G

(P + )(M + 4 r3 )

r2 (1
2MG

r
)

.      (28) 

Let us focus in the case when the gas is far from forming 

a black hole. In that case we suppose that 2MG << r  and 

equation (28) reduces to  

 
dP

dr
= 4 Gr P(P + ).       (29) 

The state equation can be obtained from the equation 

PV = 2 / 3U , (10) and (12). Combining all equations we 

obtain that  

 P =
2

m8/3

g5/2 (z)

g3/2 (z)
5/3
( 0 )

5/3,      (30) 

 = ( 0 )
5/3,        (31) 

where  is the constant  

 =
2

m8/3

g5/2 (z)

g3/2 (z)
5/3
,        (32) 

and 0 = m < n0 > /V  is the mean density of the particles 

in the ground state. Thus, the Oppenheimer-Volkov equation 

(29) transforms into  

 
d

dr
=

12

5
Gr( 0 )( ( 0 )

5/3
+ ).    (33) 

This differential equation can be easily numerically 

solved. Nevertheless, we have two interesting limits of 

equation (33). First suppose that the  constant is small 

such that P << . This situation occurs for big scalar field 

masses 
 
m :mPlanck . In that case, the equation (33) contains 

an analytical solutions given by  

 (r) = 0

1 1 0

(0)
e
6

5
G 0r

2
.    (34) 

Observe that when †r , the function 
0†)(r . The 

function changes dramatically for different values of r0 . If 

r0 > 1 , the density (r)  decreases, but if r0 < 1  the density 

increases. The behavior of the density is shown in Fig. (1). 

For numerical convenience we set (0) / 0 r0  in the plot. 

This means that if the central density of the BEC is bigger 

than the density of the ground state, we have the upper 

profile in Fig. (1), but if it is less than it, we have the bottom 

profile. 

The second and for our interest more interesting limit of 

equation (33) is when >>P . This occurs when the scalar 

field mass is enough small 
Planck

mm << , as for 

astrophysical BEC's. In this limit the Oppenheimer-Volkov 

equation has also an analytical solution given by  

 (r) =
(0) 0

(2 Gr2 ( (0) 0 )
5/3
+1)3/5

+ 0 ,  

 

 

Fig. (1). Plot of the (r)  function given in equation (34) for r0 < 1  

(top plot) and for r0 > 1  (down plot). The plot is done in terms of 

(r) / 0 . We have set r0 = 2  and r0 =1 / 2  for each plot, 

respectively and 0 = 0.002 . 
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 =
p(0) /

2 Gr2 p(0)+1

3/5

+ 0 ,      (35) 

or equivalently (0))1/1/(2= 2
PGrP + . In this case the 

pressure dominates the BEC, the pressure acquire a 

maximum for (0)P . Enough far away from the centre of the 

BEC we can approximate equation (35) with  

 =
1 /

2 Gr2

3/5

+ 0 ,      (36) 

which implies a space-time metric for the BEC given by  

ds2 =
dr2

1 2(r0r
4/5
+
4

3
G 0r

2 )
exp(2 )dt 2 + r2d 2 ,  (37) 

where r0 = 10 / 9(4
2 / 3 )1/5 . Function  determines the 

circular velocity (the rotation curves) 
rot

V  of test particles 

around the BEC. Using the geodesic equation of metric (37) 

one obtains that Vrot
2 = rgtt ,r / (2gtt ) = r  [21]. Using 

equations (27) we can integrate the function  and obtain 

the rotation curves. The plot is shown in Fig. (2), where we 

see that the form of the rotation curves are analogous as the 

expected from the observed in galaxies, specially in LSB and 

dwarf ones [22-24] besides SFDM predicts a core density 

profile that could have some advantages [25] over the 

standard model (cuspy profiles). However, the discussion of 

the central region of the rotation curves continue. This is the 

main reason why it is not convenient to tray self-gravitating 

BECs in the Newtonian limit. Remain that the Newton 

theory can be derived from the Einstein one for slow 

velocities, weak fields and pressures much smaller than the 

densities and this last conditions is not fulfilled in self-

gravitating BECs. 

 

Fig. (2). Rotation curve derived from metric (37). The velocity and 

the coordinate r  are in arbitrary units. 

From these results and from the simulations given in [19] 

it follows a novel paradigm for structure formation, which is 

different from the bottom-up one. In the SFDM paradigm, 

after the big bang the scalar field expands till it decouples 

from the rest of the matter. If the scalar field has a sufficient 

small mass such that its critical temperature of condensation 

is less than the temperature of decoupling, the scalar field 

forms a BEC. Then the scalar field collapses forming objects 

which final mass is not bigger than the critical mass 

mPlanck
2 / m . These objects contain a density profile very 

similar to the profile shown in the top of Fig. (1). They are 

very stable under perturbations. It has been proposed that the 

dark matter in galaxies and clusters is a scalar field with a 

mass of 10 22 eV [15]. If this were the case, the main 

difference for the structure formation of this ultralight scalar 

field with the bottom-up paradigm is that the SFDM objects 

form just after the collapse of the scalar field and remain so 

during the rest of the Universe expansion. Furthermore, they 

can collide together but after the collision the objects remain 

unaltered, since they behave like solitons [26]. This means 

that in a merging of BEC they pass through each other 

without some alterations in its total mass as collisionless 

dark matter. This paradigm implies then that we must be able 

to see well formed galaxies with the actual masses for very 

large redshifts, longer than those predicted by the bottom-up 

paradigm, i.e., by CDM. In this sense some authors [27] 

suggest a discrepancy between the observed population of 

massive spheroidal galaxies at high redshift with the 

numerical simulations of hierarchical merging in a CDM 

scenario that underpredict this population. However, the 

discussion continues because other physical processes, as 

feedback, could have important effects in this galaxies. 

4. THE COSMOLOGY 

In this section we review the Cosmology given by a 

SFDM model with two different scalar field potentials: 

V ( ) =
1

2
m 2 2  and V ( ) =V0 cosh( ) 1[ ]  where m  

is the mass of the boson particle and V0  and , free 

parameters fixed with cosmological data and 
2 = 8 G . 

