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Abstract:

Background:

Aerospace vehicles use propellers with the different design that possess gyroscopic properties. Recent investigations in the area of
gyroscope theory have demonstrated that the gyroscope properties are based on the action of the centrifugal, common inertial, and
Coriolis forces of the distributed mass elements of the spinning rotor, as well as the change in the angular momentum.

Objective:

The combined action of  the  interrelated inertial  forces  on the propellers  presents  the  interests  for  the  design of  the  blades.  The
objective of the manuscript is the derivation of mathematical models for the inertial torques acting on the spinning propellers that
enable computing the stresses of the blades and increasing their reliability.

Method:

The inertial torques generated by the masses of the rotating blades acting on the propellers are represented by mathematical models
in L. Euler’s form.

Results:

The inertial torques are generated by the several inertial forces of the propeller’s blades and hub and manifested the fluctuation of the
variable resistance and precession torques acting around different axes of the propeller. Derived mathematical models for the inertial
torques are new and should be used for the computing forces and stresses acting on the propellers of the aircraft.

Conclusion:

The mathematical models for the torques acting on the propellers consider the several inertial forces of the rotating masses that
manifest  their  gyroscope  properties.  Derived  mathematical  models  for  inertial  torques  enable  for  computing  the  stresses  of  the
aircraft propellers and clearly demonstrate the physical principles and origin of the acting inertial forces.

Keywords: Gyroscope, Theory, Property, Torque, Propeller, Aircraft.

1. INTRODUCTION

Industrial Revolution involved scientists to pay the attention to the remarkable gyroscope property expressesed in
permanent  maintaining the axis  of  a  spinning rotor  in  a  space.  Since those time brilliant,  famous,  outstanding,  and
ordinary  scientists  studied  gyroscopic  effects  and  published  fundamental  manuscripts  that  describe  interesting
gyroscope properties. The applied theory of gyroscope emerged mainly in the twentieth century due to increasing the
angular  velocities  of  the  spinning  components  of  the  movable  machines  [1  -  4].  Numerous  publications  have  been
dedicated to computing of gyroscopic effects in engineering [5 - 7]. All fundamental textbooks of classical mechanics
have chapters that represent gyroscope theory [8, 9]. There are many publications regarding gyroscope theory as well as
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many  approaches  and  mathematical  solutions  that  describe  gyroscopic  properties  [10,  11].  However,  all  known
manuscripts contain numerous assumptions, simplifications, as well as explaining the gyroscope effects in terms of the
change in the angular momentum only [12 - 13]. Some researchers intuitively pointed to the action on the spinning rotor
of  other  inertial  forces  [14,  15].  Nevertheless,  the  action of  these  inertial  forces  on gyroscopes  is  not  presented by
mathematical models.

Mathematical  models  for  gyroscope  properties  in  known  publications  do  not  match  practical  applications  for
gyroscopic devices [16, 17]. From this, researchers have spawned artificial terms, such as gyroscope effects and others
that contradict the physics laws [18, 19]. This is the reason that gyroscope theory still attracts researchers seeking to
find answers on gyroscope challenges [20, 21]. However, the origin of gyroscope effects is more complex than those
represented in the known theories. Recent investigations of the physical principles of gyroscope motions demonstrating
that the centrifugal, common inertial, Coriolis forces, and the change in the angular momentum manifest the action of
gyroscope’s resistance and precession torques [22 - 24]. New mathematical models for inertial torques give significant
impact to the gyroscope theory and enable for describing all gyroscope properties. This work considers the action of the
inertial torques on the aircraft’s propeller with the different number of blades.

2. CENTRIFUGAL FORCES ACTING ON A PROPELLER

The typical design of an aircraft propeller is represented by the several blades mounted on the cylindrical hub that
can be considered as the spinning rotor. The inertial forces acting on the propeller are generated by its centre mass of
the  hub  and  centre  mass  of  the  blades,  whose  locations  and  actions  are  different.  The  action  of  inertial  forces  is
considered on a propeller running with a constant angular velocity of ω in a counterclockwise direction when viewed
from the tip of axis oz (Fig. 1). The propeller blade’s centre mass m is located on the circle whose radius is r and the
mass centre of the hub is mh. The blades numbered as I, II, III, IV, V, and VI.

Fig. (1). Schematic of the propeller design with two (a), three (b), four (c) and six (d) blades.

