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Abstract: We review the model of the Voronoi Diagrams which allows to reproduce the large-scale structures of our 

universe as given by the astronomical catalogs. The observed number of galaxies in a given solid angle with a chosen 

flux/magnitude versus the redshift presents a maximum that is a function of the flux/magnitude ; it can be explained by a 

detailed analysis of the standard luminosity function for galaxies as well by two new luminosity function for galaxies. The 

current status of the research on the statistics of the Voronoi Diagrams is reviewed.  
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1. INTRODUCTION 

During the last thirty years the spatial distribution of 

galaxies has been investigated from the point of view of 

geometrical and physical theories. One first target was to 

reproduce the two-point correlation function )(r  for 

galaxies which on average scales as 
1.8

)
5.7

(
Mpc

r
, see [1, 

2]. The statistical theories of spatial galaxy distribution can 

be classified as  

• Levy flights: the random walk with a variable step 

length can lead to a correlation function in agreement with 

the observed data, see [3-6]. 

• Percolation: the theory of primordial explosions can 

lead to the formation of structures, see [7, 8]. Percolation is 

also used as a tool to organize : (i) the mass and galaxy 

distributions obtained in 3D simulations of cold dark matter 

(CDM) and hot dark matter (HDM), see [9], (ii) the galaxy 

groups and clusters in volume-limited samples of the Sloan 

Digital Sky Survey (SDSS), see [10]. 

• Statistical approach The statistics of the voids 

between galaxies was analyzed in the Center for 

Astrophysics Redshift survey, see [11, 12] , in the IRAS 

Point Source Catalog Redshift Survey (PSCz) and Updated 

Zwicky Catalog of Galaxies (UZC), see [13] and in the 

Sloan Digital Sky Survey, see [14]. 

The geometrical models are well represented by the 

concept of Voronoi Diagrams, after the two historical 

records by [15, 16].The concept of Voronoi Diagrams dates 

back to the vortex theory applied to the solar system as 

developed in the 17th century, see Fig. (1) extracted from 

[17, 18]. 
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The first application of the Voronoi Diagrams to the 

astrophysics is due to [19]. The applications of the Voronoi 

Diagrams to the galaxies started with [20], where a 

sequential clustering process was adopted in order to insert 

the initial seeds, and they continued with [21- 35]. An 

updated review of the 3D Voronoi Diagrams applied to 

cosmology can be found in [33, 34]. The 3D Voronoi 

tessellation was first applied to identify groups of galaxies in 

the structure of a super-cluster, see [36-42]. The physical 

models that produce the observed properties of galaxies are 

intimately related, for example through the Lagrangian 

approximation, and can be approximately classified as  

• Cosmological N-body: Through N-body experiments 

by ? it is possible to simulate groups which are analogous to 

the studies of groups among bright Zwicky-catalog galaxies, 

[43, 44] or covariance functions in simulations of galaxy 

clustering in an expanding universe which are found to be 

power laws in the nonlinear regime with slopes centered on 

1.9 [45]. Using gigaparticle N-body simulations to study 

galaxy cluster populations in Hubble volumes, [46] created 

mock sky surveys of dark matter structure to z =1.4 over 

degsq  . 10000  and to z =0.5 over two full spheres. In short, 

N-body calculations seek to model the full nonlinear system 

by making discrete the matter distribution and following its 

evolution in a Lagrangian fashion, while N-body simulations 

are usually understood to concern gravity only. 

• Dynamical Models: Starting from a power law of 

primordial inhomogeneities it is possible to obtain a two-

point correlation function for galaxies with an exponent 

similar to that observed, see [47-49]. 

Another line of work is to assume that the velocity field 

is of a potential type; this assumption is called the Zel'dovich 

approximation, see [50-52].The Zel'dovich formalism is a 

Lagrangian approximation of the fully nonlinear set of 

equations. In this sense it is ``gravity'' only and does not 

include a pressure term. 
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Fig. (1). " God first partitioned the plenum into equal-sized 

portions, and then placed these bodies into various circular motions 

that, ultimately, formed the three elements of matter and the vortex 

systems" ,extracted from [17], volume III , article 46.  

 

• The halo models: The halo model describes nonlinear 

structures as virialized dark-matter halos of different mass, 

placing them in space according to the linear large-scale 

density field which is completely described by the initial 

power spectrum, see [53-55]. Fig. (19) in [1], for example, 

reports the exact nonlinear model matter distribution 

compared with its halo-model representation. 

The absence of clear information on the 3D displacement 

of the physical results as a function of the redshift and the 

selected magnitude characterize the cosmological N-body, 

the dynamical and the hydrodynamical models. This absence 

of detailed information leads to the analysis of the following 

questions:  

• Is it possible to compare the theoretical and 

observational number of galaxies as a function of the redshift 

for a fixed flux/magnitude ?  

• What is the role of the Malmquist bias when theoretical 

and observed numbers of galaxies versus the redshift are 

compared? 

• Is it possible to find an algorithm which describes the 

intersection between a slice that starts from the center of the 

box and the faces of irregular Poissonian Voronoi 

Polyhedrons?  

• Is it possible to model the intersection between a sphere 

of a given redshift and the faces of irregular Poissonian 

Voronoi Polyhedrons?  

 • Does the developed theory match the observed slices of 

galaxies as given, for example, by the 2dF Galaxy Redshift 

Survey?  

• Does the developed algorithm explain the voids 

appearance in all sky surveys such as the RC3? 

• Is it possible to integrate the usual probability density 

functions (PDFs) which characterize the main parameters of 

2D and 3D Poisson Voronoi tessellation (PVT) in order to 

obtain an analytical expression for the survival function?  

• Is it possible to model the normalized areas of (2,3)pV  

with the known PDFs?  

• Can we transform the normalized volumes and areas 

into equivalent radius distributions? 

• Is it possible to derive the probability density function 

for the radii of 2D sections in the Poissonian Voronoi 

Tessellation (PVT) and in a well selected case of non 

Poissonian Voronoi Tessellation (NPVT)? 

• Is it possible to evaluate the probability of having a 

super-void once the averaged void's diameter is fixed? 

• Is it possible to compute the correlation function for 

galaxies by introducing the concept of thick faces of 

irregular Voronoi polyhedrons? 

• Is it possible to find the acoustic oscillations of the 

correlation function at Mpc100  in simulated slices of the 

Voronoi diagrams. 

In order to answer these questions, Section 2 briefly 

reviews the elementary formulas adopted and Section 3 

reviews the standard luminosity function for galaxies as well 

two new ones. The adopted catalogs as well the Malmquist 

bias were presented in Section 4. An accurate test of the 

number of galaxies as a function of the redshift is performed 

on the 2dF Galaxy Redshift Survey (2dFGRS), see Section 

5. Section 6 reports the technique which allows us to extract 

the galaxies belonging to the Voronoi polyhedron. Section 7 

reports the apparent distribution in effective radius of the 3D 

PVT as well as their associated survival functions, the fit of 

the normalized area distribution of the sectional PVT with 

the Kiang function and the exponential distribution. Section 

8 reviews the probability of a plane intersecting a given 

sphere , the stereological approach, and then insert in the 

fundamental integral of the stereology the cell's radius of the 

new PDF. Section 9 simulates the redshift dependence of the 

2dFGRS as well as the overall Third Reference Catalog of 

Bright Galaxies (RC3). Section 10 reports the simulation of 

the correlation function computed on the thick faces of the 

Voronoi polyhedron. 

2. USEFUL FORMULAS 

This Section reviews the elementary cosmology adopted 

and the system of magnitudes. 

2.1. Basic Formulas 

Starting from [56] the suggested correlation between 

expansion velocity and distance is  



50    The Open Astronomy Journal, 2013, Volume 6 L. Zaninetti 

  
V = H

0
D = c

l
z  (1) 

where 0H  is the Hubble constant 
11

0 Mpcskm100= hH , 

with 1=h  when h  is not specified, D  is the distance in 

Mpc  , lc  is the light velocity and z  is the redshift defined as  

  

z =
obs em

em

 (2) 

with obs  and em  denoting respectively the wavelengths of 

the observed and emitted lines as determined from the lab 

source, the so called Doppler effect . Concerning the value of 

0H  we will adopt a recent value as obtained by the Cepheid-

calibrated luminosity of Type Ia supernovae , see [57], 

  
H

0
= (62.3± 5) km s

1
Mpc

1
 (3) 

The quantity zcl  , a velocity , or z  , a number , 

characterizes the catalog of galaxies. 

We recall that the galaxies have peculiar velocities, 

making the measured redshifts a combination of 

cosmological redshift plus a contribution on behalf of the 

peculiar velocity. 

The maximum redshift here considered is 0.1z  

meaning a maximum velocity of expansion of  30000 

s

Km
; up to that value the space is assumed to be Euclidean. 

We now evaluate the error connected with the use of the 

simplest cosmological model. For a zero cosmological 

constant , , we have the following expression for the 

luminosity distance LD   

  

D
L

=
c

l
z

H
0

1+
z(1 q

0
)

1+ 2q
0
z +1+ q

0
z

for = 0  (4) 

where 0q  is the deceleration parameter, see [58, 59]. 

2.2. Magnitude System 

The absolute magnitude of a galaxy , M , is connected to 

the apparent magnitude m  through the relationship  

  

M = m 5Log(
c

l
z

H
0

) 25  (5) 

In an Euclidean ,non-relativistic and homogeneous 

universe the flux of radiation, f  , expressed in 
2Mpc

L
 units, 

where L  represents the luminosity of the sun , is  

  
f =

L

4 D2
 (6) 

where D  represents the distance of the galaxy expressed in 

Mpc , and  

  

D =
c

l
z

H
0

 (7) 

The relationship connecting the absolute magnitude, M  , 

of a galaxy to its luminosity is  

   

L

L
= 10

0.4( M M )

 (8) 

where M  is the reference magnitude of the sun at the 

considered bandpass. 

