
154 The Open Astronomy Journal, 2011, 4, (Suppl 1-M9) 154-161

 1874-3811/11 2011 Bentham Open

Open Access

An Exploration of CUDA and CBEA for a Gravitational Wave Data-
Analysis Application (Einstein@Home)

Jens Breitbart
1,

* and Gaurav Khanna
2

1
Research Group Programming Languages / Methodologies Universität Kassel Kassel, Germany

2
Physics Department, University of Massachusetts at Dartmouth North Dartmouth, MA, USA

Abstract: We present a detailed approach for making use of two new computer hardware architectures -- CBEA and

CUDA -- for accelerating a scientific data-analysis application (Einstein@Home). Our results suggest that both the

architectures suit the application quite well and the achievable performance in the same software developmental

time-frame, is nearly identical.

Keywords: Astrophysics, gravitational wave, high performance computing, accelerators, CUDA, Cell Broadband Engine.

1. INTRODUCTION

The recent decades have brought a tremendous rise in
computer simulations, in nearly every area of science and
engineering. This is partly due to the development of
(Beowulf) cluster computing that involves putting together
“off-the-shelf” computing units (for example, commodity
desktop computers) into a configuration that would achieve
the same level of performance, or even outperform,
traditional supercomputers at a fraction of the cost.
Computational science has benefited and expanded
tremendously in the last decade due to rapid improvements
in CPU performance (Moore's Law) and major price drops
due to mass production and intense competition.

However, a few years ago the computer industry hit a
serious frequency wall, implying that increasing the
processor's clock-rate for gains in performance could not be
done indefinitely, due to rapid increases in power
consumption and heat generation (power wall). This led all
the major processor manufacturers (such as Intel and AMD)
toward multi-core processor designs. Today, nearly all
commodity desktop and laptop processors are multi-core
processors i. e. they combine two or more independent
computing cores on a single chip. Thus, manufacturers today
continue to pack more power in a processor, even though
their clock-frequencies have not risen (and have stabilized at
around 3 GHz). It is expected that this approach would work
well for the next few years, but both Intel and AMD
anticipate that even this approach will not scale well beyond
8 or 16 cores.

On the other hand, the overall performance of other
computing technologies (e.g. graphics cards, gaming
consoles, etc.) has continued to increase at a rapid rate, thus

*Address correspondence to this author at the Research Group

Programming Languages / Methodologies Universität Kassel Kassel,

Germany; Tel: +49-561-804-6268; Fax: +49-561-804-6219;

E-mail: jbreitbart@uni-kassel.de

making general-purpose computing on such devices a

tantalizing possibility. Both Compute Unified Device

Architecture (CUDA) and Cell Broadband Engine

Architecture (CBEA) are new hardware architectures

designed to provide high performance and scaling for

multiple hardware generations. CUDA is NVIDIA's general-

purpose software development system for graphics

processing units (GPUs) and offers the programmability of

their GPUs in the ubiquitous C programming language in

conjunction with a set of libraries for memory management.

The Cell Broadband Engine (CBE), which is the first

incarnation of the CBEA, was designed by a collaboration

between Sony, Toshiba, and IBM (so-called STI). The CBE

was originally intended to be used in gaming consoles

(namely Sony's Playstation 3) and consumer electronics

devices, but the CBEA itself was not solely designed for this

purpose and has been used in areas such as high-performance

computing as well.

Both CUDA and CBEA are not the only new architecture

approaches to overcome a decline in overall performance

gains, but these are expected to be the ones with the widest

distribution. CUDA is available for all NVIDIA GPUs based

up on the G80 architecture and its successors, therefore all

currently sold NVIDIA GPUs support CUDA. Sony has sold

over 20 million Playstation 3 game consoles, each of which

has a CBE main processor. Moreover, currently second to

the fastest and the original peta-scale supercomputer is the

IBM Roadrunner at LANL, which is a hybrid system, built

using nearly 13,000 Cell processors and 6,500 AMD

Opteron processors. Based on these successes, an industry

standard -- OpenCL -- has been proposed by Apple and

others, that would allow for computing across a variety of

different hardware: CPU, GPU, CBE, etc. We consider the

current distribution of this hardware an important factor for

the future success of its underlying concept and

programming model, and therefore we decided to work with

these two architectures.

An Exploration of CUDA The Open Astronomy Journal, 2011, Volume 4 155

In this article, we will compare the current state of both
CUDA and the CBEA by modifying the Einstein@Home
client application, to enable it to take advantage of these
different hardware architectures. Einstein@Home [1] is a
distributed computing project, that uses the computing power
volunteered by end users running its client application, to
perform data-analysis tasks for various gravitational-wave
observatories such as LIGO and GEO. The computation
performed by this client application can be executed in a
data-parallel fashion, which suits both CUDA and the CBEA
very well.

