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Abstract: The problem of vibrations of fluid-conveying pipes resting on a two-parameter foundation model such as the 

Pasternak-Winkler model is studied in this paper. Fluid-conveying pipes with ends that are pinned-pinned, clamped-

pinned and clamped-clamped are considered for study. The frequency expression is derived using Fourier series for the 

pinned-pinned case. Galerkin’s technique is used in obtaining the frequency expressions for the clamped-pinned and 

clamped-clamped boundary conditions. The effects of the transverse and shear parameters related to the Pasternak-

Winkler model and the fluid flow velocity parameter on the frequencies of vibration are studied based on the numerical 

results obtained for various pipe end conditions. From the results obtained, it is observed that the instability caused by the 

fluid flow velocity is effectively countered by the foundation and the fluid conveying pipe is stabilized by an appropriate 

choice of the stiffness parameters of the Pasternak-Winkler foundation. A detailed study is made on the influence of 

Pasternak-Winkler foundation on the frequencies of vibration of fluid conveying pipes and interesting conclusions are 

drawn from the numerical results presented for pipes with different boundary conditions. 
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INTRODUCTION 

 The design of a pipeline transporting fluids involves not 

only strength calculations as per the specified codes, but also 

analysis of the behaviour of the pipeline under different op-

erating conditions. The latter part is not fully covered in the 

various design codes. Vibration and stability analysis of such 

pipelines is an important part of the design process. The 

technology of transporting fluids, through long pipelines, 

covering different types of terrain, has to take into considera-

tion the dynamic aspects of the system, most fundamental of 

which is the natural frequency. It is known from previous 

work that as the fluid velocity is increased to its critical 

value, the natural frequency of the pipeline tends to zero. 

Literature abounds with various analysis techniques for dif-

ferent end conditions and different models of the fluid-

conveying pipeline. A brief survey of the relevant literature, 

is presented in a recent paper by Chellapilla and Simha [9], 

in 2007. Of particular interest are the papers by Gregory and 

Païdoussis [1], in 1966 and Païdoussis and Issid [2] in 1974, 

which have dealt with the issues of stability of pinned-

pinned, clamped-clamped and cantilevered fluid-conveying 

pipes, even in the presence of a tensile force and a harmoni-

cally perturbed flow field. However, all the above studies did 

not consider elastic foundation conditions. 

 In practice, long, cross-country pipelines rest on an elas-

tic medium such as a soil, and hence, a model of the soil 

medium must be included in the analysis. The Winkler  
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model, in which soil is represented by a series of constant 

stiffness, closely spaced linear springs, is a very popular 

model of the soil employed in many studies, perhaps because 

it is simple a linear model. Many researchers, Stein & To-

briner [3], Lottati and Kornecki [4], Dermendjian-Ivanova 

[5] and Raghava Chary et al. [6] studied fluid-conveying 

pipes resting on elastic foundation. Recently, in 2002, Doaré 

et al. [7] studied instability of fluid conveying pipes on Win-

kler type foundation. In all these studies, the soil was mod-

eled as a Winkler foundation model. 

 However, a real soil medium is more complex in its elas-

tic behaviour. To address the deficiencies of a Winkler 

model, the two-parameter foundation models were devel-

oped in which, an interaction between the springs of the 

Winkler model is included to obtain a more realistic model 

of the soil. The Pasternak model is one such formulation. In 

the Pasternak model, an incompressible shear layer is intro-

duced between the Winkler springs and the pipe surface. The 

springs are connected to this shear layer, which is capable of 

resisting only transverse shear, thus allowing for “shear in-

teraction” between the Winkler springs. There is a good 

amount of literature on the analysis of fluid conveying pipes 

resting on one-parameter elastic foundation models like the 

Winkler model, and also on the behaviour of beams on two-

parameter foundations. Elishakoff & Impollonia [8], in 2001, 

analysed the stability of fluid conveying pipes on partial 

elastic foundation, considering both Winkler and rotary 

foundations. Very recently, Chellapilla and Simha [9], in 

2007, studied the effect of a Pasternak foundation on the 

critical velocity of a fluid-conveying pipe. 