The flux expressed in 

 

L

Mpc2  units as a function of the 

apparent magnitude is  

 

f = 7.957 108 e
0.921M 0.921m L

Mpc2 ,  (9) 

and the inverse relationship is  

m = M
   
m = M 1.0857ln 0.1256 10

8 f( )  (10) 

The equations in this section will be used in the 

numerical code which allows us to simulate the large scale 

structures as a function of z  and the selected magnitude .  

3. LUMINOSITY FUNCTION FOR GALAXIES 

This Section reviews the standard luminosity function for 

galaxies, and two new luminosity function for galaxies in the 

following LF . 

3.1. The Schechter Function  

The Schechter function , introduced by [60] , provides a 

useful fit for the LF  of galaxies  

  
(L)dL = (

*

L*
)(

L

L*
) exp(

L

L*
)dL  (11) 

here  sets the slope for low values of L  , 
*L  is the 

characteristic luminosity and 
*

 is the normalization. The 

equivalent distribution in absolute magnitude is  

  
( M )dM = (0.4ln10)

*
10

0.4( +1)( M* M )
exp( 10

0.4( M* M )
)dM  (12) 

where 
*M  is the characteristic magnitude as derived from 

the data. The scaling with h  is hM log5
10

*
 and 

][  
33* Mpch . The joint distribution in z and f for galaxies , 

see formula (1.104) in [61] or formula (1.117) in [62], is  

  

dN

d dzdf
= 4 (

c
l

H
0

)
5 z4

(
z2

z
crit

2
)  (13) 

where d  , dz  and df  represent the differential of the solid 

angle , the redshift and the flux respectively. The critical 

value of z , critz  , is  

  

z
crit

2
=

H
0

2 L*

4 fc
l

2
 (14) 

The number of galaxies, ),,( maxminS ffzN  comprised 

between a minimum value of flux, minf , and maximum 

value of flux maxf  , can be computed through the following 

integral  

  

N
S
(z) =

f
min

f
max

4 (
c

l

H
0

)
5 z4

(
z2

z
crit

2
)df  (15) 
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This integral does not have an analytical solution and we 

must perform a numerical integration. 

The number of galaxies in z and f as given by formula 

(13) has a maximum at maxposzz =  , where  

  
z

pos max
= z

crit
+ 2  (16) 

which can be re-expressed as  

   

z
pos max

=
2 + 10

0.4 M 0.4 M*

H
0

2 f c
l

 (17) 

3.2. The Mass-Luminosity Relationship 

A new LF  for galaxies as derived in [63] is  

  

(L)dL = (
1

a (c)
)(

*

L*
)

L

L*

c a

a

exp
L

L*

1

a

dL  (18) 

where 
*

 is a normalization factor which defines the overall 

density of galaxies , a number per cubic Mpc , a1/  is an 

exponent which connects the mass to the luminosity and c  is 

connected with the dimensionality of the fragmentation, 

dc 2=  , where d  represents the dimensionality of the 

considered space: 1,2,3 . The scaling with h  is hM log5
10

*
 

and ][  
33* Mpch . The distribution in absolute magnitude is  

=)( dMM  

  

(0.4ln10
1

a (c)
)

*
10

0.4(
c

a
)( M* M )

exp( 10
0.4( M* M )(

1

a
)

)dM  (19) 

This function contains the parameters 
*M  , a, c and 

*
 

which are derived from the operation of fitting the 

observational data. 

The joint distribution in z  and f  , in presence of the 

LM  LF  (equation (18)) is  

  

dN

d dzdf
= 4 (

c
l

H
0

)
5 z4

(
z2

z
crit

2
)  (20) 

The number of galaxies , ),,( maxminL ffzNM  comprised 

between minf  and maxf  , can be computed through the 

following integral  

   

N
L
(z) =

f
min

f
max

4 (
c

l

H
0

)
5 z4

(
z2

z
crit

2
)df  (21) 

and also in this case a numerical integration must be 

performed. 

The number of galaxies as given by formula (20) has a 

maximum at maxposz  where  

  
z

pos max
= z

crit
c + a( )

a/2

 (22) 

which can be re-expressed as  

   

z
pos max

=
a + c( )

1/2 a

10
0.4 M 0.4 M*

H
0

2 f c
l

 (23) 

3.3. The Generalized Gamma Distribution with Four 

Parameters 

The starting point is the probability density function (in 

the following PDF) named generalized gamma that we report 

exactly as in [64]:  

  

G(x;a,b,c,k) =

k
x a

b

ck 1

e

x a

b

k

b c( )
 (24) 

where  is the gamma function, a  is the location parameter, 

b  is the scale parameter, c  and k  are two shape parameters. 

A LF  can be derived inserting 0=a , Lx =  and 
*

= Lb :  

  

(L;L*
,c,k,

*
) =

*

k
L

L*

ck 1

e

L

L*

k

L* c( )
 (25) 

The mathematical range of existence is <0 L  and the 

number of parameters is four because 0=a  and 
*

 have 

been added. The averaged luminosity is 

  

L =

L* 1+ ck

k

c( )
 (26) 

and the mode is at  

  

L =
ck 1

k

1

k

L*
 (27) 

The magnitude version of the LF  is 

  

( M )dM =

*
0.4ln 10( )k10

0.4ck M M*

e
10

0.4 M M* k

c( )
dM  (28) 

 

The mode when expressed in magnitude is at 

  
M =

1.0857ln
ck 1

k

k
+ M *

 (29) 

This function contains the four parameters c , k , 
*M  

and 
*

, more details as well other two new LF  are reported 

in [65]. 

The joint distribution in z  and f  of the generalized 

gamma LF  is  

  

dN

d dzdf
= 4 (

c
l

H
0

)
5 z4

(
z2

z
crit

2
)  (30) 

The number of galaxies, ),,(4 maxminLF ffzN  of the 

generalized gamma LF  comprised between minf  and maxf , 

can be computed through the following integral:  

  

N
LF 4

(z) =
f
min

f
max

4 (
c

l

H
0

)
5 z4

(
z2

z
crit

2
)df  (31) 

and in this case a numerical integration must be performed. 

The number of galaxies of the generalized gamma LF as 

given by formula (30) has a maximum at maxposz  where  
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z

pos max
= e

1/2
ln 1+ck( ) ln k( )

k z
crit

 (32) 

which can be re-expressed as  

   

z
pos max

=
e

1/2
ln 1+c k( ) ln k( )

k 10
0.4 M 0.4 M*

H
0
k

2 f c
l

 (33) 

4. THE ADOPTED CATALOGS 

We now introduce the processed catalogs of galaxies, the 

statistics of 1024 observed cosmic voids as well the 

Malmquist bias. 

 

Fig. (2). Hammer-Aitoff projection in galactic coordinates of 3316 

galaxies in the RC3 which have BT and redshift. The ZOA is due to 

our own galaxy.  

 

Fig. (3). Hammer-Aitoff projection in galactic coordinates 

(observational counterpart of (2,3)sV  ) of 1130 galaxies in the RC3 

which have BT and 0.035<<0.015 z .  

4.1. The Astronomical Catalogs 

A first example is the 2dFGRS data release available on 

the web site: http://msowww.anu.edu.au/2dFGRS/. In 

particular we added together the file parent.ngp.txt which 

contains 145652 entries for NGP strip sources and the file 

parent.sgp.txt which contains 204490 entries for SGP strip 

sources. Once the heliocentric redshift was selected we 

processed 219107 galaxies with 0.30.001 z . 

A second example is the catalog RC3, see [66], which is 

available at the following address http://vizier.u-

strasbg.fr/viz-bin/VizieR?-source=VII/155. 

This catalog attempts to be reasonably complete for 

galaxies having apparent diameters larger than 1 arcmin at 

the D25 isophotal level and total B-band magnitudes BT, 

brighter than about 15.5, with a redshift not in excess of 

15000 km/s. All the galaxies in the RC3 catalog which have 

redshift and BT are reported in Fig. (2). In the case of RC3 

the covered area is 4  steradians with the exclusion of the 

Zone of Avoidance (ZOA). 

Fig. (3) reports the RC3 galaxies in a given window in z .  

A third example is the Two-Micron All Sky Survey 

(2MASS) which has instruments in the infrared (1-2.2 mμ  ) 

and therefore detects the galaxies in the so called "Zone of 

Avoidance" , see [67, 68]. Fig. (4) reports a spherical cut at a 

given radius of the Local Super-cluster (LSC) according to 

2MASS Redshift Survey (2MRS), which is available online 

at https://www.cfa.harvard.edu/ huchra. In the case of 2MRS 

the covered area is 4  steradians. 

 

Fig. (4). Hammer-Aitoff projection in galactic coordinates of a 

spherical cut of the Large Super Cluster data (LSC) at 

0.01440.0133 z  or 61.6756.9 DMpc  .  

A fourth example is the second CFA2 redshift Survey , 

which started in 1984, and produced slices showing that the 

spatial distribution of galaxies is not random but distributed 

on filaments that represent the 2D projection of 3D bubbles. 

We recall that a slice comprises all the galaxies with 

magnitude 16.5  bm  in a strip of 6  wide and about 130  

long. One of such slice (the so called first CFA strip) is 

visible at the following address http://cfa-www.harvard.edu/ 

huchra/zcat/ ; more details can be found in [69]. The already 

mentioned slice can be down-loaded from http://cfa-

www.harvard.edu/ huchra/zcat/n30.dat/ . 