The mass moments of inertia for propellers with several blades are defined by the expression Jp = nJ + Jh, where J is
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the mass moments of inertia of the blade, n is the number of the blades, and Jh is the mass moments of inertia of the
hub. The mathematical models for inertial torques generated by the mass of the propeller’s hub are the same as for the
spinning disc [24]. The equations of the inertial torques generated by the blades are defined by the following approach.
In uniform circular motions, the blade’s mass moves with acceleration that generates the centrifugal forces (Fig. 2). The
inclination  of  the  propeller  plane  on  the  small  angle  Δγ  around  axis  ox  leads  to  the  change  in  the  direction  of  the
centrifugal force vector fct. The vector fct, in which the direction coincides with axis ox (i.e. located on 0o and 180o along
axis ox), does not change. Other vectors fct are located on the inclined plane and have the non-identical change in their
own directions.  The maximal  declination of  the  vector  f*ct  is  at  90o  and 270o  from axis  ox  (Fig.  2).  These  variable
directions of the centrifugal force vector generate the change in the vector’s components fct.z, whose direction is parallel
to the axle oz. The vector of the centrifugal forces fct.z and its variable radius of location relative to axis ox generate the
resistance torque Tct acting opposite to the torque T applied on the propeller. The resistance torque is expressed by the
following equation:

Fig. (2). Schematic of acting centrifugal forces, torques and motions of the spinning propeller’s blade.

(1)

where Tct is the torque generated by the centrifugal force of the rotating blade’s mass, fct.z is the axial component of
the centrifugal force; and ym = rsinα is the distance of the blade’s mass location in along axis oy, sign (-) means the
action of the torque in the clockwise direction.

The equation of fct.z is represented by the following expression:

(2)

where fct = mrω2 is the centrifugal force of the blade’s mass m, ω is the angular velocity of the propeller, α is the
angle of the blade’s mass location, Δγ is the angle of the propeller’s plane inclination (sinΔγ = Δγ for the small value of
the angle), other parameters are as specified above.

Substituting the defined parameters into Eq. (1) yields the following equation:

  mzctct yfT .

 sinsinsinsinsin 22

.  mrmrff ctzct
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(3)

Then replacing sin2α  = (1/2)(1 - cos2α) that is the trigonometric identity and substituting into Eq. (3) yields the
following equation:

(4)

The rate change in the torque Tct per time is represented by the following differential equation:

(5)

where t = α/ω  is the time has taken relative to the angular velocity of the propeller and other parameters are as
expressed above

Then, the differential of time is: 
 
while

 
the

 
expression

  
is the angular velocity of the propeller

precession around axis  ox.  Substituting  obtained components  into  Eq.  (5),  transformation,  separating  variables  and
presenting in the integral form with defined limits the following equation emerges:

(6)

Solving of Eq. (6)  giving the following rise

(7)

The value of the resistance torque generated by the centrifugal forces of the rotating blade is changed by sinus law.
The resistance torque acts on the upper and lower sides of the propeller with several blades. Then the total resistance
torque Tct of the propellers (Figs. 1a-d) is increased according to the number n of blades and expressed by the following
equation:

(8)

where J = mr2 is the conventional mass moment of inertia of the propeller’s blade, n is the number of blades, other
parameters are as specified above.

The change in the resistance torque Tct generated by the centrifugal forces of the propellers with n blades (Figs. 1a-
d) is represented in Figs. (3a-d).

The equations  for  maximal  and minimal  values of  the resistance  torques for  the propellers  are represented  in
Table 1. The value of the resistance torque of the propeller depends on the following components:
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Fig. (3). The change  in the  resistance  torque that  generated by  the propeller  with  two (a), three (b), four (c) and six (d) blades.

(a)         

                                                        (b)    

    

   

    (c)          

       (d) 
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Table 1. Equations of resistance torques generated by the centrifugal forces of propeller’s blades

Number
Blades, n Equation, Tct

Number of Blades Location

Vertical, nv Horizontal, nh
Angular,

ni

Two

2 0 0

0 2 0

Three

1 0 2

0 1 2

Four

0 0 4

2 2 0

Six

2 0 4

0 2 4

The vertical, horizontal or angular location of the blades relative axis,
The mass and the number of the blades,
The radius of the location of the blade mass,
The angular velocity of the propeller and
The angular velocity of the precession.

3. INERTIAL FORCES ACTING ON A PROPELLER

The uniform circular motion of the propeller experiences the tangential velocity of the blade’s mass. Under the
action of the external  torque,  a  propeller  turns around axis ox  (Fig.  4)  that  leads to the non-identical  change in the
direction  of  the  tangential  velocity  vectors.  The  maximal  changes  in  direction  have  the  velocity  vectors  V*  of  the
blade’s mass located on the line of axis ox (Fig. 4). The two vectors V do not have any changes, whose direction is
parallel to the line of axis ox, i.e. located on 90o and 270o. These variable directions on the tangential velocity vectors
generate the change in the vector’s components Vz whose directions are parallel to the axle oz.
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Fig. (4). Schematic of acting inertial forces, torques and motions of the spinning propeller.