Based on the current observations from the 5-year WMAP 

data [28] we will consider a Universe evolving in a spatially-

flat Friedmann Lemaître-Robertson-Walker spacetime. We 

assume that this Universe contains a real scalar field ( ) as 

dark matter, radiation (r), neutrinos ( ), baryons (b) and a 

cosmological constant ( ) as dark energy.  

The total energy density of a homogeneous scalar field is 

given by 

 

=
1

2
& 2 +V ( ),  

and the radiation and baryonic components are represented 

by perfect fluids with baryotropic equation of state 

p = ( 1) , where  is a constant, 0 2 . For 

example, for radiation and neutrinos ( r , =
4

3
), for baryons 

( b =1 ) and finally for a cosmological constant ( = 0 ). 

Thus, the field equations for a Universe with these 

components are given by  
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&H =
2

2
( & 2 + ),  

 
 
&& + 3H & + V = 0,  

 
 
& + 3 H = 0,           (38) 

and the Friedmann equation 

 

 

H 2 =
2

3
+
1

2
& 2 +V ( ) .      (39) 

In order to analyze the behavior of the different 

components of this Universe, we are going to use the 

dynamical system formalism following Appendix 9. 

4.1. The 
2

 Scalar Potential 

We start our cosmological analysis of SFDM taking the 

potential  

 V ( ) =
1

2
m2 2 ,        (40) 

and developing the standard procedure to transform it into a 

dynamical system. For doing so, the new variables (111) for 

the system of equations (38) read  

 

 

x
6

&

H
, u

6

m

H
,  

 z
3 H

.         (41) 

Using the definitions given in (41), the evolution 

equations (38) for potential (40) transform into an 

autonomous system  

 x = 3x
m

H
u +

3

2
x,  

 u =
m

H
x +

3

2
u,  

 z ' =
3

2
( )z ,  

 
 

&H

H 2
=
3

2
(2x2 + z2 )

3

2
,       (42) 

where as in Appendix 9, prime denotes a derivative with 

respect to the e-folding number )(ln= aN . Again the 

choice of phase-space variables (41) transforms the 

Friedmann equation into a constraint equation  

 F x2 + u2 + z2 = 1.         (43) 

Because we are considering an expanding Universe 

which implies that 0>H  and from the variable definitions 

(41), we can see that 0, zu . With these variables, the 

density parameters can be written as  

  ,=
22

ux
DM

+  

  ,=
2

z  

 ,=
2

l           (44) 

where we have added explicitly a cosmological constant 

variable l z . Moreover, with the physical constraint 

0 1  and the Friedmann equation DM + + =1  

the variable space is bounded by  

0 x2 + u2 + z2 + l2 1.  

On the other hand, observe that the variable space (42) is 

not a completely autonomous one because H  is an external 

parameter. In order to close the system we define a new 

variable s  given by  

 s
m

H
,         (45) 

which dynamical equation (112) is  

s =
3

2
s.  

With this new variable, system (42) is now an 

autonomous one. The whole close system is   

 x = 3x su +
3

2
x,     (46a) 

 u = sx +
3

2
u,       (46b) 

 z ' =
3

2
( )z ,       (46c) 

 l =
3

2
l,         (46d) 

 s =
3

2
s.        (46e) 

In order to acquire geometrical information that 

dynamical system analysis provide (see Appendix 9), we 

study the stability of (4.1). To do this, we define the vector 

 

r
x = (x,u, z , l, s)  and consider a linear perturbation of the 

form  
r
x

r
x +

r
x . The linearized system reduces to 

  
r
x =M

r
x , where  M  is the Jacobian matrix of x

r
 and it 

reads as 

 

M =

3

2
3+ 6x2 s 3 xz 0 u

6xu + s
3

2
3 uz 0 x

6xz 0
3

2
+ 3 z2 0 0

6xl 0 3 l z
3

2
0

6xs 0 3 sz 0
3

2

.  
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The equilibrium points 
c

x
r

 of the phase space 

{x,u, z , l, s} , considering only = 4 / 3 , are then   

    1.  {±1, 0, 0, 0, 0}  Kinetic scalar domination  

    2.  {0, 0,1, 0, 0}  Radiation domination  

    3.  {0, 0, 0,1, s}  Cosmological constant domination  

    4.  {0,u, 0, l, 0}  Cosmological constant and Potential 

scalar domination  

And finally, the eigenvalues of the matrix  M  valued at 

the critical points listed above read   

    1.  {6, 3, 3, 3, 3 }   

    2.  {
3

2
,
3

2
,
3

2
,
7

2
,
3

2
( 2 + )}   

    3.  {0, 0,
1

2
( 3 9 4s2 ),

1

2
( 3+ 9 4s2 ), }   

    4.  { 3, 0, 0, 0, }   

As we can see, the radiation domination epoch shows a 

saddle point, however, in order to reproduce the big bang 

nucleosynthesis process is necessary that this kind of matter 

would had dominated in the past of the Universe. In other 

words, the radiation points should have corresponded to a 

source point. The domination of dark matter in the past (a 

source point) and the cosmological constant in the future (an 

attractor point) are showed in the Fig. (3).  

In the following, we integrate system (46) with the 

constraint (43), following the procedure shown in Appendix 

9. In general this system is very difficult to integrate because 

it is a non-linear four-dimensional differential system of 

equations. It is clear that system (46) is a complete system 

which can fulfil or not the constraint (43). However, as it 

was shown in Appendix 9 system (46) together with 

constraint (43) is completely integrable. For simplicity we 

will take all the perfect fluid components as the equation 

z ' = 3 / 2( )z  with the Friedman equation 

x2 + u2 + z2 = 1 . 

Thus, we substitute 3/2  from equation (46e) into the 

rest of the equations. With this substitution equation (46e) 

integrates in terms of s  as  

 z = 0 sexp(
3

2
N ),     (47) 

where 
0

 is an integration constant. We multiply (46a) by 

x2  and (46b) by u2  and sum both equations. We obtain  

 (x2 + u2 ) = 6x2 + 2 ln(s) (x2 + u2 ).   (48) 

Now, we use constraint (43) and equation (47) into 

equation (48) to obtain  

 6x2 = 2ln(s) 3 s2 0 exp( 3 N ).    (49) 

We substitute (49) and (47) into (46e) to obtain 0=0 . 