4.2. Statistics of the Voids 

 The distribution of the effective radius and the radius of 

the maximal enclosed sphere between galaxies of the Sloan 

Digital Sky Survey Data Release 7 (SDSS DR7) has been 

reported in [14]. This catalog contains 1054 voids: Table 1 

shows the basic statistical parameters of the effective radius.  

4.3. Malmquist Bias 

This bias was originally applied to the stars, [70, 71], and 

was then applied to the galaxies by [72]. We now introduce 

the concept of limiting apparent magnitude and the 

corresponding completeness in absolute magnitude of the 

considered catalog as a function of redshift. The observable 

absolute magnitude as a function of the limiting apparent 

magnitude, Lm , is  
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M
L

= m
L

5
10

log
cz

H
0

25  (34) 

The previous formula predicts, from a theoretical point of 

view, an upper limit on the absolute maximum magnitude 

that can be observed in a catalog of galaxies characterized by 

a given limiting magnitude and Fig. (5) reports such a curve 

and the galaxies of the 2dFGRS.  

Table 1. The Statistical Parameters of the Effective Radius in 

SDSS DR7 

Parameter Value 

Elements 1024 

Mean 18.23h
-1

 Mpc 

Variance 23.32 h
-2

 Mpc2 

Standard deviation 4.82 h
-1

 Mpc 

Skewness 0.51 

Kurtosis 0.038 

Maximum value 34.12 h
-1

 Mpc 

Minimum value 9.9 h
-1

 Mpc 

 

Fig. (5). The absolute magnitude M of 202,923 galaxies belonging 

to the 2dFGRS when M  = 5.33 and 
11

0 Mpcskm66.04=H  

(green points). The upper theoretical curve as represented by 

equation (34) is reported as the red thick line when Lm =19.61.  

The interval covered by the LF of galaxies, M , is 

defined by  

  
M = M

max
M

min
 (35) 

where maxM  and minM  are the maximum and minimum 

absolute magnitude of the LF  for the considered catalog. 

The real observable interval in absolute magnitude, LM , is  

  
M

L
= M

L
M

min
 (36) 

We can therefore introduce the range of observable 

absolute maximum magnitude expressed in percent, )(z , as  

.%100=)(
M

M
z L

s  (37) 

This is a number that represents the completeness of the 

sample and, given the fact that the limiting magnitude of the 

2dFGRS is Lm =19.61, it is possible to conclude that the 

2dFGRS is complete for 0.0442z  . In the case of the 

2MRS the limiting magnitude is Lm =11.19, and therefore 

the 2MRS is complete for 0.00016z . This efficiency, 

expressed as a percentage, can be considered to be a version 

of the Malmquist bias. 

Table 2. The Parameters of the Schechter Function for the 

2dFGRS as in Madgwick et al. 2002  

Parameter 2dFGRS 

M
*
-5log10h[mags] (-19.79±0.04) 

 -1.19±0.01 

*
[h

3
 Mpc

-3
] ((1.59±0.1)10

-2
) 

Table 3. The Parameters of the LM  LF  Based on the 

2dFGRS Data ( Triplets Generated by the Author)  

 2dFGRS 

c 0.1 

M*-5log10h[mags] -19±0.1 

* [h
3
 Mpc

-3
] 0.4±0.01 

a 1.3±0.1 

5. PHOTOMETRIC MAXIMUM 

The parameters of the Schechter LF  concerning the 

2dFGRS are reported in Table 2 and those of the LM  LF  

are reported in Table 3. 

It is interesting to point out that other values for h  

different from 1 shift all absolute magnitudes by 5log10h and 

change the number densities by the factor h
3
. Fig. (6) reports 

the number of observed galaxies of the 2dFGRS catalog for a 

given apparent magnitude and two theoretical curves as 

represented by formula (13) which is based on the Schechter 

LF and formula (20) which is based on the LM  LF. A 

similar plot can be done for the generalized gamma LF, see 

Fig. (7). The x
2
 analysis allows to conclude that in the two 

cases here examined the application of the M-L, LF  and the 

generalized gamma LF produce the same or better results in 

respect to the use of the Schechter LF. More details can be 

found in [73, 65]. 

The non-homogeneous structure of the universe can be 

clarified by counting the number of galaxies in one of the 

two slices of 2dFGRS as a function of the redshift when a 

sector with a central angle of 1  is considered, see Fig. (8). 

Conversely, when the two slices are considered together 

the behavior of the number of galaxies as a function of the 

redshift is more continuous, see Fig. (9). 

6. THE 3D VORONOI DIAGRAMS 

The faces of the Voronoi Polyhedra share the same 

property , i.e. they are equally distant from two nuclei. The 

�
'

�
�

�
'

�
�

� �&�' �&� �&�' �&�
-

.
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intersection between a plane and the faces produces 

diagrams which are similar to the edges' displacement in 2D 

Voronoi diagrams. From the point of view of the 

observations it is very useful to study the intersection 

between a slice which crosses the center of the box and the 

faces of irregular polyhedrons where presumably the 

galaxies reside. The general definition of the 3D Voronoi 

Diagrams is given in Section 6.1. The intersection between a 

slice of a given opening angle, for example 3°, and the faces 

of the Voronoi Polyhedra can be realized through an 

approximate algorithm, see next Section 6.2. 

 

Fig. (6). The galaxies of the 2dFGRS with 
  
15.27 bJmag 15.65  or 

   

59253
L

Mpc2
f 83868

L

Mpc2
 (with bJmag representing the relative 

magnitude used in object selection), are isolated in order to 

represent a chosen value of m and then organized in frequencies 

versus heliocentric redshift, (empty circles); the error bar is given 

by the square root of the frequency. The maximum in the 

frequencies of observed galaxies is at z = 0.03. The theoretical 

curve generated by the Schechter LF (formula (13) and parameters 

as in column 2dFGRS of Table 2) is drawn (full line). The 

theoretical curve generated by the M-L LF (formula (20) and 

parameters as in column 2dFGRS of Table 3) is drawn (dashed 

line); x
2
 = 550 for the Schechter function and x

2
 = 503 for the M-L 

function. In this plot M  = 5.33 and h = 0.623. The vertical dotted 

line represents the boundary between complete and incomplete 

samples.  

 

Fig. (7). The galaxies of the 2dFGRS database with 

16.77 bJmag 18.40  or 

 

4677
L

Mpc2 f 21087
L

Mpc2  (with 

bJmag representing the relative magnitude used in object selection), 

are isolated in order to represent a chosen value of m and then 

organized as frequency versus heliocentric redshift, (empty circles); 

the error bar is given by the square root of the frequency. The 

maximum in the frequencies of observed galaxies is at z = 0.085 

when M  = 5.33 and h =1 . The theoretical curve generated by the 

Schechter function of luminosity (formula (13) and parameters as in 

column 2dFGRS of Table 2) is drawn (full line). The theoretical 

curve generated by generalized gamma LF, formula (20), and 

parameters as in column 2dFGRS of Table 3) is drawn (dashed 

line); x
2
= 8078 for the Schechter function and 

2

= 6654 for 

generalized gamma LF.  

 

Fig. (8). Histogram (step-diagram) of the number of galaxies of 

2dFGRS as a function of the redshift in the slice to the right of Fig. 

(19), the number of bins is 50. The circular sector has a central 

angle of 1°.  

 

Fig. (9). Histogram (step-diagram) of the number of galaxies of 

2dFGRS as a function of the redshift when the two slices of Fig. 19 

are added together, the number of bins is 50.  

6.1. General Definition 

The Voronoi diagram for a set of seeds, S, located at 

position xi in R
3
 space is the partitioning of that space into 

regions such that all locations within any one region are 

closer to the generating point than to any other. In the 

following we will work on a three dimensional lattice 

defined by pixelspixelspixels  points, Lkmn. The Voronoi 

polyhedron Vi around a given center i , is the set of lattice 

points Lkmn closer to i than to any j: more formally,  
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L

kmn
V

i
| x

kmn
x

i
| | x

kmn
x

j
 (38) 

where xkmn denotes the lattice point position. Thus, the 

Polyhedra are intersections of half-spaces. Given a center i 
and its neighbor j, the line ij is cut perpendicularly at its 

midpoint yij by the plane hij. Hij is the half-space generated 

by the plane hij, which consists of the subset of lattice points 

on the same side of hij as i ; therefore  

  
V

i
=

j
H

ij
 (39) 

Vi is bounded by faces , with each face fij belonging to a 

distinct plane hij. Each face will be characterized by its 

vertexes and edges. 

6.2. The Adopted Algorithm 

Our method considers a 3D lattice with pixels
3
 points: 

present in this lattice are Ns seeds generated according to a 

random process. All the computations are usually performed 

on this mathematical lattice; the conversion to the physical 

lattice is obtained by multiplying the unit by 
1

=
pixels

side
, 

where side is the length of the cube expressed in the physical 

unit adopted. In order to minimize boundary effects 

introduced by those polyhedron which cross the cubic 

boundary, the cube in which the seeds are inserted is 

amplified by a factor amplify. Therefore the Ns seeds are 

inserted in a volume pixels
3
  amplify, which is bigger than 

the box over which the scanning is performed; amplify is 

generally taken to be equal to 1.2. This procedure inserts 

periodic boundary conditions to our cube. A sensible and 

solid discussion of what such an extension of a cube should 

be can be found in [74]. The set S of the seeds can be of 

Poissonian or non-Poissonian type. Adopting the point of 

view that the universe should be the same from each point of 

view of the observer the Poissonian seeds can represent the 

best choice in order to reproduce the large scale structures. 

