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1. INTRODUCTION 

The recent decades have brought a tremendous rise in 
computer simulations, in nearly every area of science and 
engineering. This is partly due to the development of 
(Beowulf) cluster computing that involves putting together 
“off-the-shelf” computing units (for example, commodity 
desktop computers) into a configuration that would achieve 
the same level of performance, or even outperform, 
traditional supercomputers at a fraction of the cost. 
Computational science has benefited and expanded 
tremendously in the last decade due to rapid improvements 
in CPU performance ( Moore's Law) and major price drops 
due to mass production and intense competition. 

However, a few years ago the computer industry hit a 
serious frequency wall, implying that increasing the 
processor's clock-rate for gains in performance could not be 
done indefinitely, due to rapid increases in power 
consumption and heat generation ( power wall). This led all 
the major processor manufacturers (such as Intel and AMD) 
toward multi-core processor designs. Today, nearly all 
commodity desktop and laptop processors are multi-core 
processors i. e. they combine two or more independent 
computing cores on a single chip. Thus, manufacturers today 
continue to pack more power in a processor, even though 
their clock-frequencies have not risen (and have stabilized at 
around 3 GHz). It is expected that this approach would work 
well for the next few years, but both Intel and AMD 
anticipate that even this approach will not scale well beyond 
8 or 16 cores. 

On the other hand, the overall performance of other 
computing technologies (e.g. graphics cards, gaming 
consoles, etc.) has continued to increase at a rapid rate, thus  
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making general-purpose computing on such devices a 

tantalizing possibility. Both Compute Unified Device 

Architecture (CUDA) and Cell Broadband Engine 

Architecture (CBEA) are new hardware architectures 

designed to provide high performance and scaling for 

multiple hardware generations. CUDA is NVIDIA's general-

purpose software development system for graphics 

processing units (GPUs) and offers the programmability of 

their GPUs in the ubiquitous C programming language in 

conjunction with a set of libraries for memory management. 

The Cell Broadband Engine (CBE), which is the first 

incarnation of the CBEA, was designed by a collaboration 

between Sony, Toshiba, and IBM (so-called STI). The CBE 

was originally intended to be used in gaming consoles 

(namely Sony's Playstation 3) and consumer electronics 

devices, but the CBEA itself was not solely designed for this 

purpose and has been used in areas such as high-performance 

computing as well. 

Both CUDA and CBEA are not the only new architecture 

approaches to overcome a decline in overall performance 

gains, but these are expected to be the ones with the widest 

distribution. CUDA is available for all NVIDIA GPUs based 

up on the G80 architecture and its successors, therefore all 

currently sold NVIDIA GPUs support CUDA. Sony has sold 

over 20 million Playstation 3 game consoles, each of which 

has a CBE main processor. Moreover, currently second to 

the fastest and the original peta-scale supercomputer is the 

IBM Roadrunner at LANL, which is a hybrid system, built 

using nearly 13,000 Cell processors and 6,500 AMD 

Opteron processors. Based on these successes, an industry 

standard -- OpenCL -- has been proposed by Apple and 

others, that would allow for computing across a variety of 

different hardware: CPU, GPU, CBE, etc. We consider the 

current distribution of this hardware an important factor for 

the future success of its underlying concept and 

programming model, and therefore we decided to work with 

these two architectures. 
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In this article, we will compare the current state of both 
CUDA and the CBEA by modifying the Einstein@Home 
client application, to enable it to take advantage of these 
different hardware architectures. Einstein@Home [1] is a 
distributed computing project, that uses the computing power 
volunteered by end users running its client application, to 
perform data-analysis tasks for various gravitational-wave 
observatories such as LIGO and GEO. The computation 
performed by this client application can be executed in a 
data-parallel fashion, which suits both CUDA and the CBEA 
very well. 

This article is organized as follows. First, Section 2 gives 
an overview of the Einstein@Home project and its client 
application. The next two sections, introduce the architecture 
and the software development system of the Cell Broadband 
Engine (Section 4) and our experiences with the 
development of the Einstein@Home client using it (Section 
5). The following two sections describe CUDA (Section 6) 
and our experiences with that architecture (Section 7). In 
Section 8 we compare both implementations and outline the 
benefits and drawbacks of CUDA and the CBE and their 
respective software development systems. Section 9 
discusses related work, while Section 10 provides a 
summary of our work. 