This article is organized as follows. First, Section 2 gives
an overview of the Einstein@Home project and its client
application. The next two sections, introduce the architecture
and the software development system of the Cell Broadband
Engine (Section 4) and our experiences with the
development of the Einstein@Home client using it (Section
5). The following two sections describe CUDA (Section 6)
and our experiences with that architecture (Section 7). In
Section 8 we compare both implementations and outline the
benefits and drawbacks of CUDA and the CBE and their
respective software development systems. Section 9
discusses related work, while Section 10 provides a
summary of our work.

2. EINSTEIN@HOME

 Gravitational wave observatories are currently being
built all over the world: LIGO in the United States,
GEO/Virgo in Europe and TAMA in Japan. These will open
a new window onto the Universe by enabling scientists to
make astronomical observations using a new and
significantly better medium -- gravitational waves (GWs), in
addition to electromagnetic waves (light). These waves were
predicted by Einstein's theory of General Relativity, but have
not been directly observed because the required technology
was simply not advanced enough, until very recently.
Indirect evidence validating their existence has been
available for some time i. e. the observed decay rate of the
compact neutron star binary system PSR1913+16 [2]
matches the theoretical predictions based on GW emission (a
Nobel prize winning discovery!).

Using GWs as a medium for astronomical observation,
alongside traditional approaches (light, neutrinos, etc.) holds
tremendous promise not only in advancing our
understanding of gravitational physics, compact
astrophysical objects (like black holes and neutron stars) but
also the entire Universe as a whole. The main reason why
GWs are an excellent medium for doing astronomy, is that
these waves interact extremely weakly with matter. This
means that these waves can travel long distances, and even
pass through large quantities of dust, gas, etc. without being
significantly affected. Thus, they are able to transport
valuable information over very long distances with little loss
-- the key requirement for good astronomical observation.
However, this very reason that makes them so good as an
observational medium, also makes them notoriously hard to
generate and detect. To produce a strong gravitational wave,
one needs to move massive objects at very high accelerations
-- collisions between compact astrophysical objects are
therefore, the ideal candidates. But even for the scenario of
two solar-mass black holes colliding at a distance of (say)

100 Mpc away, the ``strain'' caused by the emitted GW that
we would need to measure on Earth for a successful
detection is of the order of 10 21

. In other words, one would
need to be able to detect fluctuations in length that are less
than the size of a nucleus of an atom, over the scale of
kilometers! This is precisely why extremely sophisticated
technologies (see [3] for a recent review) have to be
developed to be able to make such a detection a reality. Over
the next few years, GWs will be detected and a wealth of
new astronomical data will begin pouring in [4, 5]. That will
allow us to not only learn more about black holes and
neutron stars, but also test our theories (for example, General
Relativity) in extremely strong-field regimes where they
have never been tested before. Moreover, this would even
help to rule out or establish, other alternative theories of
gravitation [6]. For all these reasons, the scientific
community worldwide, has invested a tremendous amount of
time, energy and resources in developing the observatories,
theory, and data analysis techniques necessary to make GW
astronomy a possibly in this decade.

These observatories generate data at the rate of several
tens of GBs per day and they require highly computationally
intensive data-analysis (mainly due to the fact that the
signal-to-noise ratio in the data streams is very low).
Einstein@Home is a BOINC [7] based, public distributed
computing project that offloads the data-analysis associated
to these observatories to volunteers worldwide. The project
currently (since 2005) has over 200,000 participants and
over 800,000 computers involved, with a strong and
sustained growth pattern. The goal of Einstein@Home is
finding gravitational waves emitted from neutron stars (
pulsars), by running a brute force search for different
waveforms in an extremely large data-set.

We consider the Einstein@Home client a meaningful test
application for our comparison of CUDA and the CBE since
from a theoretical viewpoint, its parallelization is quite
straightforward. Furthermore, the application is very
compute intensive, therefore we can expect a high
performance gain through parallelization. The computation
of the application can be roughly divided into two parts --
the so-called F-Statistics computation, and a Hough-
transformation. We will only concentrate on the F-Statistics
computation in this work, and provide below a brief
overview of the algorithm and its data dependencies; a
detailed discussion can be found in [8].

Listing 2 provides an overview of the F-Statistics code.
The code uses for each whenever the loop can be carried out
in parallel with no or minimal changes to the loop body. + is
used for all commutative calculations. The parameters of a
function denote all the values a function depends on,
however we use ``...'' as a reference to all parameters passed
to the called function. The F-Statistics code consist of
multiple nested loops, each looping through a different part
of the input data set, namely: a frequency band, all used
detectors for the observing the gravitational wave and an
SFT of each signal.

T ComputeFStatFreqBand(...) {

T result[];

int i = 0;

156 The Open Astronomy Journal, 2011, Volume 4 Breitbart and Khanna

for each (frequency in frequency_band(...))

result[i++]= ComputeFStat(..., frequency);

return result;

}

T ComputeFStat(...) {

T result;

for each (detector in detectors)

result += ComputeFaFb(..., detector);

return result;

}

T ComputeFaFb(...) {

T result;

for each (SFT in SFTs(frequency))

result += some_calculations(..., SFT);

return normalized(result);

}

In this article we will indicate the current state of the
calculation, as the presently computed upon SFT, detector
and frequency -- or more formally speaking: the current state
is the tuple of (frequency,detector, signal) using the variable
names used in the Listing 2.