The Poissonian seeds are generated independently on the 

X, Y and Z axis in 3D through a subroutine which returns a 

pseudo-random real number taken from a uniform 

distribution between 0 and 1. For practical purposes, the 

subroutine RAN2 was used, see [75]. Particular attention 

should be paid to the average observed diameter of voids, 

DV
obs

, here chosen as  

  
DV obs

36.46Mpc / h  (40) 

see Section 4.2. The number of Poissonian seeds is chosen in 

such a way that the averaged volume occupied by a Voronoi 

polyhedron is equal to the averaged observed volume of the 

voids in the spatial distribution of galaxies; more details can 

be found in [35]. 

We now work on a 3D lattice L nmk ,,  of 
3pixels  elements. 

Given a section of the cube (characterized, for example, by 

2
=

pixels
k ) the various Vi (the volume belonging to the seed 

i) may or may not cross the pixels belonging to the two 

dimensional lattice. A typical example of a 2D cut organized 

in two strips about 75° long is visible in Fig. (10) where the 

Cartesian coordinates X  and Y  with the origin of the axis at 

the center of the box has been used. The previous cut has an 

extension on the Z -axis equal to zero.  

Conversely Fig. (11) reports two slices of 75  long and 

3  wide. In this case the extension of the enclosed region 

belonging to the Z -axis increases with distance according to  

  
Z = X 2

+ y2
tan

2
 (41) 

 

Fig. (10). Portion of the Poissonian Voronoi--diagram Vp(2,3); cut 

on the X-Y plane when two strips of 75° are considered. The 

parameters are pixels= 600 , Ns = 137998 , side = 131908 Km/sec 

and amplify = 1.2 . 

 

Fig. (11). The same as Fig. (10) but now two slices of 75  long and 

3° wide are considered. 

where Z  is the thickness of the slice and  is the opening 

angle, in our case 3 .  
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In order to simulate the slices of observed galaxies a 

subset is extracted (randomly chosen) of the pixels belonging 

to a slice as represented, for example, in Fig. (11). In this 

operation of extraction of the galaxies from the pixels of the 

slice, the photometric rules as represented by formula (13) 

must be respected. 

The cross sectional area of the VP can also be visualized 

through a spherical cut characterized by a constant value of 

the distance to the center of the box, in this case expressed in 

z  units, see Fig. (12) and Fig. (13); this intersection is called 

(2,3)sV  where the index s  stands for sphere.  

 

Fig. (12). The Voronoi--diagram (2,3)sV  in the Hammer-Aitoff 

projection at z  = 0.04. The parameters are pixels = 400, sN  = 

137998, side  = 131908 secKm/  and amplify = 1.2. 

 

Fig. (13). The Voronoi--diagram (2,3)sV  in the Hammer-Aitoff 

projection at z  = 0.09; other parameters as in Fig. (12). 

7. THE STATISTICS OF THE VORONOI DIAGRAMS 

A probability density function (PDF) is the first 

derivative of a distribution function (DF) )(xF  with respect 

to x . In the case where the PDF is known but the DF is 

unknown, the following integral is evaluated  

  
F(x) =

0

x

f (x)dx  (42) 

As a consequence the survival function (SF) is  

  
SF = 1 F(x)  (43) 

 We recall that the PVT is a particular case of the 

Voronoi tessellation in which the seeds are generated 

independently on the X , Y  and Z  axes in 3D. 

7.1. The Kiang Function 

The gamma variate );( cxH  ([19]) is  

  

H (x;c) =
c

(c)
(cx)

c 1
exp( cx)  (44) 

where <0 x , 0> c , and )(c  is the gamma function with 

argument c . The Kiang PDF has a mean of  

 
μ = 1  (45) 

and variance  

  

2
=

1

c
 (46) 

This PDF can be generalized by introducing the 

dimension of the considered space, 1,2,3)=(dd , and   c = 2d  

  

H (x;d ) =
2d

(2d )
(2dx)

2d 1
exp( 2dx)  (47) 

In the case of a 1D PVT, c = 2 is an exact analytical 

result and conversely c is supposed to be 4 or 6 for 2D or 3D 

PVTs, respectively, [19]. The DF of the Kiang function, 

DFK, is  

  

DF
K

= 1
c,cx( )

c( )
 (48) 

where the incomplete Gamma function, ),( za , is defined by  

  
(a, z) =

z
e

tt a 1dt  (49) 

The survival function SK is  

  

S
K

=
c,cx( )

c( )
 (50) 

7.2. Generalized Gamma 

The generalized gamma PDF with three parameters 

cba ,, , [76-78], is  

  

f (x;b,c,d ) = c
ba/c

(a / c)
xa 1

exp( bxc
)  (51) 

The generalized gamma has a mean of  

  

μ =

b
1

c
1+ a

c

a

c

 (52) 

and a variance of  

  

2
=

b
2

c +
2 + a

c

a

c

1+ a

c

2

a

c

2
 (53) 

The SF of the generalized gamma is  
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S
GG

=

a

c
,bxc

a

c

 (54) 

7.3. Ferenc--Neda Function  

A new PDF has been recently introduced, [77], in order 

to model the normalized area/volume in a 2D/3D PVT  

  
FN (x;d ) = C x

3d 1

2 exp( (3d +1)x / 2)  (55) 

where C  is a constant,  

  

C =
2 3d +1

22
3/2 d

3d +1( )
3/2 d

3 / 2d +1/ 2( )
 (56) 

and 1,2,3)=(dd  is the dimension of the space under 

consideration. We will call this function the Ferenc--Neda 

PDF; it has a mean of  

 
μ = 1  (57) 

and variance  

  

2
=

2

3d +1
 (58) 

The SF of the Ferenc--Neda function when 3=d  is  

xS xx
FN

55

3 e5e= +  

  
+

25

2
e

5x x2
+

125

6
e

5x x3
+

625

24
x4

e
5x

 (59) 

7.4. Kiang Function of the Radius  

We now analyze the distribution in effective radius R  of 

the 3D PVT. We assume that the volume of each cell, v , is  

,)(
3

4
=

3R
v  (60) 

where  is a length that connects the normalized radius to 

the observed one. In the following, we derive the PDF for 

radius and related quantities relative to the Kiang function 

and Ferenc--Neda function. The PDF, );( cRHR , of the radius 

corresponding to the Kiang function as represented by (44) is 

  

H
R
(R;c) =

4c 4 / 3
c R3

3

c 1

e
4/3

c R3

3

R2

c( )
3

 (61) 

where <0 R , 0> c  and 0> . The Kiang PDF of the 

radius has a mean of  

  

μ = 1/ 2
2

3
3

3
1/ 3+ c( )

c3 3 c( )
 (62) 

and variance  

  

2
=

1

4

3

2

32

2

3 ( (2 / 3+ c) (c) ( (1/ 3+ c))
2
)

c2/3 2/3
( (c))

2

2
 (63) 

The survival function of the Kiang function in radius is  

  

S
KR

=

c,4 / 3c (
R

)
3

c( )
 (64) 

Table 4. Values of x
2
 for the Cell Normalized Area-Distribution 

Function of Vp(2,3); here Ti are the Theoretical 

Frequencies and Oi are the Sample Frequencies. Here 

we have 8517 Poissonian Seeds and 40 Intervals in the 

Histogram 

PDF Parameter x
2 

H(x;c) Eq.()) c = 2.07 114.41 

P(x;b) Eq.()) d = 1 85.38 

 

7.5. The Ferenc--Neda Function of the Radius  

The PDF as a function of the radius, obtained from (55) 

and inserting 3=d , is  

  

FN
R
(R;d ) =

400000
5R14e

20

3

R3

3

243
15

 (65) 

The mean of the Ferenc--Neda function is 

 
μ = 0.6  (66) 

and the variance is  

 

2
= 0.0085

2
 (67) 

The SF of the Ferenc--Neda function of the radius when 

3=d  is  

626
3

3

3

20

33
3

3

3

20

3

3

3

20

3
9

200

3

20
= ++ ReReeS

RRR

RFN  

  
+

4000

81
e

20

3

R3

3

R9 3 9
+

20000

243
e

20

3

R3

3

R12 4 12
 (68) 

7.6. Kiang Distribution of Vp(2,3) in Radius  

Here, we first model the normalized area-distribution 

(2,3)pV  with Kiang PDFs as represented by (44), see Table 

4.  

The PDF, );(23 cRHR , as a function of the radius 

corresponding to the Kiang function as represented by (44) 

for Vp(2,3) is  

  

H
R23

(R;c) =

2c
c R2

2

c 1

e

c R2

2

R

c( )
2

 (69) 
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where <0 R , 0> c  and 0> . The Kiang PDF of the 

radius for Vp(2,3) has a mean of  

  

μ =
c +1/ 2( )

c c( )
 (70) 

and variance  

  

2
=

2 c c( )( )
2

c +1/ 2( )( )
2

c c( )( )
2

 (71) 

The survival function of the Kiang function , 23KRS  , in 

radius for Vp(2,3) is  

  

S
KR23

=

c,2
c R2

2

c( )
 (72) 

A comparison of the survival function SKR23 of the radius 

and the exponential distribution is reported in Fig. (14).  

 

Fig. (14). The survival function, SKR23, of the radius of the Kiang 

function for Vp(2,3) as represented by (72) when 13=  Mpc, 

2.25=c  and 67.1=
2

 with 100 points (dashed line). The 

survival function, SKR23, of the radius of the exponential 

distribution for Vp(2,3) as represented by (78) when 7=  Mpc 

and 9.27=
2

 with 100 points (full line).  

