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Abstract: A model for manufacturing doors and windows which are capable of natural ventilating, reducing traffic noise 
and so on for the developing tropical countries is presented. These windows and doors combine two basic components 
which are ventilation unit and lighting unit. Due to the fact that the ventilation unit must have a large volume to attenuate 
low frequency noise, many resonance of higher-order mode wave will be generated inside the unit. In this work, a method 
to predict the insertion-loss of rectangular ventilation unit with input and output openings at various positions is proposed 
by solving the wave equation, considering the resonance frequencies of higher-order mode. The results of the analysis 
have been confirmed by experiments. 
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1. INTRODUCTION 

 Sealing up type's doors and windows are widely used in 
the current houses to intercept an inside outside. Needless to 
say, some equipments such as air conditioners, are necessary 
to keep a comfortable indoor temperature while such doors 
and windows are closed and the using duration of such 
equipments is often limited because of the power 
consumption cost and health. The authors have been 
presented a concept for manufacturing windows which are 
capable of ventilating, regulating sunlight and reducing 
traffic noise for the developing tropical countries [1]. These 
windows combine two basic components which are 
ventilation unit and lighting unit. The former also serves as 
an import function in reducing noise. 

 Due to the fact that the ventilation unit must have a large 
volume to attenuate low-frequency noise, many resonance of 
higher-order mode wave will be generated inside the unit [2-
5]. Consequently, it is necessary to take into consideration 
the selection of size and placement of input and output 
openings in such a way that would minimize the effects of 
higher-order mode in order to have a great soundproofing 
effect. In the previous analysis, the ventilation unit is 
constructed using rectangular cavity with input and output 
openings at both ends. Actually, an input and output can be 
located at various positions on the unit according to the door 
or window’s design. Moreover, the optimum location where 
an insertion loss effect is effectively achieved is still an 
unknown problem. 

 In this article, a method to predict the insertion loss of 
rectangular cavity with input and output openings at various 
positions is proposed. Following the development of the 
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theory in section 3, this is compared to experimental results 
in section 4, an excellent agreement is obtained. 

2. DESIGN OF SOUNDPROOFING WINDOWS/ 
DOORS AND THE VENTILATION UNIT 

 Casement windows and doors are consisted of one or 
several wooden frames that can be opened and closed at 
various angles and are widely used in countries with tropical 
climates. An example of casement door’s structure is shown 
in Fig. (1). The windows and doors are opened during day 
for naturally ventilating the room and closed at night, even 
when closed room ventilation is still achieved because the 
windows and doors are constructed with a lots of ventilating 
slits. However, an annual increase in traffic noise level these 
countries have rendered these windows and doors to be 
useless because these ventilating slits serve as a direct 
pathway for traffic noise to enter the home. 

 
Fig. (1). The casement doors of current houses in tropical climate 
countries. 
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 Based on the previous reports, our proposed casement’s 
door is shown in Fig. (2). It combines two basic components: 
ventilation and lighting. The lighting unit can be constructed 
using one or two glass layers which are mounted between 
two ventilation components with input and output openings 
as shows in Fig. (3). The ventilation unit may consist of 
square, rectangular or more complicated shapes depending 
on decorative considerations. Needless to say, the unit 
requires a simple internal structure and large input and 
output to maximize ventilation, as well as preventing outside 
noise from entering the home. Actually, an input and output 
can be located at various positions on the cavity according to 
the door or window design. Therefore, these combinations 
are considered as follows: 

 
Fig. (2). The proposed casement doors. 

 
Fig. (3). Design of the proposed casement windows. 

 Combinations of input and output positions are shown in 
Fig. (4) in which (a) and (b) are the cases where they are in 
opposite faces while, (c) and (d) are in faces which crossed 
right angles. Difference between (a) and (b) is whether they 
are located in big or small cavity area, however it is quite 
similar in the theoretical analysis. Hereafter, we name (a) 
and (b) as Model-1. 

 Similarly, difference between (c) and (d) is whether they 
are located in big or small side area which crossed right 
angles. In this analysis, once we find the acoustic 
characteristic when the input and output are located in 
arbitrary face, it is easily computable for other faces by 

exchanging coordinates. We name (c) and (d) as Model-2. 
The sound propagation in (a) is the same as (c) and that in 
(b) is the same as (d). 

 
Fig. (4). Combinations of input and output positions on rectangular 
cavity. 