The change in the velocity vectors refers to the accelerated motions of the rotating blade’s mass that generate their
inertial forces fin and the inertial torque Tin acting around axis oy that is expressed by the following equation:

where Tin is the torque generated by the inertial force of propeller mass fin; az is the acceleration of the blade’s mass
m along axis oz; and xm = rcosα is the distance to the mass location along axis ox; other components are represented in
section 1.

The equation for the acceleration az of the blade’s mass element is defined by the first derivative of the change in the
tangential velocity, whose value depends on the angle of its location that is variable with time.

where az  = dVz/dt  is the acceleration of the mass along axis oz; Vz  = VcosαsinΔ γ  is the change in the tangential
velocity V of the mass; Δγ is the angle of the turn of the propeller’s plane around axis oy (sinΔγ = Δγ for the small
values of the angle); V = rω, ω = dα/dt is the angular velocity of the spinning of propeller; α is the angular location of
the blade’s mass; other parameters are as specified above.

(9)

(10)

mzminin xmaxfT 
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Substituting the defined parameters into Eq. (10) yields the following equation:

(11)

Then,  trigonometric  identity
 

 is  substituted  into  Eq.  (11)  that  is  presented  by the

following equation:

(12)

Equation (12) is similar to Eq. (4) with the same final expression:

(13)

The value of the precession torque generated by the rotating blade is changed by cosine law and expressed by the
following equation:

(14)

Equation (14) is similar to Eq. (8) with the difference in the trigonometric factor that is replaced by cosα. The total
and maximal value of the precession torque acting around axis oy is represented as a sum of the precession torques
generated by the inertial forces of the blade’s masses and the change in the angular momentum of the propeller’s hub, in
which the expression is as follows:

(15)

where Tp is the precession torque,   is the torque generated by the centrifugal forces of

the hub,  is the torque generated by the change in the angular momentum of the hub [24], all

parameters are as specified above.

Equation (15) is generic that enable defining the maximal and minimal values of the precession torques for the
propellers  based  on  equations  of  Table  1.  The  diagrams of  the  change  in  the  value  of  the  inertial  torque  Tin  of  the
propeller with different blades are similar to the diagrams for the torque Tct generated by the centrifugal forces (Fig. 3).
The differences are only the diagrams for inertial torques shifted on 90o along the abscissa.

4. CORIOLIS FORCES ACTING ON A PROPELLER

The action of the Coriolis acceleration and force is revealed on the propeller under the action of the external torque.
Fig. (5) depicts the blade’s mass m that travels with the tangential velocity on the circle of the rotating propeller, which
turns on the angle Δγ around axis ox. These motions of the mass produce the Coriolis acceleration and force. The turn of
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the propeller’s plane around axis ox leads to a non-identical change in the directions of the tangential velocity vectors of
the mass. The maximal changes in the velocity vectors V* of the blade’s mass located on axis ox (Fig. 5). The vectors V,
whose directions are parallel to axis ox, do not have changes. The variable directions of the tangential velocity vectors
generate the change in the vector’s components Vz whose directions are parallel to the axle oz. The changes in the values
of the velocity are expressed as an acceleration of the blade’s mass and their inertial forces.

Fig. (5). Schematic of acting Coriolis forces, torques and motions of the spinning propeller’s blade.

The resistance torque generated by the Coriolis force of the blade’s mass is expressed by the following equation:

(16)

where Tcr is the torque generated by Coriolis force fcr of the rotating blade’s mass m; az is the acceleration of the
mass along axis oz; and ym = rsinα is the distance to the mass location along axis oy; the sign (-) means the action in the
clockwise direction; other components are presented in Section 1.

The equation for Coriolis acceleration az of the blade’s mass is defined by the first derivative of the change in the
tangential velocity, whose value depends on the angle of its location on the plane yoz that is variable at the time. The
expression for az is represented by the following equation:

(17)
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where Vz = VcosαsinΔγ(t) is the change in the tangential velocity V = rω of the blade’s mass; Δγ is the angle of turn
of the propeller’s plane around axis ox (sinΔγ = Δγ for the small values of the angle); α is the angular location of the
mass; ωx = Δγ/dt is the angular velocity of precession around axis ox; other parameters are as specified above.