 In this paper, the above work is extended to the study of 

the effect of the Pasternak foundation on the natural frequen-
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cies of the pipeline for the pinned-pinned, clamped-clamped 

and clamped-pinned boundary conditions. Two-term Fourier 

series solution is obtained for the pinned-pinned condition 

while the two-term Galerkin method has been employed to 

get results for the other two cases. The paper is organized in 

the following way: First, fundamental frequencies of the pipe 

without fluid flow and resting on a two-parameter elastic 

foundation are obtained and compared with those of a simi-

lar beam. Next, fluid with flow velocity is introduced and 

analysed for different conditions. Results are presented 

showing the variation of natural frequencies for various val-

ues of the foundation stiffness parameters, flow velocities 

and mass ratios. 

THEORETICAL DEVELOPMENT 

 In the development of the equations governing the mo-

tion of the pipeline, the assumptions made are the following 

– The pipe is long and straight, thus facilitating the use of 

Euler-Bernoulli beam theory; the motions are small so that 

the system can be analysed by the linear theory; and, the 

effects of internal pressure and external forces are neglected 

in the analysis. The equation of motion for a fluid-conveying 

pipe of length L with lateral displacement w, resting on a 

two-parameter foundation shown in Fig. (1) of reference [9] 

is given by: 

EI
4w

x4
+ M

2w

t2
+ Av2 k2( )

2w

x2

+   2 Av
2w

x t
+ k1w =   0 

         (1) 

 In the above equation, A is the mass of pipe/unit 

length, v is the steady flow velocity of fluid, E is the

modulus of elasticity of the pipe material, I is it’s moment of 

inertia, M is the total mass of pipe plus fluid/unit length, k1

represents the Winkler foundation stiffness parameter and k2

represents the additional shear constant parameter of the 

foundation. In Eq. (1) above, the first term accounts for the 

elastic force, the second term represents the inertia force due 

to the acceleration of the pipe with fluid, the third, the inertia 

force of the fluid flowing in a curved path, the fourth term 

represents the inertia force due to Coriolis acceleration and 

the last term is due to the Winkler foundation. The free vi-

bration solution for three simple boundary conditions is ob-

tained in what follows. 

Pinned-Pinned Pipe 

 The boundary conditions for a pinned-pinned pipe are 

w(0,t) = w(L,t) = 0

2w(0,t)

x2
=

2w(L,t)

x2
= 0

          (2) 

 Taking the solution of Eq. (1) which satisfies the bound-

ary conditions Eq. (2) as 

w(x, t) = an sin
n x

Ln=1,3,5,...

sin jt +

an sin
n x

Ln=2,4,6,...

cos jt, j = 1,2,3,... 
        (3) 

where j represents the natural frequency of the j
th

mode of 

vibration. Following the method given in [6], substituting 

Eq. (3) in Eq. (1) and expanding in a Fourier series we have 

an equation of the form: 

K j
2
MI a{ } = 0            (4) 

where K is the stiffness matrix whose elements are enumer-

ated in [6], I is the identity matrix and a
T
={a1,a2,…..,an}. 

Setting the determinant of the coefficient matrix above equal 

to zero and retaining the first two terms of the above equa-

tion, we get the frequency equation, Eq. (5), making use of 

the following non-dimensional parameters: 

=
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M
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V 2
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        (5) 

Clamped-Pinned and Clamped-Clamped Pipe 

 The boundary conditions for a clamped-pinned pipe are 

w(0,t) = w(L,t) = 0

w(0,t)

x
=

2w(L,t)

x2
= 0

          (6) 

 And those for a clamped-clamped pipe are 

w(0,t) = w(L,t) = 0

w(0,t)

x
=

w(L,t)

x
= 0

          (7) 

 We assume the deflection of the pipe to be of the form 

w(x,t) = n
x

L
ei t

          (8) 

 In Eq. (8), denotes the real part, n x L( )  is a series 

of beam eigen-functions r ( )

given by [10]: 



26    The Open Acoustics Journal, 2008, Volume 1 Chellapilla and Simha 

r ( ) = cosh r( ) cos r( )

r sinh r( ) sin r( )( )  ,

r = 1,2,3,...., n ; =
x

L

r =
cosh r cos r

sinh r sin r

          (9) 

 In the above equation, r is the frequency parameter of 

the pipe without fluid flow, which is considered as a beam, 

and it’s values are:

1= 3.926602 and 2 =7.068583 for the pinned-clamped 

case and 

1= 4.730041 and 2 =7.853205 for the clamped-

clamped case. 