3. METHOD OF ANALYSIS 

3.1. Insertion Loss 

 Acoustic characteristics of an acoustic element can be 
described by the four-pole parameters A, B, C and D as [6] 
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where P
1
 and U

1
 are the sound pressure and velocity at the 

input, P
2

 and U
2

 are at the output, Z  is the characteristic 
impedance, k  is the wave number and l  is the length. When 
this element is connected to the source, their performance 
can be expressed through the use of insertion loss IL defined 
by [6] 

IL = 10 log
Wr

W
0

= 10 log
U
1

U
2

2

          (2) 

 Here, W
r
 and W

0
 are the radiated power at one point in 

space with or without the acoustic element inserted between 
that point and the source. The ratio of U

1
U
2

 is equal to the 
D parameter of Eq. (1), as far as constant velocity source is 
concerned. 

 When the acoustic element is connected in series as 
shown in Fig. (5), the sectional area of element 1 and 3 
becomes significantly small as compared to the sectional 
area of element 2 and the D parameter of whole system can 
be described by the following approximate equation 

D = (cos kl
1
) (Cw ) ( jZ3 sin kl3 )            (3) 
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where C
w

 denoted the C parameter of element 2. As shown 
in Eq. (2) and (3), in order to obtain a reliable IL effect, D 
parameter must be high enough. In other words, the design 
of element-2 to have a high enough parameter C

w
 is 

demanded. 

 
Fig. (5). Basic structure of ventilation unit. 

3.2. Computation of Cw 

 First of all, we find the sound pressure on the input and 
output of the Model-1 as shown in Fig. (6a). The input and 
output have a sectional area of S

i
= 2!

i
" 2#

i
 and 

S
0
= 2!

0
" 2#

0
 where its center is located at point I (xi , yi , 0)  

and O (x
0
, y
0
, L) , respectively. 

 
Fig. (6). Model of computation. 

 The complete wave-equation in terms of the velocity 
potential !  when expressed in rectangular coordinates is 
given by [1] 

! = Ae
µz
+ Be

"µz( ) C sin#x + D cos#x( )

E sin s
2
!"

2
y + F cos s

2
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2
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where A, B, C, D, E and F are arbitrary constants 
determinable from the boundary conditions, α, s and µ are 
the constants. 

 Let V
x
= ! "# / "x , V

y
= ! "# / "y and 

V
z
= ! "# / "z be the velocity components in the x, y and z 

directions, respectively. Assuming the walls of the cavity to 
be perfectly rigid and the loss at the wall can be neglected, 
the boundary conditions are 

[1] at x = 0 , V
x
= 0            (5) 

[2] at x = a , V
x
= 0            (6) 

 

[3] at y = 0 , Vy = 0            (7) 

[4] at y = b , Vy = 0             (8) 

[5] at z = 0 , Vz = Vi Fi (x, y)            (9) 

[6] at z = L , V
z
= 0           (10) 

where V
i
 is the driving velocity at the input, Fi (x, y) is the 

function which has a value of 1 at the input section area and 
0 at the other area, namely (x

i
!"

i
! x ! x

i
+ !

i
,  

yi ! !
i
! y ! yi + !i )  

 At first, Eq. (5) gives 
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 And from Eq. (6) 
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 Substituting Eqs. (11) and (12) into Eq. (4) gives 
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from Eq. (7) 
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 Substituting Eqs. (14) and (15) into Eq. (13), so !  
becomes 
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 Next, from Eq. (10 ) 
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from Eq. (9) 
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 By multiplying both sides of Eq. (20) by 
cos(m! x / a) cos(n! y / b)  and integrating with respect to x 

from 0 to a and with respect to y from 0 to b, C
m,n

 can be 
determined. 

 Substitution of C
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 to (19) yields 
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U
i
= V

i
S
i
 is the volume velocity at input. 

 Therefore, sound pressure corresponding to!  becomes 
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where Z
w
= !c / S

w
 represents the characteristic acoustic 

impedance of the cavity. 

 The sound pressure at the input side z = 0  becomes 

Pi = P(x, y, 0) =

j kZwUiSw
cosh µm,nL( )

µm,n sinh µm,nL( )
Dm,n

n=0

!

"
m=0

!