Therefore, s  is not an independent variable and we cast it 

into the system as a control parameter, the same result is 

found by [29]. In what follows we will use this important 

result. 

 

Fig. (3). Evolution of the density parameters for the system of 

equations (4.1). The plot shows the dark matter domination epoch 

at early times, a source point. The cosmological constant at the 

future of the Universe is an attractor point. 

Of course, to guess variable s  in order to fulfil constrain 

(43) is not so easy. In order to avoid this problem we can 

consider the observed dynamic for H  and model it by the 

following ansatz  

 H
t0
n 1

t n
,        (50) 

because it is well-know the behavior for H  at different 

epochs  

 Hdust =
2

3t
, Hrad =

1

2t
, H =

3
.    (51) 

There exists a restriction in the parameter n . Because is 

well know that H  is a function monotonically decreasing, 

n  has to satisfy 0n .  

With the ansatz (50), the dynamical equation for s  reads  

 s = mt0( )
1

n
1
n
1

s

1

n
2

= s0 s
k ,   (52) 

where we have defined 21/nk . 

In the following, we investigate if this system can 

reproduce the observed Universe. We introduce the 

components of the background Universe into the dynamical 

system described by (4.1) adding to it baryons ( b ), radiation 

( z ) and neutrinos ( ). Thus, the system transforms into   
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 ,
2

3
3= xsuxx +     (53a) 

 ,
2

3
= usxu +       (53b) 

 b =
3

2
1( )b,          (53c) 

 ,
3

4

2

3
= zz         (53d) 

 =
3

2

4

3
,      (53e) 

 l =
3

2
l,       (53f) 

 s = s0 s
k ,      (53g) 

with 2222

3

4

3

4
2= +++ zbx  and the Friedmann 

equation reduces to the constraint  

 1.==
222222

lzbuxF +++++    (54) 

Using this ansatz we can reduce till quadratures the 

solution of system (3). In order to do this, observe that  

.=
2

3 1

0

k
ss  

Using this last identity, equation (53c)-(54f) can be 

integrated to give  

,]1)([= 2

3

1

1

100

N
k esNkszz +++  

for each corresponding value of . Finally, equations (53a) 

and (53b) can be integrated as follows. We divide (53a) by 

x  and (53b) by u  and take the difference between both 

equations. We define uxy /=  to obtain  

 ),(=)(3 2
NqyNqyy ++    (55) 

where function 
1)1/(

10 ]1)([=)( +
++

ksNksNq . Equation 

(55) is a Riccati equation which can be reduce to a Bernoulli 

equation by defining 
1

= ywy + , where 
1

y  is a known 

solution of (55). It reduces to  

 0.=)2(3 2

1 zqwyqw +++    (56) 

Equation (56) can be further reduced by defining 

wW 1/= , we obtain  

 0,=)2(3 1 qWyqW +     (57) 

which integral is  

 W = eA e A qdN ,       (58) 

with A = (3+ 2qy1 ) dN .  

Thus   

 u = u0 q exp yqdN( ) ,      (59a) 

 x = x0 qe
3N exp

q

y
dN ,     (59b) 

 ,= 2

3

0

N

eqzz     (59c) 

 .
1

=
1

y
W

y +     (59d) 

In the particular case where 0=
0

s , the integrals can be 

solved analytically, however this value for 
0

s  does not have 

a physical meaning. 

On the other hand, we can evaluate the integrals using 

numerical methods for different values of the free constants. 

We can obtain a numerical solution for the system using (59) 

 

 

Fig. (4). Evolution of the density parameters for the system (3) with 

1=n  (top panel) and 5=n  (bottom panel). This values of n are 

not reproduce the standard behavior of CDM. 
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or directly integrating system (53) with an Adams-

Bashforth-Moulton (ABM) method and using as initial data                    

the WMAP+BAO+SN recommended values to (0) = 0.721, 

DM
(0) = 0.233 , 

b
(0) = 0.0454 , 

r
(0) = 0.0004 , 

0.0002=(0) , the result is the same.  

Fig. (4) and Fig. (5) show the numerical solutions of the 

dynamical system (53). In Fig. (4) we set 1n , as examples 

we show n =1,5 . From these figures it is clear that the 

radiation remains subdominant for this values of n . Fig (6) 

shows the constraint F  in (54)  in order to visualize the 

integration's error. Observe that F =1  at every point in the 

evolution, indicating that the Friedmann equation is exactly 

fulfilled all the time, this behavior is exactly the same for all 

runs. On the other hand, in Fig. (5), where the plots were 

made for 1/51/2,=n , the radiation and the neutrinos behave 

exactly in the same way as they do in the CDM model so 

we expect that both of these can reproduce the observed 

Universe. The first values for n  are not able to explain the 

big bang nucleosynthesis, since radiation never dominates as 

it is required. However, the last values for n  can reproduce 

the radiation dominated era. Following the radiation 

dominated era, 
2

 dark matter become the component that 

dominates the evolution and finally the Universe is 

dominated by the cosmological constant. 

4.2. The Cosh Scalar Potential 

Now, we are going to compare above results with the 

potential  

[ ].1)(cosh=)( 0VV      (60) 

In order to do so, we define new variables as  

,
6

=
H

x

&

 

,
2

1
cosh

3

2
= 0

H

V
u  

,
2

1
sinh

3

2
= 0

H

V
v  

.
3

=,
3

=
H

l
H

z        (61) 

Substituting definitions (61) into equations (61) we 

obtain  

 ,
2

3
3= xvuxx +  

 ,
2

3
= uxvu +  

 

 

Fig. (5). Upper panel: evolution of the density parameters for the 

system (3) with 1/2=n . Lower panel: evolution of the density 

parameters for the system 3 with 1/5=n . SFDM reproduces the 

standard CDM behavior in both cases. 