7.7. Exponential Distribution of Vp(2,3) in Radius 

Another PDF that can be considered in order to model 

the normalized area distribution of Vp(2,3) is the exponential 

distribution,  

  
p(x) =

1

b
exp

x

b
 (73) 

which has an average value  

  x = b  (74) 

In the case of the normalized areas b = 1, Table 4 reports 

the 
2

 values of the two distributions adopted here. The 

PDF, PR23(R;c), as a function of the radius corresponding to 

the exponential distribution as represented by (73) for 

Vp(2,3) is  

  

p
R23

(R;c) =
2e

R2

2

R
2

 (75) 

where <0 R , 0> . The exponential PDF of the radius 

for Vp(2,3) has a mean of  

 

μ =

3/2

2
2

2

3/2
 (76) 

and variance  

 

2
=

2
4( )

4
 (77) 

The survival function of the exponential distribution , 

23ERS , in radius for (2,3)pV  is  

  
S

ER23
= e

R2

2

 (78) 

Fig. (14) reports a comparison between the survival 

function of Kiang distribution and the exponential 

distribution for Vp(2,3). More details can be found in [79]. 

8. STEREOLOGY 

 We first briefly review how a PDF f(x) changes to g(y) 

when a new variable y(x) is introduced. We limit ourselves to 

the case in which y(x) is a one-to-one transformation. The 

rule for transforming a PDF is  

  

g( y) =
f (x)

|
dy

dx
|

 (79) 

Analytical results have shown that sections through D-

dimensional Voronoi tessellations are not themselves D-1 

Voronoi tessellations, see [80-82]. According to [83], the 

probability of a plane intersecting a given sphere is 

proportional to the sphere's radius, R . Cross-sections of 

radius r  may be obtained from any sphere with a radius 

greater than or equal to r . We may now write a general 

expression for the probability of obtaining a cross-section of 

radius r  from the whole distribution (which is denoted 

)(RF ):  

  

f (r) =
r

F(R)R
1

R

r

R2 r 2

dR  (80) 

which is formula (A7) in [83]. That is to say, )(rf  is the 

probability of finding a bubble of radius R , multiplied by 

the probability of intersecting this bubble, multiplied by the 

probability of obtaining a slice of radius r  from this bubble, 

integrated over the range of rR . A first example is given 

by the so called monodisperse bubble size distribution (BSD) 

which are bubbles of constant radius R  and therefore  
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F(R) =

1

R
 (81) 

which is defined in the interval ][0,R  and  

  

f (r) =
r

R2 r 2 R
 (82) 

which is defined in the interval ][0,R , see Eq. (A4) in [83]. 

The average value of the radius of the 2D-slices is  

  
r = 1/ 4R  (83) 

the variance is  

  
2

= 2 / 3R2
1/ 16R2 2

 (84) 

and finally, 

0.493.=1.151,= KurtosisSkewness  (85) 

8.1. PVT Stereology 

In order to find our )(RF , we now analyze the 

distribution in effective radius R  of the 3D PVT. We 

assume that the volume of each cell, v , is  

  
v =

4

3
R3

 (86) 

In the following, we derive the PDF for the radius and 

related quantities relative to the Ferenc--Neda function. The 

PDF as a function of the radius according to the rule of 

change of variables (79), is obtained from (55) on inserting 

3=d  and was already defined, see equation 65. The average 

radius is 

  R = 0.6065  (87) 

Table 5. The Parameters of f(r), Eq. (91), Relative to the PVT 

Case 

Parameter Value 

Mean 0.4874 

Variance 0.02475 

Mode 0.553 

Skewness -.5229 

Kurtosis -.1115 

 

and the variance is 

  
2
(R) = 0.00853  (88) 

The introduction of the scale factor, b , with the new 

variable bRR '
/=  transforms Eq. (65) into  

  

F(R'
,b) =

400000
5R'14

e

20

3

R'3

b3

243b15
 (89) 

We now have )(RF  as given by Eq. (65) and the 

fundamental integral (80), as derived in [84], is  

25/6,1/6,1/

6

17
3,0,7/3,2/3,1/

624,1

3,5

336
|

9

100
1032/3=)( rrGKrf  (90) 

  0 r 1 

where K  is a constant,  

  K = 1.6485  (91) 

and the Meijer G -function is defined as in [85-87].Details 

on the real or complex parameters of the Meijer G -function 

are given in the Appendix of [88]. Table 5 shows the average 

value, variance, mode, skewness, and kurtosis of the already 

derived )(rf .  

Asymptotic series are 

rrf 2.7855)(  (92) 

0,rwhen  

and  

( ) ( )
2

10.13610.006)( + rrrf  (93) 

  
when r 1 

 The distribution function (DF) is  

=)(rDF  

  

1

90
K3

5/6
10

2/3G
4,6

4,2 100

9

2r6
|
8/3,1,2/3,1/3,

19

6
,0

1,7/6,1/2,5/6 1

3

 (94) 

  0 r 1 

The already defined PDF is defined in the interval 

10 r . In order to make a comparison with a normalized 

sample which has a unitarian mean or an astronomical 

sample which has the mean expressed in Mpc, a 

transformation of scale should be introduced. The change of 

variable is bxr /=  and the resulting PDF is  

Table 6. Parameters of f(x,b), Eq. (96), Relative to the PVT 

Case 

Parameter b = 2.051 b = 34 

Mean 1. 16.57Mpc 

Variance 0.104 28.62Mpc
2
 

Mode 1.134 18.80Mpc
2
 

Table 7. The Values of 2  for the Cell Normalized Area-

Distribution of (2,3)pV . The Number of 2D Cells is 

789, the 3D Seeds are 15 000 and the Number of Bins 

in the Histogram is 30 

PDF Parameter x
2
 

H(x;c) (Eq.()) c = 5.8 250.8 
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f (x;c) (Eq.()) d = 5.8 250.8 

f (x;c) (Eq.()) b = 0.0514 127 

 

=),( bxf  

  

2

3
K 3

6
10

3 3 xG
3,5

4,1 100

9

2x6

b6
|
7/3,2/3,1/3,0,

17

6

5/6,1/6,1/2
(
1

b
)

2
 (95) 

  0 r b  

As an example, Table 6 shows the statistical parameters 

for two different values of b. Skewness and kurtosis do not 

change with a transformation of scale.  

We briefly recall that a PDF )(xf  is the first derivative 

of a distribution function (DF) )(xF  with respect to x . 

When the DF is unknown but the PDF known, we have  

  
F(x) =

0

x

f (x)dx  (96) 

The survival function (SF) )(xS  is  

  
S(x) = 1 F(x)  (97) 

and represents the probability that the variate takes a value 

greater than x . The SF with the scaling parameter b is  

=),( bxSF  

3

5/61,7/6,1/2,

,0
6

19
1/3,8/3,1,2/3,

6

26
4,2

4,6

2/35/6 1
|

9

100
1030.018311

b

x
G  (98) 

  0 r b.  

A first application can be a comparison between the real 

distribution of radii of (2,3)pV , see Fig. (15), and the already 

obtained rescaled PDF ),( bxf . The fit with the rescaled 

),( bxf  is shown in Fig. (16) and Table 7 shows the 
2

 of 

three different fitting functions.  

 

Fig. (15). PVT diagram Vp(2, 3) when 789 2D cells generated by 

15 000 3D seeds are considered. 

 

Fig. (16). Histogram (step-diagram) of PVT Vp(2,3) when 789 2D 

cells, generated by 15 000 3D seeds, are considered. The 

superposition of the f(x,b), Eq. (100), is displayed. 

The PDF Af  of the areas of (2,3)pV  can be obtained 

from )(rf  by means of the transformation, see [84], 

  

f
A
( A) = f (r)

A
1/2

1/2

2
A 1/2  (99) 

that is,  

  

f
A
( A) = 0.549 3

6
10

3 G
3,5

4,1 100

9

A3

|
7/3,2/3,1/3,0,

17

6

5/6,1/6,1/2 2/3
 (100) 

The already derived fA(A) has average value, variance, 

mode, skewness and kurtosis as shown in Table 8.  

Table 8. Parameters of fA(A), Eq. (100), Relative to the PVT 

Case 

Parameter Value 

Mean 0.824 

Variance 0.204 

Mode 0.858 

Skewness 0.278 

Kurtosis -.0.337 

 

Fig. (17). The PDF fA, Eq. (100), as a function of A (full line) and 

FN(x;d), Eq. (55), when d=2 (dotted line).  
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Since, for r close to 0 , rrf )(  from Eq. (100) it 

follows that 0(0)Af , in particular fA(0) = 0.443 and Fig. 

(17) shows the graph of fA. 

The previous figure shows that sections through 3-

dimensional Voronoi tessellations are not themselves 2- 

dimensional Voronoi tessellations because (0)Af  has a finite 

value rather than 0 as does the 2D area distribution; this fact 

can be considered a numerical demonstration in agreement 

with [82]. The distribution function AF  is given by  

  

F
A

= 0.0183
5/6

10
2/3G

4,6

4,2 100

9

A3

|
8/3,1,2/3,1/3,

19

6
,0

1,7/6,1/2,5/6 1

3

 (101) 

Consider a three-dimensional Poisson Voronoi diagram 

and suppose it intersects a randomly oriented plane : the 

resulting cross sections are polygons. 

A comparison between AF  and the area of the irregular 

polygons is shown in Fig. (18). In this case the number of 

seeds is 300000  and we processed 100168  irregular 

polygons obtained by adding together results of cuts by 41  

triples of mutually perpendicular planes. The maximum 

distance between the two curves is 0.039=maxd . 