For simplicity, Listing 2 does not include any data
structures for storing data. Here we provide a very brief
introduction (a more detailed overview can again be found in
[8]). The data structures used by Einstein@Home are based
on a deep hierarchy. For example, the data structure that is
used to store the SFT data for one frequency, is called
MultiSFT. MultiSFT has a pointer to a data array, which
stores pointers to the SFT data for every detector. The SFT
data is built of two levels, thus to finally access the data one
needs code similar to the one shown in Listing 2. The
additional two layers within the SFT data are a consequence
of how the data is stored and processed within the
some_calculations function. We will not go into more detail
here, since the rest consists of calculations that must be
executed sequentially and are therefore not important for the
parallelization.

[caption=Pseudo code showing the SFT data structure]
MultiSFT x;

float data = x. data [detector]-> data [SFT]-> data [i]->
data [j];

3. TEST CASES

 The various measurements presented in this article were
done with two different kinds of data-sets that not only differ
in the overall runtime, but also in their memory requirements
and performance characteristics. The small test case is based
on a data-set used to check if the Einstein@Home client
application itself is producing correct results. It uses a small
number of frequencies in contrast to a full Einstein@Home
work unit. In the small data set case, the F-Statistics takes
nearly 90% of the overall runtime, while in the full work unit
case its share is nearly 50%. A full work unit consists of
multiple, so-called sky points. The calculation done for one

sky point consists of both the F-Statistics and the Hough
transformation and the runtime required to compute one sky
point is nearly identical to the one required for the other sky
points. For this work, we therefore do not measure the
runtime of a full work unit, but only measure the time
required to calculate one sky point.

4. CELL BROADBAND ENGINE

The CBE is a completely redesigned processor, that was

developed collaboratively by Sony, IBM and Toshiba mainly

for multimedia applications. This processor has a general

purpose (PowerPC) CPU, called the PPE (that can run 2

software threads simultaneously) and 8 special-purpose

compute engines, called SPEs available for raw numerical

computation. Each SPE can perform vector operations,

which implies that it can compute on multiple data, in a

single instruction (SIMD). All these compute elements are

connected to each other through a high-speed interconnect

bus (EIB). Note that the design of this processor is very

different from traditional multi-core processors. In a certain

sense, the CBE's design is somewhere between a general-

purpose CPU and a specialized GPU (as described in Section

6). It can therefore be considered as a hybrid technology,

having the advantages of both these architectures. The

outcome of this distinctive design is that a single, 3.2 GHz

(original - 2006/2007) CBE has a peak performance of over

200 GFLOPS in single-precision floating point computation,

and 15 GFLOPS in double-precision. It should be noted that

the current (2008) release of the CBE, called the

PowerXCell, has design improvements that bring the double-
precision performance up to 100 GFLOPS.

We will not attempt to go into much more detail
concerning the CBE's design here, rather we will simply
point out one unique feature that addresses the issue of the
memory wall that is common to all current computer
hardware. The memory wall refers to the large (and
increasing) gap between processor and memory
performance, causing the slower memory speeds to become a
significant bottleneck. The current state-of-the-art approach
to combat this issue has been to include large cache sizes
(several MBs) on the processor chip. However, this takes
away valuable space (for compute elements) on the chip, and
thus may result in only a marginal, overall performance
increase. A key feature of the the CBE is its unique ability to
interleave computation and data access. Therefore, it is
possible for the programmer to overlap memory access and
the actual computation (``double buffering''), in order to hide
the time it takes to access memory. It is this mechanism that
allows the CBE to break through the memory wall and
perform very efficiently, even for computations that have a
large memory footprint. It is also partly for this reason, that
the CBE can reach a ``real world'' application performance
that is nearly 100% of its theoretical peak performance [9].
The parallel programming model on CBEA allows for the
use of SPEs for performing different tasks in a workflow
(``task parallel'' model) or performing the same task on
different data (``data parallel'' model). We use the data
parallel model in our implementations.

One (software) challenge introduced by this new design,

is that the programmer has to explicitly manage the memory

transfer between the PPE and the SPEs. The PPE and SPEs

An Exploration of CUDA The Open Astronomy Journal, 2011, Volume 4 157

are equipped with a DMA engine -- a mechanism that

enables data transfer to and from main memory and each

other. Now, the PPE can access main memory directly, but

the SPEs can only directly access their own, rather limited

(256KB) local store. This poses a challenge for some

applications, including the Einstein@Home client

application that we are considering in this article. However,

compilers (IBM XLC/C++) are now available that enable a

software caching mechanism that allow for the use of the

SPE local store as a conventional cache, thus negating the

need of transferring data manually from main memory.