" cos
m# x
a

$
%&

'
()
cos

n# y
b

$
%&

'
()

 (24) 

 Therefore, the average sound pressure on the input is 
given by 
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 Similarly, by setting z=L in Eq. (23), the sound pressure 
on the output becomes 
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and the average sound pressure on the output becomes 
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 Moreover, expanding Eq. (28) corresponding to the 
variation of m and n, we have 
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the symbol 
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in 1st – 3rd term of Eq. (30). 
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condition of the output velocity of the volume, where 
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 After the similar computation procedure is performed 
from Eq. (4) to Eq. (23), the sound pressure on the side 
where the output located can be derived as 
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 Therefore, the average output sound pressure becomes 
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 Moreover, expanding the above equation corresponding 
to variation of m and n, we have 
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 Finally, C
w

 can be derive as 
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4. RESULT AND DISCUSSION 

 C
w

 is defined by Eq. (40) including the average output 
sound pressure P

0
 at its denominator, where P

0
 is given in 

Eq. (30) and Eq. (38) for Model-1 and Model-2, 
respectively. Note that both models have the same average 
input sound pressure P

i
 defined by Eq. (25). In order to 

obtain an IL effectively C
w

 must be at great, in other words, 
low level of P

0
 is preferable. Referring to Eq. (30), P

0
 

becomes great when its denominator sin(kL) 
and µ
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sinh µ
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L( )  are zero, namely, at the following 

resonance frequencies of 

 
 

sin(kL) = 0 ! f
0
= "

c

2L
(" = 1, 2, 3.... )        (41) 

µm,n sinh µm,nL( ) = 0 ! fm,n =
c

2"
m"
a

#
$%

&
'(
2

+
n"
b

#
$%

&
'(
2

+
)"
L

#
$%

&
'(
2

() = 0, 1, 2, 3.... )

 (42) 

 The f
0

 represents the resonance frequencies of the plane 
wave and fm,n  represents those of traverse wave. The first 
resonance frequencies of fm,n  when ! =0 occur sequentially, 
are shown in Table 1, when the dimensions of the cavity are 
a=0.48m, b=0.075m and L=0.29m, respectively. Generally, 
at the frequency range where the traverse waves are 
generated, the sound pressure P

0
 will increase and when the 

resonance frequencies of other modes co-occur, C
w

 will be 
small and the IL can not be expected to be as great. 
Generation mechanism of these frequencies can be 
understood according to the calculation example as shown in 
Fig. (7a) with (2,0) and (4,0) modes. Dimensions of the 
cavity used in calculation are the same as in Table 1. 
Table 1. The First Resonance Frequency of Some (m,n) Mode 

Occur in the Cavity when a=0.48m, b=0.075m and 
L=0.29m 

 

Mode 1st Resonance 

m n Frequency (Hz) 

1 0 369 

2 0 739 

3 0 1109 

4 0 1479 

5 0 1848 

6 0 2218 

0 1 2366 

1 1 2395 

2 1 2479 

7 0 2588 

3 1 2613 

4 1 2790 

8 0 2958 

 

 Sound pressure level of those wave components in dB are 
shown in Fig. (7b). They also have many resonance 
frequencies which occur corresponding to the increasing of 
!  in Eq. (42). Therefore, it is clear that when we eliminate 
an arbitrary higher-order wave mode by any method, we will 
not only avoid many resonances generated by this mode but 
also obtain the low level of the entire output sound pressure. 
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Fig. (7). Physical meaning of Eq. (30). (a) Calculated example of 
Eq. (30) with (2,0) mode and (4,0) mode. Resonances will occur 
when these denominators become zero. Dimensions of cavity are 
a=0.48m, b=0.075m and L=0.29m. (b) Spectrum of (2,0) mode, 
(4,0) mode. 

 Next, in order to examine the accuracy of our predicted 
result, the measurement in some positions on the cavity was 
carried out by using the previous measurement method (see 
Appendix). 

 Measurement result of C
w

 of Model-1 when the input 
and output are located in the center position (a/2, b/2) is 
shown in Fig. (8b), while the denominators of Eq. (30) are 
shown in Fig. (8a). Agreement observed between the 
measurement and our predicted resonance frequencies is 
acceptable. Note that, by locating the input or output at x=a/2 
and y=b/2, cos m! x / a( ) cos n! y / b( ) in Eq. (27) will 
become cos m! / 2( ) cos n! / 2( )  and as a result, the (m, n) 
mode sound pressure does not appear when m=1, 3, 5 … for 
all values of n and when n=1, 3, 5 …. for all values of m. 
Therefore, as shown in Fig. (8b), the (m, n) mode sound 
pressures appears in cavity in the order of (2, 0), (4, 0) and 
so on. 