As concerns the linear dimension, in our approximation 

the two-dimensional cells were considered circles and thus, 

for consistency, the radius r of an irregular polygon was 

defined as 

  

r =
A

1/2

 (102) 

 

Fig. (18). Comparison between data (empty circles) and theoretical 

curve (continuous line) of the distribution of areas of the planar 

cross sections.  

that is, r is the radius of a circle with the same area, A, as the 

polygon. The assumption of sphericity can be considered an 

axiom of the theory here presented, but for a more realistic 

situation the stereological results will be far more complex. 

More details can be found in [88]. 

8.2. NPVT Stereology 

An example of NPVT is represented by a distribution in 

volume which follows a Kiang function as given by Eq. (44). 

The case of PVT volumes indicates 5=c , or 6=c , the so 

called Kiang conjecture: we will take c  as a variable. The 

resulting distribution in radius once the scaling parameter b  

is introduced is  

  

F
K

(R,b,c) =

4c 4 / 3
c R3

b3

c 1

e

4/3
c R3

b3

R2

c( )b3
 (103) 

The average radius is  

  

R =
2

3
3

3 b 1/ 3+ c( )

2 c3 3 c( )
 (104) 

and the variance is  

  

2
(R) =

3
2/3

2
2/3b2

2 / 3+ c( ) c( ) + 1/ 3+ c( )( )
2

4c2/3 2/3 c( )( )
2

 (105) 

The skewness is  

  

=

c( )( )
3

c 3 c( ) 1/ 3+ c( ) 2 / 3+ c( ) + 2 1/ 3+ c( )( )
3

2 / 3+ c( ) c( ) 1/ 3+ c( )( )
2

3/2
 (106) 

and the kurtosis is given by a complicated analytical 

expression. Fig. (19) shows a superposition of the effective 

radii of the voids in SDSS DR7 with a superposition of the 

curve of the theoretical PDF in the radius, ),,( cbRFK , as 

represented by Eq. (103). Table 9 shows the theoretical 

statistical parameters.  

 

Fig. (19). Figure 19. Histogram (step-diagram) of the effective 

radius in the SDSS DR7 with a superposition of the PDF in radius 

of the NPVT spheres, FK(R, b, c), as represented by Eq. (103). The 

number of bins is 30, b=31.33 Mpc, and c = 1.768. 

Table 9. The Values of 2  for the Cell Normalized Area-

Distribution of Vp(2,3). The Number of 2D cells is 789, 

the 3D Seeds are 15 000 and the Number of Bins in the 

Histogram is 30 

Parameter Value 

Mean 18.23h
-1

 Mpc 

Variance 23.31h
-2

 Mpc
2
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Standard deviation 4.82 h
-1

 Mpc 

Skewness 0.072 

Kurtosis -0.162 

Table 10.  NPVT Parameters of f(r)NPVTK, Eq. (108) 

Parameter Value 

Mean 0.488 

Variance 0.0323 

Mode 0.517 

Skewness -.114 

Kurtosis 2.614 

 

The result of the integration of the fundamental Eq. (80) 

inserting c = 2 gives the following PDF for the radius of the 

cuts  

1/6,1/2

3,04/3,2/3,1/

624,0

2,4

2/336
|

9

16
233.4148=)( rGrrf NPVTK  (107) 

  0 r 1 

The statistics of NPVT cuts with c =2 are shown in Table 

10. 

 

Fig. (20). Figure 20. Histogram (step-diagram) of the simulated 

effective radius of SDSS DR7 with a superposition of the PDF in 

radius of the PVT spheres as represented by Eq. (103). The artificial 

sample has a minimum value of 10/h Mpc, the number of bins is 30, 

b= 31.5/h Mpc, and c = 1.3. 

On introducing the scaling parameter b , the PDF which 

describes the radius of the cut becomes  

  

f (x,b)
NPVTK

= 3.4148 3
6 3 x2

2/3G
2,4

4,0 16

9

2x6

b6
|
4/3,2/3,1/3,0

1/6,1/2 b 2
 (108) 

  0 r b  

The SF of the second NPVT case, NPVTKSF , with the 

scaling parameter b , is  

  

SF(x,b)
NPVTK

= 1 0.28453
5/6

2
3 G

3,5

4,1 16

9

2x6

b6
|
5/3,1,2/3,1/3,0

1,1/2,5/6 1

3

 (109) 

  0 r b.  

A careful exploration of the distribution in effective 

radius of SDSS DR7 reveals that the detected voids have 

radius  10/h Mpc. This observational fact demands the 

generation of random numbers in the distribution in radii of 

the 3D cells as given by Eq. (103) with a minimal value of 

10/h Mpc. The artificial sample is generated through a 

numerical computation of the inverse function [89] and 

displayed in Fig. (20); the sample's statistics are shown in 

Table 11. 

More details can be found in [88]. 

9. THE CELLULAR STRUCTURE OF THE 

UNIVERSE  

From a simplified point of view the galaxies belonging to 

a given catalog are characterized by the astronomical 

coordinates, the redshift and the apparent magnitude. 

Starting from the second CFA2 redshift Survey, the catalogs 

were organized in slices of a given opening angle, 3  or 6 , 

and a given angular extension, for example 130 . When 

plotted in polar coordinates of zcl  the spatial distribution of 

galaxies is not random but distributed on filaments. 

Particular attention should be paid to the fact that the 

astronomical slices are not a plane which intersects a 

Voronoi Network. In order to quantify this effect we 

introduce a confusion distance, DVc, as the distance after 

which the half altitude of the slices equalizes the observed 

average diameter DV
obs

  

Table 11.  The Statistical Parameters of the Artificially Gener-

ated Radius with a Lower Bound of 10 /h Mpc, c = 1.3 

and b =31.5/h Mpc 

Parameter Value 

Mean 18.69h
-1

 Mpc 

Variance 22.74 h
-2

 Mpc
2 

Standard deviation 4.76 h
-1

 Mpc 

Skewness 0.33 

Kurtosis -0.623 

Maximum value 31.27 h
-1

 Mpc 

Minimum value 10 h
-1

 Mpc 

 

  
DV

c
tan( ) =

1

2
DV obs

 (110) 

where  is the opening angle of the slice and DV
obs

  the 

averaged diameter of voids. In the case of 2dFGRS 3=  

and therefore 
sec

Km
DVc

4
10 2.57=  when 

sec

Km
DV obs

2700= . 

For values of clz greater than DVc the voids in the 

distribution of galaxies are dominated by the confusion. For 

values of zcl  lower than DVc the filaments of galaxies can 

be considered the intersection between a plane and the faces 

of the Voronoi Polyhedrons. A measure of the portion of the 

sky covered by a catalog of galaxies is the area covered by a 
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unitarian sphere which is 4  steradians or 
129600

 square 

degrees. In the case of 2dFGRS the covered area of two 

slices of 75° long and 3° wide, as in Fig. (23), is 
1414

 

square degrees or 0.13 sr. In the case of RC3 the covered 

area it is 4  steradians with the exclusion of the Zone of 

Avoidance, see Fig. (2). In the following we will simulate the 

2dFGRS, a catalog that occupies a small area of the sky, the 

RC3 a catalog that occupies all the sky and the CFA2 

catalog. 

In the case of 3C3 we demonstrate how it is possible to 

simulate the Zone of Avoidance in the theoretical simulation. 

The paragraph ends with a discussion on the Eridanus super-

void also known as "Cold Spot". 

9.1. The 2dFGRS  

Fig. (21) shows the galaxies of the 2dFGRS with 0.3<z  

in galactic coordinates and the two strips in the 2dFGRS are 

shown in Fig. (22). 

Fig. (23) conversely reports the 2dfGRS catalog when a 

slice of 375  is taken into account. This slice represents 

the object to simulate. 

The previous observational slice can be simulated by 

adopting the Voronoi network reported in Fig. (11). 

The distribution of the galaxies as given by the Voronoi 

Diagrams is reported in Fig. (24) where all the galaxies are 

considered. In this case the galaxies are extracted according 

to the integral of the Schechter function in flux (formula (15) 

with parameters as in Table 2). Table 12 reports the basic 

data of the astronomical and simulated data of the 375  

slice. 

 

Fig. (21). Hammer-Aitoff projection in galactic coordinates of 

230540 galaxies in the 2dfGRS which have bJmag and redshift < 

0.3. 

When conversely a given interval in flux (magnitudes) 

characterized by minf  and maxf  is considered the number of 

galaxies, SCN , of a 3  slice can be found with the following 

formula  

  

N
SC

= N
C

f
min

f
max

4 (
c

l

H
0

)
5 z4

(
z2

z
crit

2
)df

f
min,C

f
max ,C

4 (
c

l

H
0

)
5 z4

(
z2

z
crit

2
)df

 (111) 

where Cminf ,  and Cmaxf ,  represent the minimum and 

maximum flux of the considered catalog and Nc all the 

galaxies of the considered catalog; a typical example is 

reported in Fig. (25). 

 

Fig. (22). Cone-diagram of all the galaxies in the 2dFGRS. This 

plot contains 203249 galaxies. 

Table 12. Real and Simulated data of the slice 75° long and 3° 

wide 

 2dFGRS Simulation 

Elements 62559 62563 

Zmin 0.001 0.011 

Zpos-max 0.029 0.042 

Zave 0.0651 0.058 

Zmax 0.2 0.2 

 

 

Fig. (23). Slice of 75°— 3° in the 2dFGRS. This plot contains 

62559 galaxies and belongs to the 2dFGRS Image Gallery available 

at the web site: http://msowww.anu.edu.au/2dFGRS/. 
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Fig. (24). Polar plot of the pixels belonging to a slice 75° long and 

3° wide. This plot contains 62563 galaxies, the maximum in the 

frequencies of theoretical galaxies is at z = 0.043. In this plot M  = 

5.33 and h=0.623. 