Another important mechanism that allows communication

between the the different elements (PPE, SPEs) of the CBE

is the use of mailboxes. These are special purpose registers

that can be used for uni-directional communication. Each

SPE has three mailboxes -- two outbound, that can hold only

a single entry, and one inbound, that can hold four entries.

These are typically used for synchronizing the computation

across the SPEs and the PPE, and that is primarily how we

made use of these registers as well. Details on our specific

use of these various aspects of the CBE for the

Einstein@Home client application appear next section of this
article.

5. IMPLEMENTATION ON THE CELL BROADBAND
ENGINE

As it can be seen in Listing 2 the F-Statistics calculation
consist of multiple nested loops that can be carried out in
parallel. All loop iterations in the function
ComputeFStatFreqBand can be carried out with no changes,
whereas both the loops in the functions ComputeFStat and
ComputeFaFb execute a reduction. We parallelized the F-
Statistics code by parallelizing the loop in
ComputeFStatFreqBand. We did this because parallelizing
the outer loop limits the overhead generated by the
parallelization and the number of frequencies is an order-of-
magnitude higher than the number of detectors or the SFTs.
The parallelization is done by equally assigning a number of
frequencies to the SPEs independently, and having each SPE
calculate the results for the assigned frequencies. The PPE is
only used for synchronizing the SPEs -- the PPE tells the
SPEs when to start with the calculations and waits for all the
SPEs to finish their calculations before continuing with the
Einstein@Home application. The code executed by the SPEs
is simply a copy-and-paste of the original code, except for
the modification that we describe below.

We developed two F-Statistics implementations for the
CBE. In the first implementation, we manually manage
transfers to and from the local store of the SPEs, whereas the
second implementation relies on the software cache
implementation provided by IBMs XLC/C++ compiler. In
this section, we will first describe the two implementations
and discuss the benefits of each later. We will refer to the
first implementation as DMA-Fstat, whereas the second
implementation will be called EA-Fstat.

As we stated above, DMA-Fstat uses manual DMA data
transfers, therefore the first step of the development for this
implementation was to make sure that the data that must be
transferred to the local store, complies with the memory
alignment requirements for the DMA transfers of the CBE.
The IBM Cell SDK includes special malloc-like functions,

that return memory which is properly aligned for such DMA
transfers. Imposing the memory alignment requirements for
all data structures was done by modifying Einstein@Home
client malloc function wrappers, so they call the special
malloc functions provided by the SDK. Measurements show
that using the SDK's malloc function for all memory
allocations, does not cause any performance issues, therefore
we decided to allocate all data structures with DMA-
complying memory alignments, even though it is required
only for data structures that need to be transferred to the SPE
local store. Furthermore, identifying the part of the
application, where the data structures used by the SPEs are
allocated would require a more detailed knowledge of the
Einstein@Home client than we currently have.

The DMA-Fstat build of the client is based on the well
known thread programming paradigm. The PPE creates
multiple threads, each of which is used to control a single
SPE. After the threads are created, the PPE inputs the data
structure addresses used by F-Statistics into the mailboxes of
the SPEs. This communication is also used to notify the
SPEs to begin work. After the SPEs have received the
addresses, they use DMA transfers to get all data required
for the complete computation. We cannot use double
buffering because the data that is needed for the calculation
is computed on the fly for most data structures. We could
have implemented double buffering for some data structures,
but we did not do so, because DMA-Fstat cannot be used for
a full work unit anyway (explained below). Since we did not
use double buffering, that diminishes the possible
performance gain we could achieve with this
implementation. Moreover, the need to transfer all data at the
beginning of the calculation, in conjunction with the rather
small size of the local store available on the SPEs limits the
amount of data that can be processed by each SPE. DMA-
Fstat works well for the small data set case, but is unable to
process the full data set. After they complete the
computation, the SPEs write their results back to main
memory by using DMA transfers and place a ``work
finished'' message in the mailbox. The PPE waits until all
SPEs have placed this message in their mailbox, before the
Einstein@Home client is executed any further.

We developed our second F-Statistics implementation
(EA-Fstat) to no longer be limited by the amount of data that
can be processed. EA-Fstat relies on the SPE software cache
implementation of the XLC/C++ compiler, that freed us
from manually transferring data to the local store.
Furthermore, we did not need to guarantee any memory
alignment for the data that must be accessed by the SPE. We
only needed to guarantee that in the SPE code all pointers,
pointing to main memory are qualified with the __ea
qualifier. Since the data structures used by the
Einstein@Home client are deeply pointer based, this
modification took some time, but was far less intrusive than
changing the memory alignment of all data structures, as was
done in DMA-Fstat. The initial communication is done
identically as in DMA-Fstat, meaning that the addresses of
the data structures in main memory are sent to the SPE
mailboxes. These addresses are assigned to __ea qualified
pointers and then used as if they point to locations in the
SPE's local store. The synchronization of SPE and PPE is
again done identically to that of DMA-Fstat, however before
the SPE sends out the ``work finished'' message in the

158 The Open Astronomy Journal, 2011, Volume 4 Breitbart and Khanna

mailbox, the SPE writes back the data stored in the local
store cache. The cache write back is done by manually
calling a special function.