2. EINSTEIN@HOME 

 Gravitational wave observatories are currently being 
built all over the world: LIGO in the United States, 
GEO/Virgo in Europe and TAMA in Japan. These will open 
a new window onto the Universe by enabling scientists to 
make astronomical observations using a new and 
significantly better medium -- gravitational waves (GWs), in 
addition to electromagnetic waves (light). These waves were 
predicted by Einstein's theory of General Relativity, but have 
not been directly observed because the required technology 
was simply not advanced enough, until very recently. 
Indirect evidence validating their existence has been 
available for some time i. e. the observed decay rate of the 
compact neutron star binary system PSR1913+16  [2] 
matches the theoretical predictions based on GW emission (a 
Nobel prize winning discovery!). 

Using GWs as a medium for astronomical observation, 
alongside traditional approaches (light, neutrinos, etc.) holds 
tremendous promise not only in advancing our 
understanding of gravitational physics, compact 
astrophysical objects (like black holes and neutron stars) but 
also the entire Universe as a whole. The main reason why 
GWs are an excellent medium for doing astronomy, is that 
these waves interact extremely weakly with matter. This 
means that these waves can travel long distances, and even 
pass through large quantities of dust, gas, etc. without being 
significantly affected. Thus, they are able to transport 
valuable information over very long distances with little loss 
-- the key requirement for good astronomical observation. 
However, this very reason that makes them so good as an 
observational medium, also makes them notoriously hard to 
generate and detect. To produce a strong gravitational wave, 
one needs to move massive objects at very high accelerations 
-- collisions between compact astrophysical objects are 
therefore, the ideal candidates. But even for the scenario of 
two solar-mass black holes colliding at a distance of (say) 

100 Mpc away, the ``strain'' caused by the emitted GW that 
we would need to measure on Earth for a successful 
detection is of the order of 10 21

. In other words, one would 
need to be able to detect fluctuations in length that are less 
than the size of a nucleus of an atom, over the scale of 
kilometers! This is precisely why extremely sophisticated 
technologies (see [3] for a recent review) have to be 
developed to be able to make such a detection a reality. Over 
the next few years, GWs will be detected and a wealth of 
new astronomical data will begin pouring in [4, 5]. That will 
allow us to not only learn more about black holes and 
neutron stars, but also test our theories (for example, General 
Relativity) in extremely strong-field regimes where they 
have never been tested before. Moreover, this would even 
help to rule out or establish, other alternative theories of 
gravitation [6]. For all these reasons, the scientific 
community worldwide, has invested a tremendous amount of 
time, energy and resources in developing the observatories, 
theory, and data analysis techniques necessary to make GW 
astronomy a possibly in this decade. 

These observatories generate data at the rate of several 
tens of GBs per day and they require highly computationally 
intensive data-analysis (mainly due to the fact that the 
signal-to-noise ratio in the data streams is very low). 
Einstein@Home is a BOINC [7] based, public distributed 
computing project that offloads the data-analysis associated 
to these observatories to volunteers worldwide. The project 
currently (since 2005) has over 200,000 participants and 
over 800,000 computers involved, with a strong and 
sustained growth pattern. The goal of Einstein@Home is 
finding gravitational waves emitted from neutron stars ( 
pulsars), by running a brute force search for different 
waveforms in an extremely large data-set. 

We consider the Einstein@Home client a meaningful test 
application for our comparison of CUDA and the CBE since 
from a theoretical viewpoint, its parallelization is quite 
straightforward. Furthermore, the application is very 
compute intensive, therefore we can expect a high 
performance gain through parallelization. The computation 
of the application can be roughly divided into two parts -- 
the so-called F-Statistics computation, and a Hough-
transformation. We will only concentrate on the F-Statistics 
computation in this work, and provide below a brief 
overview of the algorithm and its data dependencies; a 
detailed discussion can be found in [8]. 

Listing 2 provides an overview of the F-Statistics code. 
The code uses for each whenever the loop can be carried out 
in parallel with no or minimal changes to the loop body. + is 
used for all commutative calculations. The parameters of a 
function denote all the values a function depends on, 
however we use ``...'' as a reference to all parameters passed 
to the called function. The F-Statistics code consist of 
multiple nested loops, each looping through a different part 
of the input data set, namely: a frequency band, all used 
detectors for the observing the gravitational wave and an 
SFT of each signal. 

T ComputeFStatFreqBand(...)  { 

T result[];  

int i = 0;  
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for each (frequency in frequency_band(...) )  

result[i++]= ComputeFStat(..., frequency);  

return result; 

} 

T ComputeFStat(...) { 

T result;  

for each (detector in detectors)  

result += ComputeFaFb(..., detector);  

return result; 

} 

T ComputeFaFb(...) { 

T result; 

for each (SFT in SFTs(frequency))  

result += some_calculations(..., SFT);  

return normalized(result);   

} 

In this article we will indicate the current state of the 
calculation, as the presently computed upon SFT, detector 
and frequency -- or more formally speaking: the current state 
is the tuple of ( frequency,detector, signal) using the variable 
names used in the Listing 2. 