Substituting defined parameters into Eq. (16) and transformation yields the following equation:

(18)

Fig.  5  depicts  the  locations  of  Coriolis  forces  of  the  mass  m  around  axes  oz  and  ox.  Substituting  the  defined
parameters into Eq. (18) and transformation yields the following equation:

(19)

Substituting  the  trigonometric  identity
 

into  Eq.  (19)  yields  the  following
equation:

(20)

The rate change in the torque Tcr per time is represented by the following differential equation:

(21)

where t = α/ω is the time taken relative to the angular velocity of the rotating blade, and other parameters are as
expressed above.

Then,  the differential  of  time is:
 

 while the expression
 

 is  the angular  velocity of  the rotating

blade.  Substituting  defined  components  into  Eq.  (21),  transformation,  separating  variables  and  presentation  in  the
integral form with limits of the circle’s quarter yield the following equation:

(22)

Solving Eq. (3.104) yields the following result:
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where the change in the limits of integration for the centroid is taken for the quarter of the circle because its location
at other quarters is the same.

Solving of Eq. (23):

 giving the following rise:
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The  value  of  Coriolis  torque  generated  by  the  rotating  blade  is  changed  by  cosine  law  and  expressed  by  the
following equation:

(25)

The equations for maximal and minimal values of Coriolis torques for the propellers are represented in Table 2.

Table 2. Equations of Coriolis torques generated by the mass of propeller’s blades.

Number
Blades, n Equation, Tcr

Number of Blades Location

Vertical, nv Horizontal, nh
Angular,

ni

Two

0 2 0

2 0 0

Three

1 0 2

1 0 2

Four

0 0 4

2 2 0

Six

0 2 4

2 0 4

The diagrams of  the change in the value of  Coriolis  torque Tcr  acting on the propeller  with different  blades are
similar to the diagrams for the centrifugal torque Tct (Fig. 3). The differences are only the diagrams for Coriolis torques
shifted on 90o along the abscissa and values are less on the factor π according to Eqs. (8) and (26), respectively.

The total  value  of  the  resistance  torque  acting  around axis  ox  is  represented  as  a  sum of  the  resistance  torques
generated by the centrifugal and Coriolis forces of the blade’s mass and propeller’s hub.
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where  Tr  is  the  resistance  torque,  Tct.h  and  Tcr.h  is  the  resistance  torques  of  centrifugal  and  Coriolis  forces,
respectively generated by the propeller’s hub, Jct.h = 2(π/3)2Jh and Jcr.h = (8/9)Jh is their factored mass moment of inertia
[24], all other parameters are as specified above.

5. RESULTS AND DISCUSSION

In  engineering propellers  of  an aircraft  and ships  manifest  gyroscopic  properties.  The formulated mathematical
models for the inertial torques acting on propellers with different designs are distinguished and proportionally depend
on the number of blades, their mass moment of inertia and the angular velocity, as well as the angular velocity of its
precession. The inertial torques are generated by the centrifugal, Coriolis and common inertial forces as well as the
change in the angular momentum of the propeller’s blades and hub, and manifest the fluctuated and variable resistance
and precession torques acting around different axes of the propeller. The derived mathematical models of the inertial
torques are new and should be used for the computing of forces acting on a propeller aircraft.

CONCLUSION

The  gyroscope  theory  is  one  of  the  most  complex  and  intricate  in  terms  of  analytical  solutions.  The  known
mathematical models for gyroscope effects do not match adequately the practical tests and for engineering problem the
complex numerical modeling is used. The new mathematical models for the torques acting on the aircraft’s propeller
consider  the  several  inertial  forces  of  the  rotating  blade’s  mass  and  propeller’s  hub  that  manifest  the  gyroscope
properties.  Derived  mathematical  models  for  inertial  propeller’s  torques  enable  for  solving  problems  relating  to
gyroscopic devices and clearly demonstrate the physical principles of the acting forces and motions.

LIST OF ABBREVIATIONS

a = Linear acceleration

fct, f cr., fin. = Centrifugal, Coriolis and inertial forces, respectively, generated by blades mass of a spinning propeller

J = Mass moment of inertia of a propeller’s blade

Jh = Mass moment of inertia of a propeller’s hub

m = Mass of a propeller’s blade

mh = Mass of a propeller’s hub

n = Number of propeller’s blade

r = Radius of a location of a propeller’s blade mass

T = Load external torque

Tct, Tcr., Tin. Tam – = Torque generated by centrifugal Coriolis and inertial forces and a change in the angular momentum, respectively

Ti.max and Ti.min = Maximal and minimal torques, respectively

t = Time

V = Linear velocity

xm, ym = Centroid and distance of location of blade’s mass along axis ox and oy

Δα, α = Increment angle and angle of the turn for a propeller around own axis, respectively

Δγ = Angle of inclination of a propeller’s plane

ω = Angular velocity of a propeller

ωx, = Angular velocity of precession around axes ox
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