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Abstract: The motion of a satellite about a rotating triaxial body will be investigated, stressing on the case of slow  

rotation. The Hamiltonian of the problem will be formed including the zonal harmonic J2 and the leading tesseral  

harmonics C22 and S22. The small parameter of the problem is the spin rate ( ) of the primary. The solution proceeds 

through three canonical transformations to eliminate in succession; the short, intermediate and long-period terms. Thus 

secular and periodic terms are to be retained up to orders four and two respectively. 
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1. INTRODUCTION 

To understand the dynamics of a spacecraft or a natural 
particle around a celestial body (a planet, an asteroid or even 
a comet) it’s convenient to take into account the spin rate ( ) 
of the primary, since it is important for several applications 
especially for geodetic satellites and when dealing with 
communication satellites where there’s commensur-ability 
between the satellite period and , and a case of resonance 
arises [1-3]. Considering a slowly rotating earth like planet, 
the addition of tesseral harmonics is necessary [4, 5] ana-
lyzed the orbital dynamics about an asteroid and established 
that the major perturbations acting on the orbiter are due to 
the leading harmonics of the geopotential. In a subsequent 
work [6] he tacked the problem of secular motion in a 2

nd
 

degree and order-gravity field with no rotation qualitatively. 
In this respect the main problem of artificial satellite theory 
is very useful; the major contributors to this subject were [7-
10] formed the Hamiltonian of the motion of an A.S. about a 
planet with an inhomogeneous gravitational field including 
the leading zonal and tesseral harmonics. He used the Whit-
taker variables and then he normalized the Hamiltonian us-
ing the method of elimination of the parallax developed by 
[11]. 

 Instead of obtaining an explicit solution of the problem 
he performed an exhaustion analysis of the problem. The 
method adopted by Palacian, through elegant, but is very 
difficult to include higher order terms and higher order grav-
ity coefficients. 

In this paper the gravitational force exerted by an earth 
like planet on an artificial satellite will be considered, the 
Hamiltonian of the problem will be formed, in terms of the 
Delaunay variables, with the earth’s spin rate  taken as a 
small parameter of O(1).The planet’s potential will be  
considered up to the leading zonal and leading tesseral  
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harmonics, an outline of the perturbation technique is given 
which is based on the Lie- Deprit - Kamel transform. 

 The Hamiltonian is then normalized through three suc-
cessive canonical transformations to eliminating succession 
of the short, intermediate, and long period terms. The proce-
dure followed facilitates such including higher order terms 
and higher coefficients of the geopotential.  

2. THE GEOPOTENTIAL 

The earth’s gravitational potential is usually expressed by 
“ Vinti’s potential”: 
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Where R: the equatorial radius of the earth.
 
μ =GM

e
is the 

product of the gravitational constant and the mass of the 

earth, and known as the earth’s gravitational parameter, (r, , 

) are the geocentric coordinates with  being measured east 

of Greenwich, 
 
P

n

m
sin( )  are the associated legender poly-

nomials, and
nm

c and
nm

s are harmonic coefficients. The 

terms with m=0 correspond to zonal harmonics, those with 

0<m<n correspond to tesseral harmonics, while m=n corre-

spond to sectorial harmonics, 
2

J measures the equatorial 

bulge of the earth and 
 
C

22
 , S

22
measure the elliptical shape 

of the earth's equator. The coefficients C21 and S21 are van-

ishing small and since the origin is taken at the center of 

mass, the coefficients C10, C11 and S11 will be zero; also both 

the tesseral and sectorial harmonics will be simply referred 

to as tesseral harmonics. With the previous considerations, 

and writing the zonal and tesseral harmonics separately, eqn. 

(1) will be:  
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Where 
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Taking into account the orders considered only and using 
the associated legendre functions and the legender polyno-
mial formulas then: 
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 Setting 
  
if + j = F

ij
,C = cos I , S = sin I   (7) 

And substituting 
 
sin = Ssin F

11
  (8) 

Where I is the orbital inclination, f is the true anomaly 

and  is the argument of perigee, then using the trigonomet-

ric formulae developed by [12-15] the factors ( cos
m ) can 

be cancelled out. If  is the longitude of the node measured 

east ward from the (rotating) meridian of Greenwich, then 

from the Fig* (1).  
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Celestial Sphere (1). 
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From (10) and using De Moivre’s theorem 
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Equating the real and imaginary parts, we get 
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Then from (12) we get 
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The general relation, which can be generalized to the re-
cursive relation so from (9*, 13) we get 
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And the tesseral harmonics become in the form 
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3. THE HAMILTONIAN IN TERMS OF THE  

DELAUNAY VARIABLES 

If we consider the Delaunay set of canonical variables 
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Then the equations of motion become 
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Where M is the canonical matrix
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0 I
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I
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, I is the 

identity matrix. And  Ĥ is expressed in terms of the above set 

of canonical variables. Ĥ depends explicitly on time due to 

the measurement of 
 
h

D
 from the rotating meridian of 

Greenwich. The autonomous form of the equations is recov-

ered by: 

(i).  Adjoining to the above set a new pair of conjugate 
variables (

 
k

D
, K

D
) where 

 
k

D
= t + const. , and aug-

menting the Hamiltonian such that: 
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Since   Ĥ does not depend on 
 
K

D
 , it can be taken as con-

stant of integration. So that: 

   
H
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The variable 
 
K

D
 may be identified by means of the second 

of equations (19). 