For simplicity, Listing 2 does not include any data 
structures for storing data. Here we provide a very brief 
introduction (a more detailed overview can again be found in 
[8]). The data structures used by Einstein@Home are based 
on a deep hierarchy. For example, the data structure that is 
used to store the SFT data for one frequency, is called 
MultiSFT. MultiSFT has a pointer to a data array, which 
stores pointers to the SFT data for every detector. The SFT 
data is built of two levels, thus to finally access the data one 
needs code similar to the one shown in Listing 2. The 
additional two layers within the SFT data are a consequence 
of how the data is stored and processed within the 
some_calculations function. We will not go into more detail 
here, since the rest consists of calculations that must be 
executed sequentially and are therefore not important for the 
parallelization. 

[caption=Pseudo code showing the SFT data structure] 
MultiSFT x;  

float data = x. data [detector]-> data [SFT]-> data [i]-> 
data [j];  

3. TEST CASES 

 The various measurements presented in this article were 
done with two different kinds of data-sets that not only differ 
in the overall runtime, but also in their memory requirements 
and performance characteristics. The small test case is based 
on a data-set used to check if the Einstein@Home client 
application itself is producing correct results. It uses a small 
number of frequencies in contrast to a full Einstein@Home 
work unit. In the small data set case, the F-Statistics takes 
nearly 90% of the overall runtime, while in the full work unit 
case its share is nearly 50%. A full work unit consists of 
multiple, so-called sky points. The calculation done for one 

sky point consists of both the F-Statistics and the Hough 
transformation and the runtime required to compute one sky 
point is nearly identical to the one required for the other sky 
points. For this work, we therefore do not measure the 
runtime of a full work unit, but only measure the time 
required to calculate one sky point. 

4. CELL BROADBAND ENGINE 

The CBE is a completely redesigned processor, that was 

developed collaboratively by Sony, IBM and Toshiba mainly 

for multimedia applications. This processor has a general 

purpose (PowerPC) CPU, called the PPE (that can run 2 

software threads simultaneously) and 8 special-purpose 

compute engines, called SPEs available for raw numerical 

computation. Each SPE can perform vector operations, 

which implies that it can compute on multiple data, in a 

single instruction (SIMD). All these compute elements are 

connected to each other through a high-speed interconnect 

bus (EIB). Note that the design of this processor is very 

different from traditional multi-core processors. In a certain 

sense, the CBE's design is somewhere between a general-

purpose CPU and a specialized GPU (as described in Section 

6). It can therefore be considered as a hybrid technology, 

having the advantages of both these architectures. The 

outcome of this distinctive design is that a single, 3.2 GHz 

(original - 2006/2007) CBE has a peak performance of over 

200 GFLOPS in single-precision floating point computation, 

and 15 GFLOPS in double-precision. It should be noted that 

the current (2008) release of the CBE, called the 

PowerXCell, has design improvements that bring the double-
precision performance up to 100 GFLOPS. 

We will not attempt to go into much more detail 
concerning the CBE's design here, rather we will simply 
point out one unique feature that addresses the issue of the 
memory wall that is common to all current computer 
hardware. The memory wall refers to the large (and 
increasing) gap between processor and memory 
performance, causing the slower memory speeds to become a 
significant bottleneck. The current state-of-the-art approach 
to combat this issue has been to include large cache sizes 
(several MBs) on the processor chip. However, this takes 
away valuable space (for compute elements) on the chip, and 
thus may result in only a marginal, overall performance 
increase. A key feature of the the CBE is its unique ability to 
interleave computation and data access. Therefore, it is 
possible for the programmer to overlap memory access and 
the actual computation (``double buffering''), in order to hide 
the time it takes to access memory. It is this mechanism that 
allows the CBE to break through the memory wall and 
perform very efficiently, even for computations that have a 
large memory footprint. It is also partly for this reason, that 
the CBE can reach a ``real world'' application performance 
that is nearly 100% of its theoretical peak performance [9]. 
The parallel programming model on CBEA allows for the 
use of SPEs for performing different tasks in a workflow 
(``task parallel'' model) or performing the same task on 
different data (``data parallel'' model). We use the data 
parallel model in our implementations. 

One (software) challenge introduced by this new design, 

is that the programmer has to explicitly manage the memory 

transfer between the PPE and the SPEs. The PPE and SPEs 
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are equipped with a DMA engine -- a mechanism that 

enables data transfer to and from main memory and each 

other. Now, the PPE can access main memory directly, but 

the SPEs can only directly access their own, rather limited 

(256KB) local store. This poses a challenge for some 

applications, including the Einstein@Home client 

application that we are considering in this article. However, 

compilers (IBM XLC/C++) are now available that enable a 

software caching mechanism that allow for the use of the 

SPE local store as a conventional cache, thus negating the 

need of transferring data manually from main memory. 