The benefit of EA-Fstat compared to DMA-Fstat is that
the developer no longer has to worry about the size of the
local store and can automatically benefit from larger local
store in future hardware generations. Furthermore, relying on
the software cache reduces the complexity of the SPE
program code: DMA-Fstat required 122 lines of code (not
counting comments) consisting of memory allocation and
pointer arithmetic, whereas the EA-Fstat implementation
only consists of 9 library function calls, that read data
structure addresses out of the mailboxes.

Table 1 shows the runtime of the original
Einstein@Home client using only the PPE in comparision
with both our new implementations, for the small work unit
case. These measurements were performed by running the
codes on a Sony Playstation 3, that allows us to use a
maximum of 6 SPEs. Both DMA-Fstat and EA-Fstat use
only 3 SPEs, since the small amount of work of the small
test case does not scale well with additional SPEs. We can
see that the PPE is clearly outperformed by the clients that
use the SPEs. This should come at no surprise since those
clients run the F-Statistics calculation in parallel on multiple
SPEs without any need for synchronization. Furthermore, we
can store all the data that is required for the F-Statistics
computation in the fast local store of the SPE, thus there is
no need to access slow main memory. The comparision of
both DMA-Fstat and EA-Fstat shows the performance hit of
using the software cache mechanism is only about 2.5% in
our small test case. The low performance loss is partly due to
the fact that we did not use double buffering, which would
have likely increased the performance of DMA-Fstat.

We show the performance of our EA-Fstat solution in
Table 2. When running a full work unit the EA-Fstat client
cannot outperform the PPE version as well as it did in the
small data-set test case. When running the client with 6
SPEs, the client finishes in about 59% of the runtime of the
PPE-only client -- we gain a factor of 1.7 in overall
application performance, by making use of the CBE
architecture. The reduced performance gain does not seem to
be a result of the size of the used software cache -- halving
the cache size to 64KB reduces the performance by 2%. The
performance of the EA-Fstat client is limited by the runtime

required by the Hough transformation, which turns out to be
the performance bottleneck when running the client with 6
SPEs. When considering the F-Statistics computation alone,
the performance improved by a factor of about 5.5 upon
using 6 SPEs -- F-Statistics requires less than two minutes of
the overall runtime.

The best overall performance of the Einstein@Home
client on the CBE platform is probably achieved by running
multiple clients on one system, so the PPE's ability of
running 2 software threads can be used and all SPEs are kept
busy, even when one client is currently executing the Hough
transformation. Our experimentation suggests that one can
gain an additional 30% in overall application performance in
this manner. It may also be possible to parallelize the Hough
computation, so that it utilizes the SPEs. Further work is
required to identify, which solution is the best option.

6. CUDA ARCHITECTURE

CUDA is a general-purpose programming system only
available for NVIDIA GPUs and was first publicly released
in late 2007. CUDA requires a GPU that is based on
NVIDIA's so-called G80 architecture or one of its
successors. Through CUDA, the GPU (called device) is
exposed to the CPU (called host) as a co-processor with its
own memory. The device executes a function (called kernel)
in the SPMD model, which means that a user-configured
number of threads runs the same program on different data.
Threads executing a kernel must be organized within so
called thread blocks, which may consist of up to 512 threads;
multiple thread blocks are organized in a grid, which may
consist of up to 217 thread blocks. Thread blocks, however,
are not there purely for organizational purposes, they also
play an important role related to performance. Each thread
block is always scheduled onto one so-called multiprocessor
of the device. A single multiprocessor consists of 8
processors. The number of multiprocessors of a device
depends on hardware used with the current maximum of
multiprocessors on a single device being 30. If a kernel uses
only one thread block, only one multiprocessor of the device
is used and most of the devices' processing power is not
utilized. Multiple thread blocks can be assigned to the same
multiprocessor, in which case, they equally share the
resources of the multiprocessor. Thread blocks are important
for algorithm design, since only threads within a thread
block can be synchronized. NVIDIA suggests having at least
64 threads in one thread block and up to multiple thousands
of thread blocks -- more threads than the device has
processors -- to achieve high performance. Threads within
thread blocks can be addressed with one-, two- or three-
dimensional indexes; thread blocks within a grid can
addressed with one- or two-dimensional indexes. We call the
thread index threadIdx and the dimensions of the thread

Table 1. The Time Required for the CBE Client Running the

Small Test Case

 PPE DMA-Fstat EA-Fstat

 8:53 min 2:30 min 2:34 min

Table 2. Time Per Sky Point for the CBE Client for a Full Work Unit Case

 Processing Elements

 PPE SPEs

 1 2 3 4 5 6

22 min 20 min 16 min 14.5 min 13.75 min 13.5 min 13 min

An Exploration of CUDA The Open Astronomy Journal, 2011, Volume 4 159

block x, y and z (therefore threadIdx.x is the first dimension
of the thread index). We refer to the thread block index as
blockIdx and use the same names for the dimensions.