 Fig. (9) shows the measured and theoretical results of 
Model-2 at point A (a/2, b, L/2) located on the top of the 
cavity. By locating at z=L/2, Eq. (35) becomes 
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Fig. (8). Resonance frequencies appear in the cavity when the 
output is located at position E. (a) computed result of the 
denominator of Eq. (30). (b) measured result of Cw. 

 Moreover, expanding the above equation with mode (0,0) 
we have 
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 As a result, the denominators of P
A

 become 

sin(kL / 2) and sinh µ
m,n
L / 2( ) , therefore, the resonance 

frequencies will differ from those of Fig. (8). Calculation 
examples of mode(0,0) and mode(4,0) are shown in Fig. 
(9b). The frequencies at which sin(kL / 2) and 

sinh µ
m,n
L / 2( )  become zero correspond well to those of the 

measured results shown in Fig. (9a). In order to show the 
difference among the resonance frequencies, the measured 
result at position E, which had been described above, was 
added to Fig. (9a). 

 Fig. (10) shows the measured result at point C (a, b/2, 
L/2) that locates in the right side of the cavity. Because the 
resonance frequencies are the same as point A as described 
above, the effectiveness of our calculation method has been 
proven. 
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Fig. (9). Resonance frequencies appear in the cavity when the 
output is located at position A and E. (a) computed result of the 
denominator of Eq. (44) (b) measured result of Cw. 

 
Fig. (10). Measured results at position A and C. 

 Fig. (11) shows the theoretical and measured results of 
Model-1 at point A (a/2, b, L/2) which locates on the top of 
the cavity when the input located on the opposite face. In this 
case, the first resonance frequencies of fm,n  that occur 
sequentially are shown in Table 2. Because the input was 

located on the big cavity area, resonance frequencies of 
higher-order mode generally appear in low frequency range. 

 
Fig. (11). Resonance frequencies appear in the cavity when the 
output is located at position A with changing input location (a) 
computed result of the denominator of Eq. (30). (b) measured result 
of Cw. 

Table 2. The First Resonance Frequency of Some (m,n) Mode 
Occur in the Cavity when a=0.48m, b=0.29m and 
L=0.075m 

 

Mode 1st Resonance 

 m n Frequency (Hz) 

 1 0 369 

0 1 612 

1 1 715 

2 0 739 

2 1 960 

3 0 1109 

0 2 1224 

3 1 1267 

1 2 1278 

2 2 1430 

4 0 1479 

4 1 1600 

3 2 1652 
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5. CONCLUSIONS 

 The characteristic of sound propagation in the rectangular 
ventilation having an input and output located at various 
positions, has been presented by solving the wave equation, 
considering the higher-order mode effects. Based on the 
obtained results, the cause and mechanism of resonance 
frequencies of parameter C are discussed in detail. To prove 
the theory, experiments with various positions were carried 
out and excellent agreement is obtained. The formulas 
derived from the present study enable the account of the 
insertion loss of the ventilation in practical applications. 
Also, it will be suitable for further study on the 
determination of optimized positions of input and output. 
This technology will be presented in an upcoming report. 

APPENDIX 

 A block diagram of the whole experimental apparatus to 
measure the parameter C

w
 is shown in Fig. (12) [7]. Two 

microphones were located at both sides of the ventilation 
unit to measure the sound pressures PA and PB. Relationship 
between PA and PB is given by 
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where the first term and the second term represent the four-
pole parameters of the input pipe which has length l

0
 and 

the ventilation unit, respectively. Symbols U
A

, U
B

and Z
0

 
represent velocity of the volume and acoustic impedance of 
the input pipe. By installing the microphone 2 on the output 
piston, U

B
 will become zero, therefore Eq. (A-1) can be 

written as 

P
A
= A

w
cos kl

0
+ C

w
Z
0
sin kl

0( )PB       (A-2) 

 Furthermore, since the first term can be disregarded as 
compared to the second term, Eq. (A-2) can be written in 
terms of dB as follows 

20Log
10
Cw = 20Log

10
PA / PB ! 20Log

10
Z
0
sin kl

0
     (A-3) 

 This means C
w

can be obtained by subtracting the 
acoustic characteristic of the input pipe Z

0
sin kl

0
 from the 

measured sound pressures PA and PB. 

 
Fig. (12). Block diagram of the experimental apparatus. 
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