Another important mechanism that allows communication 

between the the different elements (PPE, SPEs) of the CBE 

is the use of mailboxes. These are special purpose registers 

that can be used for uni-directional communication. Each 

SPE has three mailboxes -- two outbound, that can hold only 

a single entry, and one inbound, that can hold four entries. 

These are typically used for synchronizing the computation 

across the SPEs and the PPE, and that is primarily how we 

made use of these registers as well. Details on our specific 

use of these various aspects of the CBE for the 

Einstein@Home client application appear next section of this 
article. 

5. IMPLEMENTATION ON THE CELL BROADBAND 
ENGINE 

As it can be seen in Listing 2 the F-Statistics calculation 
consist of multiple nested loops that can be carried out in 
parallel. All loop iterations in the function 
ComputeFStatFreqBand can be carried out with no changes, 
whereas both the loops in the functions ComputeFStat and 
ComputeFaFb execute a reduction. We parallelized the F-
Statistics code by parallelizing the loop in 
ComputeFStatFreqBand. We did this because parallelizing 
the outer loop limits the overhead generated by the 
parallelization and the number of frequencies is an order-of-
magnitude higher than the number of detectors or the SFTs. 
The parallelization is done by equally assigning a number of 
frequencies to the SPEs independently, and having each SPE 
calculate the results for the assigned frequencies. The PPE is 
only used for synchronizing the SPEs -- the PPE tells the 
SPEs when to start with the calculations and waits for all the 
SPEs to finish their calculations before continuing with the 
Einstein@Home application. The code executed by the SPEs 
is simply a copy-and-paste of the original code, except for 
the modification that we describe below. 

We developed two F-Statistics implementations for the 
CBE. In the first implementation, we manually manage 
transfers to and from the local store of the SPEs, whereas the 
second implementation relies on the software cache 
implementation provided by IBMs XLC/C++ compiler. In 
this section, we will first describe the two implementations 
and discuss the benefits of each later. We will refer to the 
first implementation as DMA-Fstat, whereas the second 
implementation will be called EA-Fstat. 

As we stated above, DMA-Fstat uses manual DMA data 
transfers, therefore the first step of the development for this 
implementation was to make sure that the data that must be 
transferred to the local store, complies with the memory 
alignment requirements for the DMA transfers of the CBE. 
The IBM Cell SDK includes special malloc-like functions, 

that return memory which is properly aligned for such DMA 
transfers. Imposing the memory alignment requirements for 
all data structures was done by modifying Einstein@Home 
client malloc function wrappers, so they call the special 
malloc functions provided by the SDK. Measurements show 
that using the SDK's malloc function for all memory 
allocations, does not cause any performance issues, therefore 
we decided to allocate all data structures with DMA-
complying memory alignments, even though it is required 
only for data structures that need to be transferred to the SPE 
local store. Furthermore, identifying the part of the 
application, where the data structures used by the SPEs are 
allocated would require a more detailed knowledge of the 
Einstein@Home client than we currently have. 

The DMA-Fstat build of the client is based on the well 
known thread programming paradigm. The PPE creates 
multiple threads, each of which is used to control a single 
SPE. After the threads are created, the PPE inputs the data 
structure addresses used by F-Statistics into the mailboxes of 
the SPEs. This communication is also used to notify the 
SPEs to begin work. After the SPEs have received the 
addresses, they use DMA transfers to get all data required 
for the complete computation. We cannot use double 
buffering because the data that is needed for the calculation 
is computed on the fly for most data structures. We could 
have implemented double buffering for some data structures, 
but we did not do so, because DMA-Fstat cannot be used for 
a full work unit anyway (explained below). Since we did not 
use double buffering, that diminishes the possible 
performance gain we could achieve with this 
implementation. Moreover, the need to transfer all data at the 
beginning of the calculation, in conjunction with the rather 
small size of the local store available on the SPEs limits the 
amount of data that can be processed by each SPE. DMA-
Fstat works well for the small data set case, but is unable to 
process the full data set. After they complete the 
computation, the SPEs write their results back to main 
memory by using DMA transfers and place a ``work 
finished'' message in the mailbox. The PPE waits until all 
SPEs have placed this message in their mailbox, before the 
Einstein@Home client is executed any further. 