 Substituting Eq. (8) in the equation of motion Eq. (1) 

gives 

Ln = EI
4

x4
+ Av2 k2( )

2w

x2
+

 2i Av
x

+ k1 M 2( ) =   0 

      (10) 

 Minimizing the mean square of the residual nL  over the 

length of the pipe using Galerkin’s method, 

Ln ( ) r

x

L
dx = 0,    r = 1,2,3,...N        (11) 

 Substituting Eq. (9) and using the non-dimensional pa-

rameters, we obtain, 

Ln( ) = ar

r
iv
+ V 2

2( ) r
''

+2i 1/2V r
'
+ 1

2( ) rr=1

      (12) 

where the derivatives of  are with respect to . The above 

equation is multiplied by s and using the orthogonal prop-

erty of the eigenfunctions and the values of the resulting in-

tegrals from Felgar [10], the following infinite system of 

equations in ar is obtained. 

ar r
4
+ 1 - 2( ) + V 2 - 2( ) arCrs( )

s=1

+

2i 1/2V arbrs( )
s=1

== 0

       (13) 

 Setting the resulting determinant of the coefficient matrix 

to zero and using only the first two terms, we have the fol-

lowing frequency equations in j:

 For the clamped-pinned case it is: 

j
4

1
4 + 2

4 + C11 +C22( ) V 2
2( )

+4 V 2
2( )b12

2 + 2 1

j
2
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2
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1
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1
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2

C11C22 C12C21( )

= 0

      (14) 

 For the clamped-clamped case it is: 

j
4

1
4 + 2

4 + C11 +C22( ) V 2
2( )

+4 V 2
2( )b12

2 + 2 1

j
2

+

1
4 + 1( ) 2

4 + 1( ) +

V 2
2( )

2
4+

1
( )C11+

1
4+

1
( )C22

+ V 2
2( )

2

C11C22( )

= 0

      (15) 

 In Eqs. (14) and (15), the constants C11 etc. are integral 

values, which are taken from Felgar [10] and reproduced in 

Tables 1 and 2. The above equations are quadratic in j
2
, and 

solving for j, we obtain the fundamental frequencies for the 

clamped-pinned and clamped-clamped cases respectively. 

RESULTS AND DISCUSSION 

 The results are presented for the following cases: a) No-

fluid, no-flow, pipe on two-parameter elastic foundation; b) 

Fluid conveying pipe – no foundation; c) Fluid conveying 

pipe – Winkler foundation only and d) Fluid conveying pipe 

– both Winkler and Pasternak foundations. Comparison has 

been made with available literature wherever possible and 

new results have been presented for fluid conveying pipes on 

two-parameter foundation. For the pinned-pinned boundary 

condition, numerical results have been obtained considering 

the first two terms of the equation resulting from using Fou-

rier series. It is assumed that the mode shapes of the pipe 

will not change with fluid flow and hence, for the clamped-

pinned and the clamped-clamped boundary conditions, the 

modes that are assumed in the present work are for a pipe 

without fluid flow (beam). 

Case 1: No-Flow: 1, 2 Varying 

 Results have been obtained for the no-flow condition, 

where V = 0 and  =0. This condition constitutes a beam on 

elastic foundation. Tables 3 and 4 compare values of the  
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Table 2. Integral Values b12, C11, C22, C12, C21 for Clamped-

Clamped Beam as Enumerated by Felgar [13] 

Parameter Clamped-Clamped 

bmn

4 2
m

2
n

4
n

4
m

n n m m( ) 1+ 1( )
m+n

Cmm m m 2 m m( )

Cmn

4 2
m

2
n

4
n

4
m

n n m m( ) 1+ 1( )
m+n

fundamental frequencies with those obtained by Chen, et al.