From the host's point of view, kernel invocations are
asynchronous function calls. Synchronisation between host
and device are done explicitly by calling a synchronization
function, or implicitly when the host tries to access memory
on the device. In both cases, synchronization takes the form
of a barrier that blocks the calling host thread until all
previously called kernels are finished.

In contrast to main memory used by the CPU, its GPU
counterpart -- called global memory -- is not cached and
accessing it costs an order-of-magnitude more than most
calculations. For example, 32 threads require 400 - 600 clock
cycles for a read from global memory, whereas an addition
executed by the same number of threads takes only 4 clock
cycles. The high cost of accessing global memory is another
incarnation of the so-called memory wall that also was an
important factor for the design of the CBE (see Section 4).
However, NVIDIA chose another way to circumvent this
problem. The device uses an efficient thread scheduler that
uses the massive parallelism approach of the device to hide
the latency by removing threads that just issued a global
memory read from its processor and scheduling a thread that
is not waiting for data. This is one of the reasons why the
device requires more threads than there are processors
available to achieve good performance. Furthermore, CUDA
provides a way of directly reducing global memory accesses,
by using a special kind of memory called shared memory.
Shared memory is fast memory located on the
multiprocessors of the device itself and is shared by all
threads of a thread block. Accessing shared memory costs
about 4 clock cycles for 32 threads and may be used as a
cache, which must be managed by the developer. However,
using global memory cannot be avoided, because it is the
only kind of memory, which can be accessed by both the
host and the device. Data that is stored in main memory must
be copied from main memory to global memory by a CUDA
memcopy function call, if it is needed by the device. Results
of a kernel that need to be used by the CPU must be stored in
global memory and the CPU must issue a memcopy from
global memory to main memory to use it. All transfers done
by CUDA memcopy functions are DMA transfers and have a
rather high cost of initialization and a rather low cost for
transferring the data itself.

7. IMPLEMENTATION USING CUDA

The development of the CUDA based F-Statistics was an
evolutionary process. We developed three different versions,
each solving the problems that emerged in the previous
version.

We decided to start our work by porting the innermost
function of the F-Statistics (ComputeFaFb) to the device.

Porting the code to be executed by the device did not require
any difficult work. The implementation uses one thread per
SFT and only one thread block. The number of SFTs in our
data sets are less than the maximum number of threads in
one thread block. Since we use one thread per SFT, we
calculate all the SFTs of one detector (and therefore, all
SFTs processed by one call of ComputeFaFb) in parallel.
More formally speaking, we calculate the states
(frequency,detector, threadIdx.x) in one kernel call, with
threadIdx.x being the x-dimension of the block local CUDA
thread index.

The reduction which is part of ComputeFaFb, is

implemented by using synchronized access to shared

memory, which is possible since all threads are in one thread

block. Reductions, that include multiple thread blocks are

difficult to achieve with this hardware, since one cannot

synchronize threads of different thread blocks or support

hardware floating point atomic operations. Therefore, we did

not implement a parallel reduction. A parallel reduction

example is provided by NVIDIA [10], so we can easily

replace our implementation in the future. In our

implementation, the first thread collects all the data from the

other threads, calculates the result and writes it to global

memory. The performance of this first version is not limited

by the performance of the calculations done at the device,

but by the device memory management done by the host. We

refer to this implementation as version 1.

The concept behind version 1 was simply to start our
work in a straightforward way, and not necessarily obtain
better performance than the CPU version. Nonetheless, we
expected the overall performance to be half that of the host-
based implementation, but version 1 takes more than 70
times the runtime of the CPU version! Measurements show
that almost 95% of the runtime is spent on device memory
management and about 70% on copying the data to and from
the device. This problem arises because version 1 uses the
same data structure as the original CPU version, which
consists of a large number of small memory blocks (the
exact number depends on the data). To transfer the data
structure directly to the device, version 1 needs to issue an
DMA transfer to global memory for every memory block.
Since a DMA transfer has a rather high cost of initialization
and a rather low cost for transferring a data element itself,
this data structure design simply cannot provide high
performance.

Our second implementation (version 2) still calculates the

states (frequency, detector, threadIdx.x) in one function

call, but uses a newly developed data structure. The new data

structure was designed to directly benefit from the way

DMA memory transfers work. In the kernel, the data is

typically read once from a known position that only depends

on the current state of the calculation. The requirements of

both fast memory transfer and fast access to an element at an

arbitrary but known position are satisfied by simply using an

array. An array is guaranteed to be stored in one contiguous

memory block and each element can be directly accessed by

using an index, its address, or a combination of both i. e. an

offset based on an address pointing to one element in the

array. Thus, our new data structure is an aggregation of a

small number of arrays.