We developed our second F-Statistics implementation 
(EA-Fstat) to no longer be limited by the amount of data that 
can be processed. EA-Fstat relies on the SPE software cache 
implementation of the XLC/C++ compiler, that freed us 
from manually transferring data to the local store. 
Furthermore, we did not need to guarantee any memory 
alignment for the data that must be accessed by the SPE. We 
only needed to guarantee that in the SPE code all pointers, 
pointing to main memory are qualified with the __ea 
qualifier. Since the data structures used by the 
Einstein@Home client are deeply pointer based, this 
modification took some time, but was far less intrusive than 
changing the memory alignment of all data structures, as was 
done in DMA-Fstat. The initial communication is done 
identically as in DMA-Fstat, meaning that the addresses of 
the data structures in main memory are sent to the SPE 
mailboxes. These addresses are assigned to __ea qualified 
pointers and then used as if they point to locations in the 
SPE's local store. The synchronization of SPE and PPE is 
again done identically to that of DMA-Fstat, however before 
the SPE sends out the ``work finished'' message in the 
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mailbox, the SPE writes back the data stored in the local 
store cache. The cache write back is done by manually 
calling a special function. 

The benefit of EA-Fstat compared to DMA-Fstat is that 
the developer no longer has to worry about the size of the 
local store and can automatically benefit from larger local 
store in future hardware generations. Furthermore, relying on 
the software cache reduces the complexity of the SPE 
program code: DMA-Fstat required 122 lines of code (not 
counting comments) consisting of memory allocation and 
pointer arithmetic, whereas the EA-Fstat implementation 
only consists of 9 library function calls, that read data 
structure addresses out of the mailboxes. 

Table 1 shows the runtime of the original 
Einstein@Home client using only the PPE in comparision 
with both our new implementations, for the small work unit 
case. These measurements were performed by running the 
codes on a Sony Playstation 3, that allows us to use a 
maximum of 6 SPEs. Both DMA-Fstat and EA-Fstat use 
only 3 SPEs, since the small amount of work of the small 
test case does not scale well with additional SPEs. We can 
see that the PPE is clearly outperformed by the clients that 
use the SPEs. This should come at no surprise since those 
clients run the F-Statistics calculation in parallel on multiple 
SPEs without any need for synchronization. Furthermore, we 
can store all the data that is required for the F-Statistics 
computation in the fast local store of the SPE, thus there is 
no need to access slow main memory. The comparision of 
both DMA-Fstat and EA-Fstat shows the performance hit of 
using the software cache mechanism is only about 2.5% in 
our small test case. The low performance loss is partly due to 
the fact that we did not use double buffering, which would 
have likely increased the performance of DMA-Fstat. 

We show the performance of our EA-Fstat solution in 
Table 2. When running a full work unit the EA-Fstat client 
cannot outperform the PPE version as well as it did in the 
small data-set test case. When running the client with 6 
SPEs, the client finishes in about 59% of the runtime of the 
PPE-only client -- we gain a factor of 1.7 in overall 
application performance, by making use of the CBE 
architecture. The reduced performance gain does not seem to 
be a result of the size of the used software cache -- halving 
the cache size to 64KB reduces the performance by 2%. The 
performance of the EA-Fstat client is limited by the runtime 

required by the Hough transformation, which turns out to be 
the performance bottleneck when running the client with 6 
SPEs. When considering the F-Statistics computation alone, 
the performance improved by a factor of about 5.5 upon 
using 6 SPEs -- F-Statistics requires less than two minutes of 
the overall runtime. 

The best overall performance of the Einstein@Home 
client on the CBE platform is probably achieved by running 
multiple clients on one system, so the PPE's ability of 
running 2 software threads can be used and all SPEs are kept 
busy, even when one client is currently executing the Hough 
transformation. Our experimentation suggests that one can 
gain an additional 30% in overall application performance in 
this manner. It may also be possible to parallelize the Hough 
computation, so that it utilizes the SPEs. Further work is 
required to identify, which solution is the best option. 

6. CUDA ARCHITECTURE 

CUDA is a general-purpose programming system only 
available for NVIDIA GPUs and was first publicly released 
in late 2007. CUDA requires a GPU that is based on 
NVIDIA's so-called G80 architecture or one of its 
successors. Through CUDA, the GPU (called device) is 
exposed to the CPU (called host) as a co-processor with its 
own memory. The device executes a function (called kernel) 
in the SPMD model, which means that a user-configured 
number of threads runs the same program on different data. 
Threads executing a kernel must be organized within so 
called thread blocks, which may consist of up to 512 threads; 
multiple thread blocks are organized in a grid, which may 
consist of up to 217  thread blocks. Thread blocks, however, 
are not there purely for organizational purposes, they also 
play an important role related to performance. Each thread 
block is always scheduled onto one so-called multiprocessor 
of the device. A single multiprocessor consists of 8 
processors. The number of multiprocessors of a device 
depends on hardware used with the current maximum of 
multiprocessors on a single device being 30. If a kernel uses 
only one thread block, only one multiprocessor of the device 
is used and most of the devices' processing power is not 
utilized. Multiple thread blocks can be assigned to the same 
multiprocessor, in which case, they equally share the 
resources of the multiprocessor. Thread blocks are important 
for algorithm design, since only threads within a thread 
block can be synchronized. NVIDIA suggests having at least 
64 threads in one thread block and up to multiple thousands 
of thread blocks -- more threads than the device has 
processors -- to achieve high performance. Threads within 
thread blocks can be addressed with one-, two- or three-
dimensional indexes; thread blocks within a grid can 
addressed with one- or two-dimensional indexes. We call the 
thread index threadIdx and the dimensions of the thread 