 

Fig. (6). Evolution of the function 

F = x2 + u2 + b2 + z2 + 2
+ l2  in (54) for the system (3) with 

n=1, 5, 1/2 and 1/5. Function F is exactly the same for all values of  

n in all these cases. 
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 ,
2

3
= vxuv +  

 ( ) ,
2

3
=' zz  

 ,
2

3
= ll             (62) 

where again the prime means derivatives with respect the e-

folding number N = ln(a)  and we are also using the function 

= 2x2 + z2 . From the definitions (61) it follows the 

constraints  

 ,
1

=
1

3

2
=

2

2

22

2

022

H

m

H

V
vu    (63) 

and the Friedmann equation (43) written in this variables 

reads  

 1.==
2222

lzuxF +++     (64) 

However, equation (64) is actually not real constraint, 

since they are inhered in the dynamical equations (62) (see 

appendix A equation (115). Furthermore, constraint (63) is 

also inhered in the dynamical system, observe that if we 

multiply the second equation of (62) by 1 / 2u  and the third 

by 1 / 2v  and rest each other, we obtain  

 .
2

3
= HH        (65) 

But this relation follows directly from the field equations 

(38). This means that system (62) is compatible with the 

constraint (63). Using this constraint (63) in the dynamical 

system (62), we obtain 

 ,
2

3
3=

2

22
x

H

m
uuxx ++  

 ,
2

3
=

2

22
u

H

m
uxu ++  

 ( ) ,
2

3
= zz  

 .
2

3
= ll             (66) 

we notice, that occurs the same situation as 
2

 potential. 

Introducing again the variable s = m /H  with its dynamical 

equation.  

 ( ) ,
1

=

2
1

1
1

0

n

n

s
nmts     (67) 

we obtain  

 ,
2

3
3=

222
xsuuxx ++  

 ,
2

3
=

222
usuxu ++  

 ( ) ,
2

3
=' zz  

 ,
2

3
= ll  

 .
1

=

2
1

0

n

s
ss            (68) 

The density parameters are the same as we have defined 

at (104). We solve numerically (68) with the same initial 

conditions like the system of equations (53) and 20 . 

The plots are shown in Fig. (7).  

 

Fig. (7). Evolution of the density parameters for the system (68), 
where the scalar field potential is given by the equation (60). 

The plot shows the dynamical evolution for a Universe 

with SFDM with the potential (53), notice that is equivalent 

to potential (60). 

Finally, we use the same dynamical system formalism for 

the case of CDM in order to compare with SFDM. We 

consider that it background Universe is composed by 

baryons, radiation, neutrinos, dark matter and cosmological 

constant with an equation of state as perfect fluid. We solve 

numerically this system and in general terms the dynamic of 

both scalar potential is indistinguishable of the standard 

model. This is an important goal of this paper. 

The next step is to compute the age of the Universe using 

our model. The age equation can be written as  

 ,
1

= dN
H

t
N

o
N

o
       (69) 
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using the definition for l  from (41) or (61) eq. (61) reduces 

to  

,
3

= dNlt
N

o
N

o
       (70) 

we compute (70) and obtain that 
 
to;13.77  Gyr. This result is 

in agreement with the cosmological observations from 

WMAP+BAO+SN which estimate to =13.73± 0.12  Gyr and 

therefore Ho = 70.1±1.3  km/s/Mpc. Furthermore, in Fig. 

(7), we see that scale factor of decoupling is  a :10 3
, this 

means a redshift  z :1000 . At this redshift, the neutrinos 

made up  :12%  of the Universe. On the other hand, WMAP 

cosmological observations show that when the Universe was 

only 380,000 years old, neutrinos permeate the Universe 

within 10%  of its total energy density. Thus, SFDM is in 

concordance within the measurements of WMAP. This result 

shows that scalar field is a plausible candidate for dark 

matter because it behave like cold dark matter. 

5. QUANTUM EFFECTS OF THE SCALAR FIELD 

SFDM particles have a mass of 
 
mSFDM :10 22

eV, with 

this mass the quantum mechanics effects are important at the 

scale of 
 
:1 /mSFDM :1pc. In this section we show that if the 

SFDM are the dark matter, quantum effects of the ultralight 

particles can explain a constant density on the background of 

the universe and can be interpreted as a cosmological 

constant. 

In order to do so, we write the Schrödinger equation in its 

hydrodynamical version,   

 ( ) 0=v
t
+             (71a) 

 ( ) U
m

Fvv
t

v
Q+ =

)(
   (71b) 

Equations (71) are equivalent to the Schrödinger equation 

if the wave function  is decomposed as = exp(iS) , 

being  v = h /m S . The main difference of equations (71) 

and the hydrodynamical equations is the quantum force 

FQ = UQ , which is derivable from the quantum potential  

 

 

UQ =
h
2

2m2

1 2( )       (72) 

UQ  is interpreted as the quantum mechanical contribution to 

the hydrodynamical equations. If we drop out the quantum 

force FQ  in equation (71), these equations are the classical 

equations for a hydrodynamical system. Of course, the 

universe is quantum mechanical but the contribution of FQ  

to the hydrodynamical equations is very small due to the 

factor 

 

h
2

2m2
, which make this force very small for a mass m  

of a normal classical object. But for an SFDM field of mass 

 
mSFDM :10 22

eV this term can not be neglected anymore. 

Of course the SFDM field, if it is the dark matter in the 

universe, is not longer uniformly distributed in the universe. 

The dark matter forms clusters of galaxies, galaxies, etc. We 

can estimate the density or the square root of the density in 

the following way. 

We analyse the behaviour of the quantum density  in a 

short time variation, in a region of the universe where the 

space-time is almost flat, if we decompose the scalar field as 

= exp( imt)+ c.c. , the Klein-Gordon equation reduces 

to  

 0=
22

2

2

22

2

++
m

i
cm

h
&h&&

h
   (73) 

In terms of the decomposition = exp(iS) , we can 

further decompose = k exp(ik t) , and neglect for the 

moment the variation of S , we arrive at  

 0=
222

+
h

mk
k

kk
   (74) 

On the other hand, the distribution of the dark matter can 

be modeled as consentrations of matter, for example as Dirac 

delta functions distributions 
 

: (r r0 ) . But, if we accept 

the cosmological principle, the dark matter clumps are 

homogeneously distributed in the universe, one can suppose 

that if there exists a galaxies in 
0

r , it should exist another 

galaxy in more of less 
0

r , thus we can put these ideas 

together if we write that 

 
: (r r0 )+ (r + r0 ) = 2| r0 | (r

2 r0
2 ) . It is well known 

that the delta function can be written as 

(ar2 1) = lim
l

l Jl (alr
2 ) , where Jl  are the Bessel 

functions. In other words, it is convenient to expand the 

density distribution of the galaxies as  

 =
l m

Ulm

J
l+
1

2

(kr2 )

r
Ym

l ( , )    (75) 

where k  is the wave number of the minimal scale of 

fluctuations of the dark matter with units of L 2
 and Ym

l
 are 

the spherical harmonic functions with m = 2l +
1

2
. Of course, 

any function can be expanded as equation (75), because the 

Bessel and the spherical harmonic functions are basis of the 
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functions space. Now we are able to calculate the quantum 

potential UQ , we obtain  

 