Table 3. Time Measurements of the CUDA Based Client

 Test Case CPU GPU

 small 2:19 min 1:22 min

 full (per sky point) 11:00 min 7:00 min

160 The Open Astronomy Journal, 2011, Volume 4 Breitbart and Khanna

These arrays can be grouped in two types. One type
stores data used to calculate the result of the F-Statistics and
is therefore called data arrays. The other type stores
pointers, that point to elements inside the data arrays -- we
refer to this type as offset arrays, since the pointers stored
inside these arrays are used as an offset to access data the
way we have just described. The creation of this data
structure itself is rather simple. The original small memory
regions are all padded into a data array in an ordered fashion.
The elements in the offset arrays are used to identify the
original memory regions. The new data structure is only used
by the device, the code executed at the host continues to be
the previous one.

Performance measurements of version 2 show that our
new data structure solves the problems of version 1. Memory
management is still a measurable amount but is no longer the
performance bottleneck. Version 2 has approximately the
same performance as the original CPU version. Next, we
decided to change our kernel call concept, as used by version
1, to utilize multiple multiprocessors of the device and thus
improve performance (we had repeatedly issued kernel calls
with only one thread block so far). Below, we describe how
we replaced these multiple calls with just one kernel call
using multiple thread blocks.

Let us first revise the important details of Listing 2
before we explain how we implemented the final version of
F-Statistics with CUDA. If we want to calculate the F-
Statistics for a frequency band, we have to port the functions
ComputeFStatFreqBand and ComputeFStat to the device.
ComputeFStat contains a reduction of the values calculates
by ComputeFaFb -- the function we ported to the device in
step one. The results of ComputeFStat are written to
different memory addresses. As previously described, we use
a fairly simple way to calculate the reduction done in
ComputeFaFb, which is possible only because all threads are
in the same thread block. Our analysis of the used data sets
showed that we could continue with this approach. The
number of threads required to calculate ComputeFaFb for all
detectors is still small enough to have one thread block
calculate them. For easy readability of our code we use two
dimensional thread blocks. The x-dimension still represents
the calculated SFT, whereas the y-dimension is now used to
represent the detectors. Version 1 calculates the states
(frequency,detector, threadIdx.x) with one kernel call,
whereas our re-worked approach calculates
(frequency, threadIdx.y, threadIdx.x) with one kernel call.
Even though this approach uses more threads, it still uses
only one thread block per kernel call.

The next step is to use multiple thread blocks to calculate

different frequencies i.e. to calculate the states

(blockIdx.x, threadIdx.y, threadIdx.x)with one kernel call.

Conceptually this can be achieved with relative ease, since

the calculations of one frequency are independent from one

another. Nonetheless, this concept still results in some

overhead work that may not be very obvious at first. For

example, the number of signals is not constant across all

frequencies, but the dimension of all thread blocks is

identical. Therefore, we first scan the data-set for the

maximum number of signals found in a frequency of a given

frequency band and thereby determine the x-dimension of all

thread blocks. This approach results in idle threads for all the

other thread blocks, but our evaluation of the dataset shows

only a small fraction of idle threads -- typically, 6 threads

idle per x-dimension, with the maximum being 10. This is

our final implementation of the Einstein@Home CUDA

application, which we will refer to as version 3. The

development of all three versions was done on a device, that

did not support double-precision floating point operations

which are required by Einstein@Home to produce correct

results. This client therefore, does not use double-precision

and the results are of no scientific value.

Upon running our implementation on a test system with a
GeForce GTX 280 and two AMD Opteron 270 (2 GHz) the
CUDA version performs about 1.7 times as fast as the CPU
version for the small test case. When run on a full work unit,
the CUDA client performs about 1.6 times as fast as the CPU
version. Note that both the CPU and the GPU version only
use one core when running the Einstein@Home client.
Considering only F-Statistics, the performance was
improved by more than a factor of about 3.5 -- the F-
Statistics calculation only takes about 1.5 minutes.

8. COMPARISION OF CUDA AND THE CBE

One of the most important factors when developing for

the CBEA is the size of local store, especially when the

developer needs to manually manage the data storage in the

local store. The data required by our application does not fit

in the local store. An easy way to overcome this is to use a

software cache -- however, by using this technique, the

developer loses the chance to utilize double buffering, which

is one of the most important benefits of the CBEA. Using

CUDA required us to change the underlying data structure of

our application, which we could also use with the CBEA. In

our case the data structure redesign was rather easy, however

in other cases this may be more problematic. The main

benefit of using CUDA is the hardware, that increases

performance at a much higher rate than multi-core CPUs or

the CBEA. Furthermore, software written for CUDA can

easily scale with new hardware -- at least when a high

number of thread blocks is used. However, writing software

that achieves close-to-the-maximum performance with

CUDA is very different when compared to most other

programming systems, since thread synchronization or

calculations are typically not the time consuming parts, but

memory accesses to global memory are. We did not optimize

any of our implementations to the maximum possible

performance, instead invested a similar amount of

development time into both the CBE and the CUDA client.

Therefore, our performance measurements should not be

considered as what is possible with the hardware, but rather

what performance can be achieved within a reasonable

development time-frame.