Table 1. The Time Required for the CBE Client Running the 

Small Test Case 

  PPE   DMA-Fstat   EA-Fstat  

 8:53 min   2:30 min   2:34 min  

Table 2. Time Per Sky Point for the CBE Client for a Full Work Unit Case 

   Processing Elements  

 PPE   SPEs  

   1   2   3   4   5   6  

22 min 20 min 16 min 14.5 min 13.75 min 13.5 min 13 min 
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block x, y and z (therefore threadIdx.x is the first dimension 
of the thread index). We refer to the thread block index as 
blockIdx and use the same names for the dimensions. 

From the host's point of view, kernel invocations are 
asynchronous function calls. Synchronisation between host 
and device are done explicitly by calling a synchronization 
function, or implicitly when the host tries to access memory 
on the device. In both cases, synchronization takes the form 
of a barrier that blocks the calling host thread until all 
previously called kernels are finished. 

In contrast to main memory used by the CPU, its GPU 
counterpart -- called global memory -- is not cached and 
accessing it costs an order-of-magnitude more than most 
calculations. For example, 32 threads require 400 - 600 clock 
cycles for a read from global memory, whereas an addition 
executed by the same number of threads takes only 4 clock 
cycles. The high cost of accessing global memory is another 
incarnation of the so-called memory wall that also was an 
important factor for the design of the CBE (see Section 4). 
However, NVIDIA chose another way to circumvent this 
problem. The device uses an efficient thread scheduler that 
uses the massive parallelism approach of the device to hide 
the latency by removing threads that just issued a global 
memory read from its processor and scheduling a thread that 
is not waiting for data. This is one of the reasons why the 
device requires more threads than there are processors 
available to achieve good performance. Furthermore, CUDA 
provides a way of directly reducing global memory accesses, 
by using a special kind of memory called shared memory. 
Shared memory is fast memory located on the 
multiprocessors of the device itself and is shared by all 
threads of a thread block. Accessing shared memory costs 
about 4 clock cycles for 32 threads and may be used as a 
cache, which must be managed by the developer. However, 
using global memory cannot be avoided, because it is the 
only kind of memory, which can be accessed by both the 
host and the device. Data that is stored in main memory must 
be copied from main memory to global memory by a CUDA 
memcopy function call, if it is needed by the device. Results 
of a kernel that need to be used by the CPU must be stored in 
global memory and the CPU must issue a memcopy from 
global memory to main memory to use it. All transfers done 
by CUDA memcopy functions are DMA transfers and have a 
rather high cost of initialization and a rather low cost for 
transferring the data itself. 

7. IMPLEMENTATION USING CUDA 

The development of the CUDA based F-Statistics was an 
evolutionary process. We developed three different versions, 
each solving the problems that emerged in the previous 
version. 

We decided to start our work by porting the innermost 
function of the F-Statistics (ComputeFaFb) to the device. 

Porting the code to be executed by the device did not require 
any difficult work. The implementation uses one thread per 
SFT and only one thread block. The number of SFTs in our 
data sets are less than the maximum number of threads in 
one thread block. Since we use one thread per SFT, we 
calculate all the SFTs of one detector (and therefore, all 
SFTs processed by one call of ComputeFaFb) in parallel. 
More formally speaking, we calculate the states 
( frequency,detector, threadIdx.x)  in one kernel call, with 
threadIdx.x being the x-dimension of the block local CUDA 
thread index. 

The reduction which is part of ComputeFaFb, is 

implemented by using synchronized access to shared 

memory, which is possible since all threads are in one thread 

block. Reductions, that include multiple thread blocks are 

difficult to achieve with this hardware, since one cannot 

synchronize threads of different thread blocks or support 

hardware floating point atomic operations. Therefore, we did 

not implement a parallel reduction. A parallel reduction 

example is provided by NVIDIA [10], so we can easily 

replace our implementation in the future. In our 

implementation, the first thread collects all the data from the 

other threads, calculates the result and writes it to global 

memory. The performance of this first version is not limited 

by the performance of the calculations done at the device, 

but by the device memory management done by the host. We 

refer to this implementation as version 1. 