 

UQ =
h
2

2m2

1 2( ) =
h
2

2m2
k 2 r2   (76) 

UQ  is the potential that effectively feel the galaxies in a 

cluster due to the quantum effects of the SFDM. The 

effective density can be obtained with the Poisson equation 
2UQ = 4 G eff  using (76) as a source of the density. We 

get  

 
2

22
1

3=

DM

eff
mG

k h
     (77) 

The first result we observe here is that the effective 

density is constant, it does not depend on the position. This 

is a remarkable result, because we see that quantum effects 

cannot be neglected for masses of the order of the SFDM 

mass and its effective density is constant. Nevertheless, this 

effective density does not have to be of the size of something 

well know. 

We set the observed values of the different quantities in 

this formulae. The smallest structure we observe in the 

galaxies are the dwarf and satelites galaxies, with a size of ~ 

10 kpc, thus 

 

k ~ (
2

10
)2

1

kpc2
~ (6.4 10 37GeV)2 ; 

 
mSFDM ~10 22

eV, we obtain that  

 

eff ~ 6.4 10 37GeV( )
4 mPl

2

mDM
2

~ 4 10 47GeV4
  (78) 

 This is a real surprise, the effective density due to the 

quantum effects of the a particle like the SFDM is of the 

order of the critical density of the universe 

crit . = 8.099h
210 47

GeV
4

, that means, it is possible that the 

constant energy we feel in the universe is due quantum 

effects of small particles of dark matter. 

In this section we have shown that, using very simple 

calculations, that a particle of a small mass has quantum 

effects at classical scales. This is not a surprise, because we 

know that the quantum effects of a particle are of the order 

of the de Broglie length, inverse to the mass of the particle 

 :1 /m . The first remarkable result is that with very simple 

arguments but using the hydrodynamical version of the 

Schrödinger equation, we can see that the effective density 

of the quantum effects are constant. The great surprise is that 

the amount of this density is just of the order of magnitude of 

the critical density of the universe, which coincide almost 

with the amount of dark energy in the universe. 

Thus, there is no contribution of the cosmological 

constant as long as the quantum density  is homogeneous. 

But, it is important when the structure of the universe begins 

to form. This is a very elegant way to solve the coincidence 

problem. 

Of course, the fact that we do not see the supersymmetric 

particles in the detectors is not an argument to discard them 

as dark matter. The SFDM is also a very good candidate to 

be the dark matter, fortunately without the problems of the 

WIMPs, like the cuspy central densities in galaxies, the 

excess of substructure, etc. (see for example [30, 31]. 

However, if the SFDM remains as candidate of the dark 

matter of the universe, we have to take into account the 

quantum effects of this particle in the background, they 

cannot be neglected. 

6. PERTURBATION THEORY 

In this section we compute the growth of the 

overdensities in the regime when the density contrast  =1 . 

Now a days it is known that our Universe in not exactly 

isotropic and spatially homogeneous like the FLRW 

equations describe. There exist small deviations from this 

model, and if we believe this deviations are small enough, 

they can be treated by Linear Perturbation Theory. 

We consider a flat, homogeneous and isotropic 

background Universe,were we use the Friedmann-Lemaitre-

Robertson-Walker (FLRW) metric with scale factor a(t)  

and our background Universe is composed by SFDM ( ). 

The equations that describe this Universe are (we set 

 c = h =1 ). 

We begin by recalling the basic background equations. 

From the energy-momentum tensor we have the energy 

density and the pressure; 

 +
0

2

0

0

0

2

1
== VT &     (79) 

 
i

j

i

j VpT
0

2

0

2

1
== &     (80) 

Einstein's equations give us the Friedmann equations. 

 8 G = 3H 2
       (81) 

 
 
4 G( + 3p) = 3 &H     (82) 

So, from the above equations we can notice than when 

talking about a FLRW background, the only quantities at 

zero order are the energy density ,  pressure p and 

volumetric expansion 3H.Finally we have also to remember 

that SF are gobernated by Klein-Gordon's equation, which 

gives the evolution for the SF in a homogeneous expanding 

Universe, 

 0=,3
00
++ VH &&&     (83) 

From the theory above we have the basic equations for 

treating with the non-perturbed space of FLRW.In this 
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section we consider perturbations to first order in a FLRW 

background, so we can separate the metric tensor as follows: 

 μμμ ggg +(0)=       (84) 

From this we get the most general perturbed line element 

 
i

i
dxdBdads ,2)2((1)(= 222

++  

 )],2)2[(1 ji

ijij dxdxE++       (85) 

Where EandB,,  are the perturbations to the metric 

and ij  is the background metric. 

By definition, a perturbation done on any quantity, is the 

difference between its value in some event in real space-

time, and its corresponding value in the background. We 

separate the different quantities in a background value and a 

perturbation 

 TTT +
0

=        (86) 

where the background value is a time dependent quantity 

only ),(00 tTT  while the perturbations depend on time 

and also on the space coordinates )( i
xTT  where 

].,[=
i

xtx
μ

 

With this considerations at hand we have the perturbed 

Einstein's equations i

j

i

j TGG 8=  for a SF using the 

Newtonian gauge in which only the scalar perturbations are 

taken into account. Another advantage in using this gauge is 

that both potentials  and  are identical. The 

Newtonian gauge is then defined when, B=0 and E=0 Then 

we have 

 0=        (87) 

where equation (87) usually contains a term of anisotropic 

stress on the right hand side. In the case of a SF this term 

vanishes. 

In solving the evolution equations it is common to work 

in Fourier space instead of real space. The beauty of this 

expansion lying in the fact that each Fourier mode 

propagates independently. 