(ii).  Performing a canonical transformation so that the 
new angular variables become:  

 
l = l

D
 , 
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D
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D
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Where  is the angular speed of the earth. To find the new 
momenta and the new Hamiltonian, we have: 

Where d is the total differential of a function that we 
choose to be zero. Equating the coefficients of earth differen-
tial to zero yields: 
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So in terms of this set of variables the equations of mo-
tion become: 
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Considering as the small parameter of the problem, 
the orders of magnitude of the involved parameters are de-
fined as:  
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The Hamiltonian can now be expressed as a power series 
of  
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Where we retain the component of (28) up to 4
th

 order in , 
i.e. up to J2 in zonal harmonics and up to C22, S22 in tesseral 
harmonics, so the components will be as follows: 
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Where A2 is a zero order constant, according to equations 
(26), (3) and (5) is given by: 
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And the A22 ,B22 are zero order constants given by: 
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4. THE PERTURBATION TECHNIQUE 

We now outline the perturbation technique up to 4
th

 order 
in the secular, 3

rd
 order in the intermediate and 2

nd
 order in 

the short periodic terms. 

Let  be the small parameter of the problem and let the 
considered system of differential equations to be: 
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intermediate terms are those periodic in the longitude of the 

node, 
 
u

2
= h , and the long period terms are those periodic in 

the argument of perigee, 
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= g . The transformated Hamil-

tonians and the corresponding generators will be assumed 

expandable as: 
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We will make use of the following equations during the 
process of elimination. 
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5. ELIMINATION OF SHORT PERIOD TERMS 

The basic identities are: 
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Where we apply the previous equations up to 
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6. ELEMENTS OF THE SHORT PERIOD TRANS-

FORMATION AND ITS INVERSE 

These are obtained from the equations for the vector 
transformation, namely: 
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And for the inverse transformation: 
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7. THE INTERMEDIATE TRANSFORMATION 

The procedure is essentially similar to that at the short 
period transformation with the averages taken over 

2
u , so: 
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change   H H
* ,   H

*
H

** ,   w w
*

, 
  
u ,U u ,U  

Order (1) 



Evolution of the Motion Around a Slowly Rotating Body The Open Astronomy Journal, 2012, Volume 5    5 

   
H

1

** = H
1

* + H
0

*
; w

1

*( ) = H
1

*   (58) 

Where we note that
   

H
0

*

U
1
=U

1( ) = H
0

*
U( )  and   w

*
is inde-

pendent at 
  
u

1
so 

   
H

0

*
; w

1

*( ) = 0  

Order (2) 

   

G
1

= L
1

*

H
2

** = H
2

* + H
1

*
; w

1

*( ) + H
1

**
; w

1

*( ) = H
2

* + 2 H
1

*
; w

1

*( )
 (59) 

We choose 

   

H
2

** = H
2

*

u
2

P
2

* = H
2

*
H

2

** = 2 w
1

*
;H

1

*( )
  (60) 

Let 

  

P
n

* = c
n

ij
cos iu

2
+ ju

3
+

n

ij( )
i, j

  (61) 

Where
n

c are functions of 
 
U

1
and 

ij

n
are numerical con-

stants to account for the phase then 

   

w
1

* =
1

2

c
2

ij
sin iu

2
+ ju

3
+

2

ij( )

i
H

1

*

u
2

+ j
H

1

*

u
3

i, j

  (62) 

Similarly we find order (3), elements of the intermediate 
transformation are obtained by the same equations used for 
the short period transformation and the use of the inter-
changes used previously. The long period transformation and 
its elements are found in a similar manner. 

8. NORMALIZATION 

 Equation (28) shows that the Hamiltonian of the problem 
is degenerate with l is the fast variable, h is intermediate 
variable, and g is slow one. 

 So the Hamiltonian (28) is normalized through three 
successive canonical transformations. 

8.1. The Short Period Terms 
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8.2. Averaging over h
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 and Following the Procedure  

Illustrated we Get 
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8.3. Long Period Transformation 

Averaging over g
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 and following the procedure we get 
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CONCLUSION 

The present work aims at formulating the problem of the 
motion of an artificial satellite around a slowly rotating 
planet, this problem has many applications particularly for 
missions launched to study the potential harmonics of the 
earth(or any other planet),and for communication satellites. 
The formulation is developed in a simple canonical form 
expressed in terms of a set of Delaunay elements modified to 
allow for the appearance of the independent variable in the 
Hamiltonian, this enables using very powerful tools for solv-
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ing for the motion using canonical perturbation approaches 
such as the methods of von Ziepel's and those based on a Lie 
series and transform. It is important to stress the importance 
of such formulation to any lunar satellite (due to the slow 
rotation of the moon). Though the solution would require 
some modification due to the varying nature of the lunar 
potential. In similar works J2 is usually used as the small 
parameter which provides no simple means to account for 
the rotation speed either slow or fast. In the present work the 
rotation speed  is used as the small parameter, thus enabling 
to account for its order. 
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