9. RELATED WORK

Scherl et al. [11] compare CUDA and the CBEA for the

so called FDK method for which CUDA seems to be the

better option. Christen et al. [12] explore the usage of CUDA

and the CBEA for stencil-based computation, which

however does not give a clear winner. In contrast, our work

does not strive for the maximum possible performance and

relies on very low cost hardware.

An Exploration of CUDA The Open Astronomy Journal, 2011, Volume 4 161

10. CONCLUSION / FUTURE WORK

The main outcome of our work presented in this article,
is that new upcoming architectures such as CBEA and
CUDA have very strong potential for significant
performance gains in scientific computing. In our work, we
focussed on a specific, data-analysis application from the
gravitational physics community, called Einstein@Home.
This is amongst the largest BOINC-based, public distributed
computing projects. Using these architectures, we
successfully accelerated by several fold, one of the two
computationally intensive routines of the Einstein@Home
client application. Our final CBEA and CUDA
implementations yield comparable performance, although
the development process, software tools, challenges faced,
etc. relevant to these two architectures were completely
different. In this article, we described our experiences with
this software development in great detail.

From the point of view of the Einstein@Home project,

we expect our work to have a major impact. The CUDA

based GPU client will ultimately enable the project to

harness the vast computing power currently inaccessible in

consumer desktop and laptop computer graphics cards.

When the GPU client is deployed, we anticipate the total

computing power of the project to increase substantially. The

CBE client would similarly be extremely helpful to the

project. There are currently 20 million Playstation 3 gaming

consoles sporting the CBE that could potentially compute for

Einstein@Home once our client application is deployed by

the project. That would likely increase the overall computing

power of Einstein@Home many fold. It is worth noting that

the release of a similar Playstation 3 client enabled

Stanford's Folding@Home to quantum leap into the peta-

scale regime in 2007 [13].

In the future, we expect to complete the final

development of the CBEA and GPU clients and address

some of the issues they currently have (as described before

in this article). We will also investigate the use of GPU and

CBE optimized versions of the Hough computation to

accelerate the clients even further (recall, that the Hough

computation is now the most significant bottleneck for these

clients). Lastly, we will also work closely with the

Einstein@Home project team to integrate our CBEA and

GPU clients alongside the currently operational CPU clients,

for a full-scale deployment.

ACKNOWLEDGMENT

 The authors would like to thank NVIDIA and Sony for

providing the hardware that was used for development,

testing and benchmarking our codes. Gaurav Khanna would

also like to acknowledge support from the National Science

Foundation (grant number: PHY-0831631).

REFERENCES

[1] Einstein@Home website. http://einstein.phys.uwm.edu
[2] Hulse RA, Taylor JH. Discovery of a pulsar in a binary system.

Astrophys J Lett 1975; 195:151.
[3] Hello P, Whelan JT, Woan G, Fairhurst S, Guidi GM. Current

status of gravitational-wave observations. Gen Rel Grav 2011; 43:
387.

[4] Smith JR, LIGO Scientific Collaboration. The path to the enhanced
and advanced LIGO gravitational-wave detectors. Class Quant

Gravity 2009; 26(11): 114013.
[5] LIGO Scientific Collaboration. The 8th Amaldi Conference on

Gravitational Waves (Amaldi 8); Class Quant Grav 2010.
[6] Corda C. Interferometric detection of gravitational waves: the

definitive test for general relativity. Int J Mod Phys 2009; D18(14):
2275.

[7] Anderson DP. BOINC: A system for public-resource computing
and storage. In: Proceedings of the 5th IEEE/ACM International

Workshop on Grid Computing. Washington, DC, USA: IEEE
Computer Society 2004.

[8] Breitbart J. Case studies on GPU usage and data structure design.
Master’s thesis. Germany: University of Kassel 2008.

[9] Hackenberg D. Fast Matrix Multiplication on Cell (SMP) Systems
2009. http://www.tu-dresden.de/zih/cell/matmul

[10] NVIDIA Corporation. CUDA parallel reduction [URL]; 2007;
http://developer.download.nvidia.com/compute/cuda/1_1/Website/

Data-Parallel_Algorithms.html
[11] Scherl H, Keck B, Kowarschik M, Hornegger J. Fast gpu-based ct

reconstruction using the Common Unified Device Architecture
(CUDA). In: Eric C. Frey, Ed. USA: Nuclear Science Symposium,

Medical Imaging Conference 2007.
[12] Christen M, Schenk O, Messmer P, Neufeld E, Burkhart H. Accel-

erating stencil-based computations by increased temporal locality
on modern multi- and many-core architectures. In: New Frontiers

in High-performance and Hardware-aware Computing (HipHaC).
Italy 2008.

[13] Folding@Home website. http://folding.stanford.edu

Received: May 20, 2011 Revised: June 08, 2011 Accepted: June 10, 2011

© Breitbart and Khanna; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License

(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the

work is properly cited.