At first order, the change to Fourier components its done 

implicitly.A perturbation  is related to its Fourier 

component k  like: 

),(=)(),(=),( 33 i

i

i

i

ii xikexpkdxikexpktkdxt
k

where ki  is the wave number, and is defined as k = 2 /  

were  is the length scale of the perturbations. 

The equations for the perturbed SF in Fourier space are 

then:   

2

2
2

000 ),(34=4
a

k
VHGG ++ &&&&

kkk

 (88a) 

 HG
k0

4= &&       (88b) 

 ),(4= 2

00 kk
VGH &&&&  

 )3(23 2
HHH +&&&&  

 
i

j
aa

k
|22

2

)(
2

1
)(

2
++         (88c) 

With the generalized Klein-Gordon equation as: 

&&&&&&&
002

2

3,2=),(3 +++++ VV
a

k
H

kkk

  (89) 

This equations describe the evolutions of the 

perturbations, (88a) refers to the energy density, (88b) to the 

gravitational potential and finally (89) refers to the 

perturbations in our scalar field.In all the above equations,the 

perturbed quantities correspond to the perturbations 

amplitude that are found in the k-th mode. 

We now study the qualitative properties of our 

cosmological model, using a dynamical system. To simplify 

our system of equations we introduce the next dimensionless 

variables; 

 ,
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1

=
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where 
2 = 4 G  and = 2x2 + z2 . Using these variables 

(90), we have our autonomous dynamical system with 

respect to n , with n = lna , or,
d

dt
= H

d

dn
,  and ' denotes the 
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derivative with respect to the e-folding n. Taking into 

account the relation 
11

= lx , that fullfills for a scalar field 

,
6

)(3= 21

2

2

1
11 s

x

l

a

k

x

z
Uxxlz  

111
6= lxzl  

,)13(2)6(1)
2

(3= 21

2

1222 xlxUzxzxx +++  

1

22

2

2

2122 421)
2

(3= zsm
a

k
xxUlzz +++    (91) 

 The density contrast is a parameter used in cosmology 

while talking about structure formation to indicate if there 

exists local accumulation in the matter density. It is believed 

that after inflation even the universe was almost 

uniform,some regions were more dense than others with very 

big density contrast. As the universe expanded the 

gravitationally connected masses grew until they began to 

collapse, giving birth to galaxies,clusters, superclusters,etc... 

Is common to define the density contrast as .=  

Taking into account our dimensionless variables we have an 

expression for the density contrast 

 
22

112 ])(2[
=

ux

Uzxlzx

+
    (92) 

From the above equations we can notice that the 

unknown variables in our system are , and .  If we 

know  and ,  can be calculated if we know the 

solutions to our dynamical system. 

We now study the spherical collapse model with the 

SFDM paradigm following the classic formalism [??]. The 

spherical collapse model is a simple, but fundamental tool 

for understanding the growth of fluctuations in the Universe. 

This model considers that the formation of gravitational 

structures in the Universe can be described by the evolution 

of an overdense spherical region, this region decouples from 

the general expansion of the background Universe, slows 

down, reaches a maximum radius (this moment is called  

turn-around) and eventually collapses, virializes and 

stabilizes in a finite region. 

We consider a spherical perturbation in scalar field dark 

matter field with a top-hat density profile. This means that 

the density of dark matter inside this region is spatially 

constant. In agreement with the spherical collapse 

formalism, the equations governing the evolution of this 

region ( cluster) are given by the Raychauduri equation and 

by the Klein-Gordon equation respectively: 

 ),3(
6

=
2

cc

P
R

R
+

&&

     (93) 

 0,=
)(

3
c

c

cc

d

dV

R

R
++ &

&
&&    (94) 

being R  a local scale factor, c , 
c

 and P
c

 are the scalar 

field, the density and the pressure scalar inside cluster 

respectively. We set c = + (Ri , t) , where = (t)  is 

the background scalar field and  is a small 

perturbation.In this case  is independent of the spatial 

coordinates, this means that the perturbation is homogeneous 

inside the cluster (top-hat density profile). Therefore, the 

system of equations for the cluster are 

,
)(

2)(2)24(2
6

= 22
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&&&&

&&
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)(33=
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R

R

R &&
&&

&
&&         (95) 

The radiation field has not been included in the dynamics 

of the cluster because the radiation perturbations have no 

growing modes that affect the structure formation. Also, we 

have not included the baryonic perturbations because we 

assume they are accreated by the gravitational potential of 

collapsed structure of dark matter. On the other hand, the 

perturbations of cosmological constant are not important on 

small scales Following, we can define the non linear density 

contrast of dark matter at any time  

 ,/=)/(
c

   (96) 

where 
c

 is given by 

 ,
)(

2

1
= 2

++
d

dV
&&&    (97) 

in addition, we define P  as  

 .
)(

2

1
= 2

+
d

dV
P &&&    (98) 

We suppose that the cluster evolves with the background 

Universe, however due to overdense of the cluster, it 

decouples slowing down of the general expansion of the 

background Universe. Following, the cluster reaches a point 

of maximum radius 
max

R , called  turn-around (ta). After, 

the cluster continues its evolution and it begins to collapse to 

a singularity, however this is not a physical behavior because 

during the collapse our assumption of radial infall stops 

being worth. Instead of this, we suppose that the cluster 

collapses and dynamical equilibrium is reached. The radius 

of the system reaches a finite size and a bound structure is 

formed.In order to compute the virial radius 
vir

R  of the 

bound structure of SFDM we study two cases. First we 

assume energy conservation between turn-around and 

virialization time. In this case, the equilibrium conditions 

reads 
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virTottaTot

EE |=|  

 
virta

VTV |)(=| +         (99) 

where T  is the kinetic energy and V  is the potential energy 

of the scalar field. 