[11]. It is seen that the present results are in very good 

agreement with those of Chen, et al. In Fig. (1), the funda-

mental frequency parameter 1 is plotted against Winkler 

foundation parameter 1 for varying values of the Pasternak 

foundation parameter 2, for the pinned-pinned case. The 

results show that the frequency increases appreciably for 

values of 1 greater than 1000. 

 Figs. (2,3) show the results for the clamped-pinned and 

the clamped-clamped boundary conditions respectively. 

Here, too, the trend is similar. 

Case 2: Fluid Conveying Pipe : No Foundation

 Results for a pipe with fluid flow have been presented for 

no foundation and compared with available literature. Table 

5 shows the values of the first two frequency parameters 1

and 2 for a pinned-pinned fluid-conveying pipe. In this 

table, values of the velocity parameter are varying from zero 

to the critical value for different values of the mass ratio pa-

rameter ,with both 1 and 2 = 0. The critical flow velocity 

for each case has been computed following the method given 

by Chellapilla & Simha [9]. Fig. (4) shows the variation of 

the frequency parameter 1 with flow velocity parameter V

for different values of the mass ratio  for the pinned-pinned 

boundary condition. For V=0 and for V=Vcr, there is no dif-

ference in the frequency parameter for any value of . For 

intermediate values of V, there is a slight decrease in the fre-

quency parameter for increasing values of . The results for 

clamped-pinned and the clamped-clamped cases also follow 

the same trend and are shown in Tables 6 and 7. There is 

very good agreement in the values of 1 with those obtained 

by Païdoussis & Issid [2], for the pinned-pinned and 

clamped-clamped cases. 

Case 3: Fluid Conveying Pipe : Winkler Foundation Only

 Next, results obtained for the condition where 2 = 0 are 

presented. This represents the presence of only the Winkler 

foundation. Table 8 shows some representative values of 1

for different values of and the Winkler foundation parame-

ter 1 for all the three boundary conditions. Fig. (5) shows the 

plot of 1 versus V for different values of the mass ratio 

and 1 for the pinned-pinned boundary condition. As ex-

pected, the Winkler foundation has a stabilizing effect in the 

pipe and increasing values of 1 tend to increase both the 

critical flow velocity Vcr and the fundamental frequency 1.

Figs. (6,7) show the plots for clamped-pinned and the 

clamped-clamped cases respectively. A similar trend is no-

ticed in these cases also. These results compare very well 

with those of Raghava Chary et al. [6]. 

Table 1. Integral Values b12, C11, C22, C12, C21 for Clamped-Pinned Beam as Enumerated by Felgar [13] 

Parameter Clamped-Pinned 
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m n

4
n

4
m

( 1)m+n 2
n +

2
m ( 2

n + 1)( 2
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Table 3. Fundamental Frequency Parameter 1  (Pinned-