The concept behind version 1 was simply to start our 
work in a straightforward way, and not necessarily obtain 
better performance than the CPU version. Nonetheless, we 
expected the overall performance to be half that of the host-
based implementation, but version 1 takes more than 70 
times the runtime of the CPU version! Measurements show 
that almost 95% of the runtime is spent on device memory 
management and about 70% on copying the data to and from 
the device. This problem arises because version 1 uses the 
same data structure as the original CPU version, which 
consists of a large number of small memory blocks (the 
exact number depends on the data). To transfer the data 
structure directly to the device, version 1 needs to issue an 
DMA transfer to global memory for every memory block. 
Since a DMA transfer has a rather high cost of initialization 
and a rather low cost for transferring a data element itself, 
this data structure design simply cannot provide high 
performance. 

Our second implementation (version 2) still calculates the 

states ( frequency,  detector, threadIdx.x)  in one function 

call, but uses a newly developed data structure. The new data 

structure was designed to directly benefit from the way 

DMA memory transfers work. In the kernel, the data is 

typically read once from a known position that only depends 

on the current state of the calculation. The requirements of 

both fast memory transfer and fast access to an element at an 

arbitrary but known position are satisfied by simply using an 

array. An array is guaranteed to be stored in one contiguous 

memory block and each element can be directly accessed by 

using an index, its address, or a combination of both i. e. an 

offset based on an address pointing to one element in the 

array. Thus, our new data structure is an aggregation of a 

small number of arrays. 

Table 3. Time Measurements of the CUDA Based Client 

 Test Case  CPU   GPU  

 small   2:19 min   1:22 min 

 full (per sky point)   11:00 min   7:00 min 
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These arrays can be grouped in two types. One type 
stores data used to calculate the result of the F-Statistics and 
is therefore called data arrays. The other type stores 
pointers, that point to elements inside the data arrays -- we 
refer to this type as offset arrays, since the pointers stored 
inside these arrays are used as an offset to access data the 
way we have just described. The creation of this data 
structure itself is rather simple. The original small memory 
regions are all padded into a data array in an ordered fashion. 
The elements in the offset arrays are used to identify the 
original memory regions. The new data structure is only used 
by the device, the code executed at the host continues to be 
the previous one. 

Performance measurements of version 2 show that our 
new data structure solves the problems of version 1. Memory 
management is still a measurable amount but is no longer the 
performance bottleneck. Version 2 has approximately the 
same performance as the original CPU version. Next, we 
decided to change our kernel call concept, as used by version 
1, to utilize multiple multiprocessors of the device and thus 
improve performance (we had repeatedly issued kernel calls 
with only one thread block so far). Below, we describe how 
we replaced these multiple calls with just one kernel call 
using multiple thread blocks. 

Let us first revise the important details of Listing 2 
before we explain how we implemented the final version of 
F-Statistics with CUDA. If we want to calculate the F-
Statistics for a frequency band, we have to port the functions 
ComputeFStatFreqBand and ComputeFStat to the device. 
ComputeFStat contains a reduction of the values calculates 
by ComputeFaFb -- the function we ported to the device in 
step one. The results of ComputeFStat are written to 
different memory addresses. As previously described, we use 
a fairly simple way to calculate the reduction done in 
ComputeFaFb, which is possible only because all threads are 
in the same thread block. Our analysis of the used data sets 
showed that we could continue with this approach. The 
number of threads required to calculate ComputeFaFb for all 
detectors is still small enough to have one thread block 
calculate them. For easy readability of our code we use two 
dimensional thread blocks. The x-dimension still represents 
the calculated SFT, whereas the y-dimension is now used to 
represent the detectors. Version 1 calculates the states 
( frequency,detector, threadIdx.x)  with one kernel call, 
whereas our re-worked approach calculates 
( frequency, threadIdx.y, threadIdx.x)  with one kernel call. 
Even though this approach uses more threads, it still uses 
only one thread block per kernel call. 

The next step is to use multiple thread blocks to calculate 

different frequencies i.e. to calculate the states 

(blockIdx.x, threadIdx.y, threadIdx.x)with one kernel call. 