Now, we compute the potential energy for the scalar 

field.In order to do so, we calculate the gravitational 

potential  for any cosmological component in a spherical 

shell as [32] 
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3

()3(1
4

=)(
2

2
2

r
Rwr +    (100) 

Obtaining dimensionless evolutions equations for the 

background universe and the cluster. In order to do, we 

define new dimensionless variable given by: 
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we take the scalar potential V ( ) =
1

2
m2 2 , the evolution 

equations for the background are transformed into   

 xsuxx +
2

3
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where the function  reads 
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The variable s is a control parameter for the dynamics of 

H  whose exponent k 0 . With these variables,the density 

parameters 
i
 for each component i  can be written as 
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With these new variables, we can write the equation of 

state of the scalar field as 

 >>=<<

22

DM

ux
w       (105) 

Following, the system of equations for the cluster with 

the square scalar potential are given by 

,22)24(2
6

= 22222
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The above system of equations (106) can be rewritten as 

a set of four coupled first-order differential equations using 

the next dimensionless variables: 

.
6

,
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,
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m
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H
y

m

R
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&&

   (107) 

Finally the dimensionless system for the cluster is given 

by  

 ,= srR  

 ),2242(= 222
uvuyxyx

s

R
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2

3
31)(3= ysy
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r
svs

R

r
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2

3
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The non linear density contrast can be written with the 

background and cluster dimensionless variables as  

 

DM

uvy + 2
=

2

        (109) 

7. NUMERICAL RESULTS 

In this section we analyse both, the physics and dynamics 

of the results thrown by the dynamical system.We solve the 

system of equation of the background numerically(6) with a 
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four order Adams-Bashforth-Moulton (ABM) method. We 

take as initial conditions the best estimations from 5-year 

WMAP values to 
(0) = 0.721 , DM

(0) = 0.233 , 

b
(0) = 0.0454 , r

(0) = 0.0004 , 
(0) = 0.0002  and the 

exponent k = 0 , where the superscript (0)  is todays value of 

the density parameters. Fig. (1) shows the numerical 

evolution of the density parameters with our model. At the 

beginning,the radiation dominates the evolution of the 

Universe. After,the Universe has an epoch where the 

radiation is equal to dark matter ( aeq ), then dark matter 

begins to dominate the evolution. The recombination era in 

SFDM model is at  z :1000 . Finally, the cosmological 

constant dominates the dynamics of the Universe. The 

behavior is exactly the same as in the CDM model. 

 

Fig. (8). Densities. We assume the Universe contains a real scalar 

field  as dark matter,radiation,neutrinos ,baryons b and a 

cosmological constant  as dark energy. 

Once we have solved the evolution of the background,we 

can now obtain a numerical solution for the general system 

of equations. Firstly we study the evolution of the 

gravitational potential  that perturbs the metric, as well as 

the perturbations over the scalar field that appear in Klein-

Gordon's equation. 

As initial conditions over  we notice that in the matter 

dominant era ( z :1000 ),the linearized Einstein equations can 

be solved analytically to obtain a solution of the form 

t 8/3  which implies that 
 
&  takes an approximate value of 

zero during this epoch for all the values of k, i.e,
 
& = 0.  

For the conditions over the scalar field the idea was to 

suppose that during this epoch, the perturbations were very 

small compared to other quantities like , in fact in the 

code the best estimation for the gravitational potential was 

=1.0x10 4.  This implies that initially we can treat the 

scalar field as homogeneous.From this,we proposed 

 
and & = 0.  

 

Fig. (9). Evolution of the gravitational potential. 

From the figure we can see that the gravitational potential 

grows for a 1x10 3
, meaning that the fluctuations relate 

directly to fluctuations in the mass. As the perturbations 

grow,the gravitational potential grows,making it easier for 

gravitational collapse to occur.Now, if we want to study the 

power spectrum at large scales, we have to remember that 

this is valid when we work in the range 

0.015hMpc 1 < k <1hMpc 1
. In our system we took 

k 0.3hMpc 1
. 

Finally as it was mentioned in [30] if we hope for this 

scalar field to form a BEC (Bose-Einstein Condensate),we 

then have an upper limit for the mass m  of the scalar field, 

m <10 17 eV . We took 1x10 23eV .  

 

Fig. (10). Evolution of the perturbations over the scalar field. 

For the perturbations on the scalar field we see that 

initially the perturbations to  are nearly zero. Once it 

begins to dominate,the perturbations grow to scales not 

greater than 1x10 38
 meaning that the perturbations on the 

scalar field  can be neglected at first order, because of 

being so small without affecting in great way the evolution 

of other quantities. 
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Now we have all the necessary ingredients to analyze one 

of the principal quantities when talking about structure 

formation. We analyze the density contrast, given by 

equation (92). In the denominator we can appreciate the total 

density of dark matter 
22

ux + . The density profiles give us 

information about the mass distribution there is, which is 

directly related to the structure formation theory, which is 

one our main objectives. 

In the figure we can see that with the initial conditions 

imposed in our code at the beginning, there is a fast growing 

in our characteristic scale, for galaxy clustering.Recently 

observations have taken us to very early epochs in the origin 

of the Universe, and have made us think that structure had 

already been formed,corresponding to z 7 . 

Its clear from the figure that at z <
~ 

10 there already 

existed well defined perturbations in the energy density, 

which can contribute to the early formation of structure. 

Then, if clusters could be formed as early as this z's, this 

would imply that 
2

 as a model for dark matter could give 

an explanation for the characteristic masses that are being 

observed. 

The density contrast  evolves lineally,except in rare 

regions were 1  and gravitational collapse occurs.Then 

implotion of our massive object occurs under the influence 

of a gravitational force.When this occurs we take the 

following initial conditions, in the past at ai =10
6
 and the 

values for the kinetic and potential term of the scalar field 

obtained in the previous numerical run for the background. 

For the initial radius of the cluster we take R = ai , =r  and 

xy = . 

Fig. (12) plots R  as functions of a . Initially, R  evolves 

as the background however, at the time when  
&R = 0 , R  

increases to a maximus, this epoch of maximus radius is 

called the turn-around point. In this case, the turn around 

point is when 
 
ata : 3.510 4

, this mean a  z : 2800 . After, R  

begins to decrease until it collapses into a singularity. This 

predicted singularity is not physical because we assumed that 

dark matter is spherically distributed and collapses 

radially.In order to avoid this problem, we consider that the 

region collapses to a finite region and virializes according to 

the virial theorem.The value for 
 ta : 0.00 . This values is 

very small when we compare it with the CDM paradigm, 

where CDM |ta= 4.5 . The small value for  at turn-around 

suggest that the structure formation in our model is earlier 

than standard model. This means that the overdensities 

collapse faster and therefore we must have dark halos at 

early times.This is a prediction of scalar field dark matter 

and BEC. This result can be controversial however, there is 

evidence that suggests that dark halos could be formed at 

high redshift,some authors suggest that the downsizing in 

radiogalaxies is an sign of anti bottom up paradigm. 