Pinned Pipe) for No-Flow Condition 

1 2 1 exact (Ref. [11]) 1 present % Variation 

0.0 3.141 3.141 0.0 

0.01 3.149

0.1 3.217

0.5 3.476 3.476 0.0

1.0 3.735 3.736 0.02

2.5 4.296 4.297 0.02

10.0 5.721

0.0 

100.0 9.959

0.0 3.748 3.748 0.0

0.01 3.752

0.1 3.793

0.5 3.960 3.960 0.0

1.0 4.143 4.143 0.0

2.5 4.582 4.582 0.0

10.0 5.850

102

100.0 9.984

0.0 10.024 10.024 0.0

0.01 10.024

0.1 10.026

0.5 10.036 10.036 0.0

1.0 10.048 10.048 0.0

2.5 10.083 10.084 0.009

10.0 10.257

104

100.0 11.867

0.0 31.621 31.623 0.006

0.01 31.623

0.1 31.623

0.5 31.622 31.623 0.003

1.0 31.622 31.624 0.006

2.5 31.623 31.625 0.006

10.0 31.631

106

100.0 31.700

%variation=

1 present 1 exact

1 exact

100

Table 4. Fundamental Frequency Parameter 1

(Clamped-Clamped Pipe) for No-Flow Condition 

1 2 1 exact (Ref. [11]) 1 present % Variation 

0.0 4.730 4.730 0.0

0.01 4.733

0.1 4.769

0.5 4.869 4.916 0.965

1.0 4.994 5.083 1.782

2.5 5.320 5.505 3.477

10.0 6.827

0.0 

100.0 11.456

0.0 4.950 4.950 0.0

0.01 4.953

0.1 4.984

0.5 5.071 5.114 0.847

1.0 5.182 5.264 1.582

2.5 5.477 5.649 3.14

10.0 6.905

102

100.0 11.473

0.0 10.123 10.122 0.009

0.01 10.123

0.1 10.126

0.5 10.137 10.142 0.049

1.0 10.152 10.162 0.098

2.5 10.194 10.222 0.274

10.0 10.503

104

100.0 12.845

%variation=

1 present 1 exact

1 exact

100

Fig. (1). Pinned-pinned pipe, no-flow condition: Influence of 2 on 

1 for various values of 1.
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Fig. (2). Pinned-clamped pipe, no-flow condition: Influence of 2

on 1 for various values of 1.

Fig. (3). Clamped-clamped pipe, no-flow condition: Influence of 2

on 1 for various values of 1.

Table 5. First Two Frequency Parameters 1, 2  for 

Pinned-Pinned Fluid-Conveying Pipes without 

Foundation for Various Values of 

= 0.1 = 0.3 = 0.5 

V

1 2 1 2 1 2

0 9.869 39.478 9.869 39.478 9.869 39.478

0.1 9.864 39.473 9.864 39.474 9.864 39.475

0.2 9.849 39.459 9.848 39.463 9.847 39.466

0.3 9.823 39.436 9.821 39.443 9.820 39.450

0.4 9.787 39.404 9.784 39.416 9.781 39.429

0.5 9.741 39.362 9.736 39.382 9.731 39.401

1 9.346 39.013 9.328 39.091 9.310 39.168

1.5 8.652 38.424 8.612 38.599 8.574 38.773

2 7.579 37.583 7.516 37.897 7.455 38.208

2.5 5.935 36.470 5.855 36.967 5.779 37.456

3 2.898 35.057 2.839 35.784 2.784 36.497

3.141 0.0 34.597 0.0 35.399 0.0 36.183

Fig. (4). Pinned-pinned pipe, no foundation: Influence of  on 1

for various values of V.

Table 6. First Two Frequency Parameters 1, 2  for 

Clamped-Pinned Fluid-Conveying Pipes without 

Foundation for Various Values of 

= 0.1 = 0.3 = 0.5 

V

1 2 1 2 1 2

0 15.418 49.964 15.418 49.964 15.418 49.964

0.1 15.414 49.960 15.414 49.961 15.413 49.962

0.2 15.402 49.949 15.401 49.952 15.400 49.955

0.3 15.383 49.929 15.381 49.936 15.379 49.944

0.4 15.356 49.902 15.352 49.915 15.348 49.927

0.5 15.321 49.867 15.315 49.887 15.309 49.907

1 15.027 49.573 15.003 49.653 14.979 49.732

1.5 14.525 49.080 14.472 49.260 14.420 49.439

2 13.793 48.380 13.702 48.702 13.612 49.021

2.5 12.792 47.465 12.657 47.971 12.526 48.471

3 11.454 46.321 11.275 47.056 11.105 47.778

3.5 9.646 44.929 9.433 45.942 9.234 46.929

4 7.017 43.265 6.806 44.606 6.614 45.904

4.499 0.0 41.294 0.0 43.019 0.0 44.678

Case 4: Fluid Conveying Pipe : Two Parameter Founda-
tion

 Finally, new results for varying values of 2 have been 

presented. Table 9 tabulates the fundamental frequency pa-

rameter 1 for various values of 1, 2 and V and for =0.1 

and 0.5, for the pinned-pinned condition. Fig. (8) shows the 

effect of the second foundation parameter on the fundamen-

tal frequency as well as on the critical flow velocity for the 

pinned-pinned boundary condition. A comparison for values 

of 1 = 100, 500 and 1000 shows that with increasing values 

of 2, both 1 and V increase significantly. The figure also  
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Table 7. First Two Frequency Parameters 1, 2  for 