 

Fig. (25). Polar plot of the pixels belonging to a slice 75° long and 

3° wide. Galaxies with magnitude 15.02 < bJmag < 15.31 or 

46767< 

 

L

Mpc2  < 61063 

 

L

Mpc2 . The maximum in the frequencies 

of theoretical galaxies is at z = 0.029, NSC = 2186 and NC = 62559. 

In this plot M  = 5.33 and h = 0.623. 

 

Fig. (26). The galaxies in the RC3 which have BT and redshift are 

organized in frequencies versus galactic latitude b (dashed line). 

The theoretical fit represents Ni (full line).  

9.2. The Third Reference Catalog of Bright Galaxies 

We now test the concept of an isotropic universe. This 

can be by done by plotting the number of galaxies comprised 

in a slice of 360° in galactic longitude versus a variable 

number b  in galactic latitude, for example 6°. The number 

of galaxies in the RC3 versus galactic latitude is plotted in 

Fig. (26). 

The solid angle d  in spherical coordinates (r, , ) is  

  
d = sin( )d d  (112) 

Table 13.  Real and Simulated Data without the Zone of 

Avoidance in the RC3 Catalog 

  RC3 No ZOA 

Elements 3316 4326 

Zmin 5.7x10
-7

 8.9x10
-3

 

Zpos-max 5.6x10
-3

 8.9x10
-2

 

Zave 1.52x10
-2

 7.96x10
-2

 

Zmax 9.4x10
-2

 0.14 

 

In a slice of b360  the amount of solid angle, , is 

   
= 2 ((cos(90 ) cos(b + b)) (cos(90 ) cos(b)))steradians  (113) 

The approximate number of galaxies in each slice can be 

found through the following approximation. Firstly, we find 

the largest value of the frequencies of galaxies, Fi, versus b , 

max(Fi) where the index i denotes a class in latitude. We 

therefore find the largest value of i , )( imax . The 

introduction of the multiplicative factor M   

  

M =
max(F

i
)

max(
i
)

 (114) 

obtains the following theoretical evaluation of the number of 

galaxies iN  as a function of the latitude,  

  
N

i
= M

i
 (115) 

This number, Ni, as a function of b  is plotted in Fig. (26). 

The simulation of this overall sky survey can be done in 

the following way:  

 • The pixels belonging to the faces of irregular 

polyhedron are selected according to the distribution in z of 

the galaxies in the RC3 catalog which have redshift and BT. 

 • A second operation selects the pixels according to the 

distribution in latitude in the RC3 catalog, see Fig. (27).  

• In order to simulate a theoretical distribution of objects 

which represent the RC3 catalog without the Zone of 
Avoidance we made a series of 6° slices in latitude in the 

RC3 catalog, selecting Ni pixels in each slice, see Fig. (28). 

In order to ensure that the range in z is correctly described 

Table 13 reports zmin, zpos-max, zave and zmax which represent the 

minimum z, the position in z of the maximum in the number 

of galaxies, and the maximum z in the RC3 catalog or the 

simulated sample.  
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9.3. The CFA2 Catalog 

The results of the simulation can be represented by a 

slice similar to that observed (a strip of 6  wide and about 

130  long) , see Fig. (29). 

A typical polar plot once the "scaling" algorithm is 

implemented , see [35] , is reported in Fig. (30); it should be 

compared with the observations , see Fig. (31). 

Fig. (32) reports both the CFA2 slice as well the 

simulated slice.  

 

Fig. (27). Hammer-Aitoff projection of 3317 pixels belonging to a 

face of an irregular Voronoi Polyhedron. The Zone of Avoidance at 

the galactic plane follows Fig. (2). This plot simulates the RC3 

galaxies which have BT and redshift. The galaxies are extracted 

according to the integral of the Schechter function in flux (formula 

(15) with parameters as in Table 2). 

 

Fig. (28). Hammer-Aitoff projection of 4326 pixels belonging to a 

face of an irregular Voronoi Polyhedron. This plot simulates the 

RC3 galaxies which have BT and redshift but the Zone of Avoid-

ance at the galactic plane is absent. The galaxies are extracted ac-

cording to the integral of the Schechter function in flux (formula 

(15) with parameters as in Table 2)  

 

Fig. (29). Polar plot of the little cubes belonging to a slice 130  long 

and 6 wide.  

9.4. The Eridanus Supervoid 

A void can be defined as the empty space between 

filaments in a slice and the typical diameter has a range of 

hMpc/ 50][11 , see [90] and [91]. The probability, for 

example, of having a volume 3 times bigger than the average 

is 
3

10 3.2  for PDF (55) when 3=d  and 
3

10 2.1  for PDF 

(47) when 2.75=d . Particularly large voids are called super-

voids and have a range of hMpc/ 163][110 . 

 

 

Fig. (30). Polar plot of the little cubes (red points) when the ”scal-

ing” algorithm is applied. Parameters as in Figure 29. This plot 

simulates the CFA2 slice. 

 

Fig. (31). Polar plot of the real galaxies (green points) belonging to 

the second CFA2 redshift catalog. 

 

Fig. (32). Polar plot of the real galaxies (green points) belonging to 

the second CFA2 redshift catalog and the little cubes (red points). 

 Special attention should be paid to the Eridanus super-

void of 300 Mpc in diameter. This super-void was detected 

by the Wilkinson Microwave Anisotropy Probe (WMAP), 

see [92-94], and was named Cold Spot. The WMAP 

measures the temperature fluctuations of the cosmic 

microwave background (CMB). Later on the astronomers 
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confirmed the largest void due to the fact that the density of 

radio sources at 1.4 GHz is anomalously low in the direction 

of the Cold Spot, see [95] and [96]. The standard statistics of 

the Voronoi normalized volume distribution in 3D covers the 

range [0.1-10]. In the case of a Eridanus super-void the 

normalized volume is 3
10 1.37=

27

300
  and the connected 

probability of having such a super-void is 1.4710
-18

 when the 

Ferenc & Neda function with d = 3, formula (55), is used and 

0 when the Kiang function with d = 2.75, formula (47) is 

used. 

 

Fig. (33). Hammer-Aitoff projection of the SDSS-FIRST sources 

with complex radio morphology belonging to the RC3, prs = 0.09. 

Other parameters as in Fig. (28). 

Due to this low probability of having such a large 

normalized volume we mapped a possible spatial distribution 

of the SDSS-FIRST (the Faint Images of the Radio Sky at 

Twenty cm survey) sources with complex radio morphology 

from the theoretical distribution of galaxies belonging to the 

RC3. The fraction of galaxies belonging to the 2dFGRS 

detected as SDSS-FIRST sources with complex radio 

morphology is less than 10% according to Section 3.8 in 

[97]. We therefore introduced a probability, prs, that a galaxy 

is a radio source. The number of SDSS-FIRST sources Nrs in 

the RC3 which are SDSS-FIRST sources with complex radio 

morphology is  

  
N

rs
= p

rs
* N

g
 (116) 

where Ng is the number of galaxies in the theoretical RC3. 

From a visual inspection of Fig. (28) and Fig. (33) it is 

possible to conclude that the voids increase in size when 

radiogalaxies which are a subset of the galaxies are 

considered. 

10. THE CORRELATION FUNCTION FOR 
GALAXIES 

 Galaxies have the tendency to be grouped in clusters and 

a typical measure is the computation of the two-points 

correlation function for galaxies, see [98, 6]. The correlation 

function can be computed in two ways: a local analysis in 

the range [0-16]Mpc/h and an extended analysis in the range  

[0-200]Mpc/h. 

10.1. The Local Analysis 

A first way to describe the degree of clustering of 

galaxies is the two point correlation function )(rGG , usually 

presented in the form  

  GG
= (rr

G
) GG  (117) 

where GG =1.8 and MpchrG
1

5.77=  (the correlation length) 

when the range MpchrMpch 11
16<<0.1  is considered, see 

[99] where 118149 galaxies were analyzed. 

In order to compute the correlation function, two 

volumes were compared: one containing the little cubes 

belonging to a face, the other containing a random 

distribution of points. From an analysis of the distances of 

pairs, the minimum and maximum were computed and 

nDD(r) was obtained, where nDD(r) is the number of pairs of 

galaxies with separation within the interval /2]/2,[ drrdrr + . 

A similar procedure was applied to the random elements in 

the same volume with the same number of elements and 

nRR(r) is the number of pairs of the Poissonian Process. 

According to formula (16.4.6) in [100] the correlation 

function is:  

  
GG

(r) =
n

DD
(r)

n
RR

(r)
1  (118) 

 To check whether GG  obeys a power law or not we 

used a simple linear regression test with the formula:  

  
Log

GG
= a + b Log r  (119) 

which allows us to compute 
ba

Gr
/

10=  and GG =-b. 

We now outline the method that allow us to compute the 

correlation function using the concept of thick faces, see 

[101]. A practical implementation is to consider a decreasing 

probability of having a galaxy in the direction perpendicular 

to the face. As an example we assume a probability, )(xp , of 

having a galaxy outside the face distributed as a Normal 

(Gaussian) distribution. 

  

p(x) =
1

(2 )
1/2

exp
x2

2
2

 (120) 

where x  is the distance in Mpc  from the face and  the 

standard deviation in Mpc . Once the complex 3D behavior 

of the faces of the Voronoi Polyhedron is set up we can 

memorize such a probability on a 3D grid ),,( kjiP  which 

can be found in the following way 

 • In each lattice point ),,( kji  we search for the nearest 

element belonging to a Voronoi face. The probability of 

having a galaxy is therefore computed according to formula 

(120).  