CONCLUSIONS 

SFDM has provided to be an alternative model for the 

dark matter nature of the Universe. We have shown that the 

scalar field with a ultralight mass condensates very early in 

the Universe and generically form BEC's with a density 

profile which is very similar as that of the CDM model, but 

with a almost flat central density profile, as it seems to be in 

LSB and dwarf galaxies. This fact can be a crucial difference 

between both models. If the flat central density is no 

confirmed in galaxies, we can rule out the SFDM model, but 

if this observation is confirmed, this can be a point in favour 

of the SFDM model. We also show that the 1 / 2m2 2
 

potential and the V0[cosh( ) 1]  model are in fact the 

same. They have the same predictions and a spurious 

variable which determine the behavior of the model, given 

naturally the right expected cosmology and the same 

cosmology as the CDM model. This implies that the 

differences between both models, the CDM and SFDM ones, 

is in the non linear regime of perturbations, in the way they 

form galaxies and galaxy clusters, specially in the centre of 

galaxies where the SFDM model predicts a flat density 

 

Fig. (11). Evolution of the density contrast  for 

MpchhMpck 11
30=0.3= . 

 

Fig. (12). Evolution of the radius of the cluster universe. Observe 

how the radius reaches a turn-around point and eventually 

collapses. The singularity is not real because the region can be 

formed in a virialized region. 
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profile. If the existence of supersymmetry is confirmed, the 

DM supersymmetric particles are observed by the detectors 

and they have the right mass, DM density and coupling 

constant, the SFDM can be ruled out. But, if these 

observations are not confirmed, the SFDM is an excellent 

alternative candidate to be the nature of the DM of the 

Universe. 

We have investigated the evolution of the perturbations 

in the scalar field  around the universe.The cosmological 

limits here imposed are model dependent and therefore relay 

on the assumption of our theoretical model of structure 

that,even if in agreement with current data,may need further 

key ingredients and analysis to explain mysteries and 

inconsistencies such as dark energy. 

With this important facts at hand, we conclude that the 

spectrums here presented for the different perturbations, 

depend deeply on what we assume for our initial conditions 

of the matter that now dominate the universe.we also studied 

the model of spherical collapse with an alternative model of 

dark matter, in this model the dark matter is a scalar field, we 

have shown that the collapse of an overdense region of scalar 

field dark matter collapses and virializes in a bound 

structure, but the formed structure is not consistent with real 

astrophysical parameters. However, further laboratory 

experiments will certainly test the cosmological results. 
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APPENDIX 

DYNAMICAL SYSTEM REVIEW 

The theory of dynamical systems is used in the study of 

physical systems that evolve over time. It is assumed that the 

physical state of the system to an instant of time t  is 

described by an element x  of a space phase X , which can 

be of finite or infinite dimension. The evolution of the 

system is represented by a differential autonomous equation 

in X, written symbolically as 

 ,),(= X
dt

d
xxf

x
     (110) 

where f :X X . 

The main step to get qualitative information on solutions 

is studying the flow of the equation in the vicinity of their 

critical points based on the Hartman-Grobman theorem, 

namely the study of its stability.  

The essential idea is firstly find the fixed (or critical) 

points of the equation (110) which are given by 0=)(
c

xf . 

Then linearized the differential equation at each critical 

point, that is, expanding about these points 
 

r
x =

r
xc +

r
x  

which yields to  

  
r
x =M

r
x.  

Therefore the general solutions for the linear perturbation 

evolution can be written as  

  

r
x =

r
x0e

N t
 

where  N  is the matrix composed of the eignvalues mi  

associated to  M . 

The stability of the system (110) depends on the values 

of the eigenvalues: if the real part of all eigenvalues is 

negative, the fixed point is asymptotically stable, i.e., an 

attractor. All eigenvalues with positive real part make the 

fixed point asymptotically unstable (commonly called as 

source or repealer). 

On the other hand, a saddle point happens when there 

exists a combinations of stable and unstable points. For a 

extended review seen, [33].  

Then, we give a procedure for transforming equations 

(38) and (39), with an arbitrary potential, into a dynamical 

system. We define the dimensionless variables  
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Using the definitions given in (41), the evolution 

equations (38) transform into an autonomous system   
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3
= 22
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This last equation (112d) can be written also as  

 ss
2

3
=        (113) 

for the variable s = cte. /H , and determines the evolution of 

the horizon. Here a prime denotes a derivative with respect 

to the e-folding number N = ln(a) . The Friedmann equation 

(41) transforms into a constraint equation  

 1.==
222

zuxF ++     (114) 
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With these variables, the SFDM density can be written as  

,=
22

ux
DM

+  

Observe that if we derive (114) with respect to N  and 

substitute system (112) into this, we obtain  

1)(3= FF      (115) 

indicating that constraint (114) is compatible with system 

(112) for all scalar field potentials if the Friedmann equation 

is fulfilled. 

Now we show that system (112) together with constraint 

(114) is completely integrable. To integrate system (112), 

first observe that we can substitute 3 / 2  from equation 

(113) into the rest of the equations. With this substitution 

equation (112c) can be integrated in terms of s  as  

 )
2

3
(exp= (0)

Nsz      (116) 

where 
(0)

 is an integrations constant. Now we multiply 

(112a) by x2  and (112b) by 2u  and sum both equations. 

We obtain  

 )()(ln26=)( 22222
uxsxux +++   (117) 

Now, we use constraint (114) and equation (116) into 

equation (117) to obtain  

)3(exp3)(ln2=6 (0)22
Nssx   (118) 

But now we have to integrate equation (113) with all 

these results. If we substitute (118) and (116) into (112d) or 

(113) we obtain 0 = 0 , that means s  is an arbitrary variable 

and can be cast into the system as a control parameter. In 

other words, equations (112d) and (113) are actually 

identities, and not equations. 

Thus, we set the variable s  from system (112) arbitrary 

in the system (112a), (112b) and (112c). 
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