Clamped-Clamped Fluid-Conveying Pipes without 

Foundation for Various Values of 

= 0.1 = 0.3 = 0.5 

V

1 2 1 2 1 2

0 22.373 61.672 22.373 61.672 22.373 61.672

0.1 22.370 61.669 22.370 61.670 22.369 61.671

0.2 22.361 61.659 22.360 61.662 22.359 61.666

0.3 22.347 61.642 22.344 61.650 22.341 61.657

0.4 22.326 61.619 22.322 61.633 22.317 61.646

0.5 22.300 61.589 22.293 61.610 22.285 61.631

1 22.081 61.340 22.051 61.423 22.021 61.507

1.5 21.712 60.921 21.645 61.110 21.578 61.297

2 21.185 60.330 21.067 60.666 20.952 61.000

2.5 20.491 59.560 20.311 60.088 20.136 60.609

3 19.613 58.604 19.360 59.369 19.118 60.120

3.5 18.530 57.451 18.197 58.500 17.885 59.523

4 17.207 56.087 16.793 57.470 16.410 58.809

4.5 15.590 54.496 15.100 56.265 14.657 57.965

5 13.588 52.652 13.040 54.866 12.557 56.974

6 7.317 48.069 6.847 51.371 6.459 54.459

6.378 0.0 45.952 0.0 49.751 0.0 53.279

Fig. (5). Pinned-pinned pipe, 2 = 0: Variation of 1 with V for 

various values of 1 and .

shows that higher critical velocity is obtained by only in-

creasing 2, without increasing 1.

T hese results are for a mass ratio =0.1. In Figs. (9,10), 

the variation of 1 with V for 1 = 0 and different values of 

2 and , for the pinned-pinned boundary condition is shown. 

This corresponds to the case where there is no Winkler com-

ponent in the foundation and only the shear parameter is pre-

sent. It is seen that as the shear parameter is increased, the 

frequency parameter increases appreciably, indicating that  

the shear constant of the foundation has a significant role in 

the vibration characteristics of the fluid conveying pipe. This 

is especially more pronounced as the shear parameter in-

creases beyond 2.5, where a very high increase in the fun-

damental frequency as well as the critical velocity is ob-

served. It is also seen that for values of 2 greater than zero, 

increasing values of the flow velocity diminishes the effect 

of mass ratio .

Fig. (6). Clamped-pinned pipe, 2 = 0: Variation of 1 with V for 

various values of 1 and .

Fig. (7). Clamped-clamped pipe, 2 = 0: Variation of 1 with V for 

various values of 1 and .

Fig. (8). Pinned-pinned pipe: Variation of 1 with V for various 

values of 1 and 2 with  = 0.1. 
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Fig. (9). Pinned-pinned pipe, 1 = 0: Variation of 1 with V for 

various values of 2 and .
Fig. (10). Pinned-pinned pipe, 1 = 0: Variation of 1 with V for 

various values of 2 and .

Table 8. Fundamental Frequency Parameter 1  for Fluid-Conveying Pipes for Various Values of the Winkler Foundation Pa-