Conceptually this can be achieved with relative ease, since 

the calculations of one frequency are independent from one 

another. Nonetheless, this concept still results in some 

overhead work that may not be very obvious at first. For 

example, the number of signals is not constant across all 

frequencies, but the dimension of all thread blocks is 

identical. Therefore, we first scan the data-set for the 

maximum number of signals found in a frequency of a given 

frequency band and thereby determine the x-dimension of all 

thread blocks. This approach results in idle threads for all the 

other thread blocks, but our evaluation of the dataset shows 

only a small fraction of idle threads -- typically, 6 threads 

idle per x-dimension, with the maximum being 10. This is 

our final implementation of the Einstein@Home CUDA 

application, which we will refer to as version 3. The 

development of all three versions was done on a device, that 

did not support double-precision floating point operations 

which are required by Einstein@Home to produce correct 

results. This client therefore, does not use double-precision 

and the results are of no scientific value. 

Upon running our implementation on a test system with a 
GeForce GTX 280 and two AMD Opteron 270 (2 GHz) the 
CUDA version performs about 1.7 times as fast as the CPU 
version for the small test case. When run on a full work unit, 
the CUDA client performs about 1.6 times as fast as the CPU 
version. Note that both the CPU and the GPU version only 
use one core when running the Einstein@Home client. 
Considering only F-Statistics, the performance was 
improved by more than a factor of about 3.5 -- the F-
Statistics calculation only takes about 1.5 minutes. 

8. COMPARISION OF CUDA AND THE CBE 

One of the most important factors when developing for 

the CBEA is the size of local store, especially when the 

developer needs to manually manage the data storage in the 

local store. The data required by our application does not fit 

in the local store. An easy way to overcome this is to use a 

software cache -- however, by using this technique, the 

developer loses the chance to utilize double buffering, which 

is one of the most important benefits of the CBEA. Using 

CUDA required us to change the underlying data structure of 

our application, which we could also use with the CBEA. In 

our case the data structure redesign was rather easy, however 

in other cases this may be more problematic. The main 

benefit of using CUDA is the hardware, that increases 

performance at a much higher rate than multi-core CPUs or 

the CBEA. Furthermore, software written for CUDA can 

easily scale with new hardware -- at least when a high 

number of thread blocks is used. However, writing software 

that achieves close-to-the-maximum performance with 

CUDA is very different when compared to most other 

programming systems, since thread synchronization or 

calculations are typically not the time consuming parts, but 

memory accesses to global memory are. We did not optimize 

any of our implementations to the maximum possible 

performance, instead invested a similar amount of 

development time into both the CBE and the CUDA client. 

Therefore, our performance measurements should not be 

considered as what is possible with the hardware, but rather 

what performance can be achieved within a reasonable 

development time-frame. 

9. RELATED WORK 

Scherl et al. [11] compare CUDA and the CBEA for the 

so called FDK method for which CUDA seems to be the 

better option. Christen et al. [12] explore the usage of CUDA 

and the CBEA for stencil-based computation, which 

however does not give a clear winner. In contrast, our work 

does not strive for the maximum possible performance and 

relies on very low cost hardware. 
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10. CONCLUSION / FUTURE WORK 

The main outcome of our work presented in this article, 
is that new upcoming architectures such as CBEA and 
CUDA have very strong potential for significant 
performance gains in scientific computing. In our work, we 
focussed on a specific, data-analysis application from the 
gravitational physics community, called Einstein@Home. 
This is amongst the largest BOINC-based, public distributed 
computing projects. Using these architectures, we 
successfully accelerated by several fold, one of the two 
computationally intensive routines of the Einstein@Home 
client application. Our final CBEA and CUDA 
implementations yield comparable performance, although 
the development process, software tools, challenges faced, 
etc. relevant to these two architectures were completely 
different. In this article, we described our experiences with 
this software development in great detail. 

From the point of view of the Einstein@Home project, 

we expect our work to have a major impact. The CUDA 

based GPU client will ultimately enable the project to 

harness the vast computing power currently inaccessible in 

consumer desktop and laptop computer graphics cards. 

When the GPU client is deployed, we anticipate the total 

computing power of the project to increase substantially. The 

CBE client would similarly be extremely helpful to the 

project. There are currently 20 million Playstation 3 gaming 

consoles sporting the CBE that could potentially compute for 

Einstein@Home once our client application is deployed by 

the project. That would likely increase the overall computing 

power of Einstein@Home many fold. It is worth noting that 

the release of a similar Playstation 3 client enabled 

Stanford's Folding@Home to quantum leap into the peta-

scale regime in 2007 [13]. 

In the future, we expect to complete the final 

development of the CBEA and GPU clients and address 

some of the issues they currently have (as described before 

in this article). We will also investigate the use of GPU and 

CBE optimized versions of the Hough computation to 

accelerate the clients even further (recall, that the Hough 

computation is now the most significant bottleneck for these 

clients). Lastly, we will also work closely with the 

Einstein@Home project team to integrate our CBEA and 

GPU clients alongside the currently operational CPU clients, 

for a full-scale deployment. 
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