 • A number of galaxies, 
3

*= sidenNG  is then inserted 

in the box; here *n  represents the density of galaxies. 

 Fig. (34) visualizes the edges belonging to the Voronoi 

diagrams and Fig. (35) represents a cut in the middle of the 

probability, ),,( kjiP , of having a galaxy to a given distance 

from a face. 

A typical result of the simulation is reported in Fig. (36) 

where the center of the smaller box in which the correlation 

function is computed is the point belonging to a face nearest 

to the center of the big box. 
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Fig. (34). 3D visualization of the edges of the Poissonian Voronoi–

diagram. The parameters are pixels= 60, Ns = 12, side = 96.24 

Mpc, h = 0.623 and amplify= 1.2. 

 

Fig. (35). Cut in the middle of the 3D grid P(i, j, k) which repre-

sents a theoretical 2D map of the probability of having a galaxy. 

The Voronoi parameters are the same as in Fig. (34) and  = 

0.8Mpc. The X and Y units are in Mpc. 

 

Fig. (36). The logarithm of the correlation function is visualized 

through points with their uncertainty (vertical bar), the asymptotic 

behavior of the correlation function GG is reported as dash-dot-dash 

line; in our simulation GG=2.04 and rG = 5.08 Mpc. The standard 

value of the correlation function is reported as a dotted line; from the 

point of view of the observations in average GG=1.08 and rG = 5 

Mpc. Parameters of the simulation as in Fig. (34). 

From an analysis of Fig. (36) we can deduce that the 

correlation function GG  of the simulation has a behavior 

similar to the standard one. Perhaps the value rG is a simple 

measure of the face's thickness, FR . From this point of 

view on adopting a standard value of the expanding shell 

thickness, R  = 
12

R
 and assuming that the thickness of the 

shell is made by the superposition of two expanding shells 

the following is obtained  

  

R
F

R

6

Dobs

h12
= 3.62 Mpc  (121) 

where 0.623=h  has been used. The correlation dimension 

2D , see [1], is connected with the exponent  through the 

relation:  

  
D

2
= 3  (122) 

Here there is the case in which the mass M(r) increases as 

1.2r , in the middle of a one dimensional structure ( 

rrM )( ) and a two dimensional sheet (
2

)( rrM ), see 

[100]. In this paragraph the dependence of the correlation 

function on the magnitude is not considered. 

10.2. The Extended Analysis 

A second definition of the correlation function takes 

account of the Landy-Szalay border correction, see [102], 

  
LS

(s) = 1+
n

DD
(s)

n
RR

(s)
2

n
DR

(s)

n
RR

(s)
 (123) 

where )(snDD , )(snDD  and )(snDR  are the number of 

galaxy-galaxy, random-random and galaxy-random pairs 

having distance s , see [103]. A random catalog of galaxies 

in polar coordinates can built by generating a first random 

number 
2

 z  in the z-space and a second random angle in 

the interval [0,75] . A test of our code for the correlation 

function versus a more sophisticated code is reported in Fig. 

(37) for the 2dFVL volume limited (VL) sample, where the 

data available at the Web site http://www.uv.es/martinez/ 

have been processed. 

 

Fig. (37). Redshift-space correlation function for the 2dFGRS sam-

ple limited at z = 0.12 as given by our code (empty stars) and the 
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results of [103] (full points) for 2dFVL. The covered range is [40  

200] Mpc/h. 

 

 

Fig. (38). Redshift-space correlation function for the 2dfGRS sam-

ple (empty stars) and the Voronoi sample (full points). The covered 

range is [40-200]Mpc/h. 

 

The pair correlation function for the vertexes of the 

Poissonian Voronoi Polyhedron presents a typical damped 

oscillation, see Fig. (5, 4, 11) in [104], Fig. (2) in [103] and 

Fig. (3) in [105]. Here conversely: (a) we first consider a set 

of objects belonging to the faces of the irregular Polyhedron; 

(b) we extract from the previous set a subset which follows 

the photometric law and then we compute the pair 

correlation function. The difference between our model and 

the model in [103] for 2dFVL can be due to the luminosity 

color segregation presents in 2dFVL but not in our Voronoi 

type model. A typical result is reported in Fig. (38) where it 

is possible to find the correlation function of 2dfGRS with 

astronomical data as reported in Fig. (22) as well as the 

correlation function of the Voronoi network with simulated 

data as reported in Fig. (24). 

A careful analysis of Fig. (38) allows us to conclude that 

the behavior of the correlation function is similar for the 

astronomical data as well as the simulated Voronoi-data. The 

oscillations after 100 Mpc  are classified as acoustic, [106]. 

11. CONCLUSIONS 

11.1. Photometric Maximum  

The observed number of galaxies in a given solid angle 

with a chosen flux/magnitude versus the redshift presents a 

maximum that is a function of the flux/magnitude. From a 

theoretical point of view, the photometric properties of the 

galaxies depend on the chosen law for the LF . The three 

LF s here adopted predict a maximum in the theoretical 

number of galaxies as a function of the redshift once the 

apparent flux/magnitude is fixed, for the Schechter LF  see 

formula (13), for the LM  LF  see formula (20) and for the 

generalized gamma LF  see formula (30). 

The theoretical fit representing the number of galaxies as 

a function of the redshift can be compared with the real 

number of galaxies of the 2dFGRS which is theory-

independent. The superposition of theoretical and observed 

fit is acceptable , see Fig. (6). Particular attention should be 

paid to the Malmquist bias and to equation (37) that 

regulates the upper value of the redshift that defines the 

complete sample. 

12. 3D VORONOI DIAGRAMS  

The intersection between a plane and the 3D Voronoi 

faces is well known as (2,3)pV . The intersection between a 

slice of a given opening angle, for example 3 , and the 3D 

Voronoi faces is less known and has been developed in 

Section 6.2. This intersection can be calibrated on the 

astronomical data once the number of Poissonian seeds is 

such that the largest observed void matches the largest 

Voronoi volume. Here the largest observed void is 2700 

secKm/  and in order to simulate, for example, the 2dFGRS, 

137998 Poissonian seeds were inserted in a volume of 

3
)/ (131908 secKm . The intersection between a sphere and the 

3D Voronoi faces represents a new way to visualize the 

voids in the distribution of galaxies, see Section 6.2. In this 

spherical cut the intersection between a sphere and the 3D 

Voronoi faces is no longer represented by straight lines but 

by curved lines presenting in some cases a cusp behavior at 

the intersection, see Fig. (12). In line of principle the spatial 

distribution of galaxies at a given redshift should follow such 

curved lines. 

13. STATISTICS OF THE VOIDS  

The statistical properties of the voids between galaxies 

can be well described by the volume distribution of the 

Voronoi Polyhedra. Here two distributions of probability 

were carefully compared: the old Kiang function here 

parametrized as a function of the dimension d  , see formula 

(44), and the new distribution of Ferenc & Neda , see 

formula (55), which is a function of the selected dimension 

d . The analysis of the normalized areas of (2,3)pV  is a 

subject of research rather than a well-established fact and we 

have fitted them with the Kiang function and the exponential 

distribution. The 
2

 value indicates that the exponential 

distribution fits more closely the normalized area distribution 

of (2,3)pV  than does the Kiang function, see Table 4. This 

fact follows from the comparison between the exponential 

and Kiang distributions of the radius, see Fig. (14). 

Therefore, the one parameter survival function of the radius 

of the exponential distribution for (2,3)pV , 23ERS , as 

represented by (78), may model the voids between galaxies. 

14. SIMULATIONS OF THE CATALOGS OF 
GALAXIES 

By combining the photometric dependence in the number 

of galaxies as a function of the redshift with the intersection 

between a slice and the Voronoi faces, it is possible to 

simulate the astronomical catalogs such as the 2dFGRS, see 

Section 9.1. Other catalogs such as the RC3 which covers all 

the sky (except the Zone of Avoidance) can be simulated 

through a given number of spherical cuts, for example 25, 

with progressive increasing redshift. This simulation is 

visible in Fig. (27) in which the theoretical influence of the 
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Zone of Avoidance has been inserted, and in Fig. (28) in 

which the theoretical RC3 without the Zone of Avoidance 

has been modeled. Fig. (33) reports the subset of the galaxies 

which are radiogalaxies. 

15. CORRELATION FUNCTION  

The standard behavior of the correlation function for 

galaxies in the short range ]/ 10[0 hMpc  can be simulated 

once 12 Poissonian seeds are inserted in a box of volume 

3
)/ (96.24 hMpc  . In this case the model can be refined by 

introducing the concept of galaxies generated in a thick face 

belonging to the Voronoi Polyhedron. The behavior of the 

correlation function in the large range ]/ 200[40 hMpc  of the 

Voronoi simulations of the 2dFGRS presents minimum 

variations from the processed astronomical data, see Fig. 

(38). We now extract a question from the conclusions of 

[103]. “Third, the minimum in the large-distance correlation 

functions of some samples demands explanation: is it really 

the signature of voids?'' Our answer is “yes''. The minimum 

in the large scale correlation function is due to the combined 

effect of the large empty space between galaxies (the voids) 

and to the photometric behavior of the number of galaxies as 

a function of the red-shift. 

16. STEREOLOGICAL APPROACH  

In this review analytical formulas have been provided 

which model the distributions of the lengths and areas of the 

planar sections of three-dimensional Poisson Voronoi 

diagrams: in particular, it has been shown that they are 

related to the Meier G  function. This finding is consistent 

with the analytical results presented in [107], where it is 

proved that nonlinear combinations of gamma variables, 

such as products or quotients, have distributions 

proportional, or closely related, to the Meijer G  distribution. 

The analytical distributions rF  and AF  been compared with 

results of numerical simulations. 
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