rameter 1 and Mass Ratios with 2= 0 

1

Boundary Condition V

0.01 0.5 2.5 10.0 10
2

10
3

0.1 0.0 9.870 9.895 9.995 10.364 14.050 33.127

1.0 9.348 9.374 9.480 9.866 13.681 32.945

2.0 7.580 7.612 7.741 8.207 12.514 32.390

0.3 0.0 9.870 9.895 9.995 10.364 14.050 33.127

1.0 9.329 9.355 9.461 9.847 13.654 32.880

2.0 7.517 7.549 7.677 8.139 12.411 32.128

0.5 0.0 9.870 9.895 9.995 10.364 14.050 33.127

1.0 9.311 9.337 9.442 9.828 13.627 32.816

Pinned-pinned 

2.0 7.456 7.487 7.614 8.073 12.310 31.878

0.1 0.0 15.419 15.434 15.499 15.739 18.377 35.181

1.0 15.028 15.044 15.111 15.356 18.046 34.989

2.0 13.794 13.811 13.883 14.149 17.017 34.403

0.3 0.0 15.419 15.434 15.499 15.739 18.377 35.181

1.0 15.004 15.020 15.086 15.332 18.018 34.933

2.0 13.702 13.720 13.791 14.055 16.905 34.179

0.5 0.0 15.419 15.434 15.499 15.739 18.377 35.181

1.0 14.980 14.996 15.062 15.307 17.989 34.877

Clamped-pinned 

2.0 13.613 13.631 13.702 13.964 16.795 33.962

0.1 0.0 22.374 22.384 22.429 22.596 24.506 38.737

1.0 22.082 22.093 22.138 22.307 24.238 38.552

2.0 21.186 21.197 21.244 21.419 23.415 37.990

0.3 0.0 22.374 22.384 22.429 22.596 24.506 38.737

1.0 22.052 22.063 22.108 22.276 24.205 38.499

2.0 21.068 21.080 21.126 21.300 23.285 37.781

0.5 0.0 22.374 22.384 22.429 22.596 24.506 38.737

1.0 22.022 22.033 22.078 22.246 24.172 38.447

Clamped-Clamped 

2.0 20.953 20.964 21.011 21.184 23.158 37.577
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CONCLUSIONS 

 In this work, natural frequencies of fluid-conveying pipes 

resting on two-parameter foundation have been computed. 

Three ideal boundary conditions, viz. pinned-pinned, 

clamped-pinned and clamped-clamped, were considered for 

analysis. A two-term Fourier series solution was adopted for 

the pinned-pinned case while a two-term Galerkin method 

was utilized to obtain solutions for the other two cases. 

Many earlier researchers have analysed the dynamics of 

fluid-conveying pipes either without foundation or with 

Winkler foundation. In this work, new results for a two-

parameter foundation have been exhaustively given in the 

form of tables of numerical values, which could aid a de-

signer of pipelines, as well as in the form of graphs, which 

are useful for showing the trend. Extensive results have been 

presented in tables and in figures for the following cases: no-

flow condition, pipe with fluid flow without foundation, 

fluid-conveying pipe on Winkler foundation and finally, 

fluid-conveying pipe on two-parameter foundation. The re-

sults for the first three cases have been compared wherever 

possible and new results for the fourth case have been pre-

sented. From the results obtained, the following conclusions 

are drawn: 

a. An attempt was made to validate the present formula-

tion of the problem, by first considering the no-fluid, 

no-flow condition. The results obtained for this pipe 

on two- parameter foundation, which is nothing but a 

beam, have been compared with those of Chen, et al.

[11]. There is very good agreement between the re-

sults and the maximum variation is 3.477% which is 

Table 9. Fundamental Frequency Parameter 1  for Pinned-Pinned Fluid Conveying Pipes for Various Values of 1 and 2, for 

= 0.1 and = 0.5 

1

0.01 0.50 2.50 10.0 10
2

2 V

=0.1 =0.5 =0.1 =0.5 =0.1 = 0.5 =0.1 =0.5 =0.1 =0.5

0.01 1.0 9.40 9.37 9.42 9.39 9.53 9.50 9.91 9.88 13.71 13.67

2.0 7.64 7.52 7.67 7.55 7.80 7.68 8.26 8.14 12.55 12.35

0.5 1.0 11.71 11.89 11.73 11.91 11.82 11.99 12.13 12.31 15.42 15.65

2.0 10.33 10.37 10.36 10.40 10.45 10.49 10.80 10.85 14.38 14.44

1.0 1.0 13.70 14.13 13.71 14.15 13.79 14.23 14.06 14.51 17.01 17.54

2.0 12.52 12.80 12.54 12.82 12.62 12.90 12.92 13.20 16.06 16.41

2.5 1.0 18.48 19.86 18.50 19.87 18.55 19.93 18.76 20.16 21.09 22.68

2.0 17.61 18.78 17.63 18.80 17.68 18.86 17.90 19.09 20.32 21.69

10.0 1.0 33.69 41.16 33.70 41.17 33.73 41.22 33.85 41.38 35.24 43.36

2.0 33.20 40.39 33.21 40.40 33.24 40.45 33.37 40.61 34.78 42.59

Table 10. Fundamental Frequency Parameter 1  for Clamped-Pinned Fluid Conveying Pipes for Various Values of 1 and 2, for 

= 0.1 and = 0.5 

1

0.01 0.50 2.50 10.0 10
2

2 V

=0.1 =0.5 =0.1 =0.5 =0.1 = 0.5 =0.1 =0.5 =0.1 =0.5

0.01 1.0 15.06 15.02 15.08 15.04 15.14 15.11 15.39 15.35 18.07 26.87 

 2.0 13.83 13.66 13.85 13.68 13.92 13.75 14.19 14.01 17.05 25.90 

0.5 1.0 16.87 17.08 16.88 17.09 16.94 17.15 17.16 17.37 19.62 19.87 

 2.0 15.77 15.82 15.79 15.84 15.85 15.90 16.08 16.14 18.68 18.74 

1.0 1.0 18.53 19.03 18.55 19.05 18.60 19.10 18.80 19.31 21.09 21.66 

 2.0 17.54 17.86 17.55 17.87 17.61 17.93 17.82 18.15 20.21 20.58 

2.5 1.0 22.84 24.35 22.85 24.37 22.89 24.41 23.06 24.59 24.99 26.66 

 2.0 22.03 23.33 22.04 23.34 22.09 23.39 22.26 23.57 24.25 25.68 

10.0 1.0 37.73 46.50 37.74 46.51 37.77 46.55 37.88 46.70 39.13 48.53 

 2.0 37.24 45.63 37.25 45.64 37.28 45.68 37.39 45.83 38.65 47.65 
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within acceptable engineering norms. The numerical 

values are shown in Tables 3 and 4.

b. Further validation of the model was done by compar-

ing the results obtained for a pipe conveying fluid 

without foundation, for three different mass ratios 

and for all the three boundary conditions. Comparison 

of the results by visual inspection for pinned-pinned 

and clamped-clamped end conditions with those of 

Païdoussis & Issid [2], show good agreement. 

c. For a pipe conveying fluid and resting on Winkler 

foundation, i.e. for 2 = 0.0, the results compare very 

well with those from Raghava Chary et al. [6] for all 

the three end conditions. Results have been presented 

for three values of .

d. For a fluid-conveying pipe, resting on a two-

parameter foundation, new results are presented in 

Tables 9, 10 and 11. The effect of the Pasternak foun-

dation parameter on the fundamental frequency is 

clearly brought out in Figs. (8-10). The second foun-

dation parameter 2 tends to increase the fundamental 

frequency as well as the critical flow velocity for the 

same Winkler constant 1. The effect of 2 may be in-

terpreted in the following way: A pinned-pinned fluid 

conveying pipe, which is the weakest as far as stabil-

ity is concerned, acquires the stability of a clamped-

clamped pipe by increasing the shear parameter of the 

foundation. Also, it is found that as the flow velocity 

increases, the effect of the mass ratio  diminishes. 
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Table 11. Fundamental Frequency Parameter 1  for Clamped-Clamped Fluid Conveying Pipes for Various Values of 1 and 2,

for = 0.1 and = 0.5 

1

0.01 0.50 2.50 10.0 10
2

2 V

=0.1 =0.5 =0.1 =0.5 =0.1 = 0.5 =0.1 =0.5 =0.1 =0.5

0.01 1.0 22.11 22.06 22.12 22.07 22.16 22.11 22.33 22.28 24.26 24.20

2.0 21.21 20.99 21.22 21.00 21.27 21.05 21.44 21.22 23.44 23.19

0.5 1.0 23.49 23.74 23.50 23.75 23.54 23.79 23.70 23.95 25.54 25.81

2.0 22.64 22.70 22.65 22.71 22.69 22.76 22.86 22.92 24.75 24.82

1.0 1.0 24.82 25.41 24.83 25.42 24.88 25.46 25.03 25.62 26.78 27.41

2.0 24.02 24.40 24.03 24.41 24.07 24.45 24.23 24.61 26.03 26.44

2.5 1.0 28.51 30.22 28.52 30.23 28.55 30.27 28.69 30.41 30.25 32.08

2.0 27.80 29.26 27.80 29.27 27.84 29.31 27.98 29.46 29.58 31.15

10.0 1.0 42.72 53.22 42.73 53.23 42.75 53.27 42.85 53.41 43.96 55.13

2.0 42.23 52.21 42.24 52.22 42.26 52.26 42.36 52.39 43.48 54.07


