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Abstract: Dose-response microarray experiments consist of monitoring expression levels of thousands of genes with 

respect to increasing dose of the treatment under investigation. The primary goal of such an experiment is to establish a 

dose-response relationship, while the secondary goals are to determine the minimum effective dose level and to identify 

the shape of the dose-response curve. Recently, Lin et al. [1] discussed several testing procedures to test for monotone 

trend based on isotonic regression of the observed means [2,3]. Once a monotone relationship between the gene 

expression and dose is established, there is a set of R possible monotone models that can be fitted to the data. A selection 

of the best model from this set allows us to identify both the shape of dose-response curve and the minimum effective 

dose level. In this paper we focus on classification of dose-response curve shapes using the information theory model 

selection. In particular, the Order Restricted Information Criterion (ORIC) is discussed for the inference under order 

restriction. The posterior probability of the model is calculated using information criteria that take into account both the 

goodness-of-fit and the complexity of the models. The method is applied to a dose-response microarray experiment with 

12 arrays (for three samples at each of the four dose levels) with 16,998 genes. 

Keywords: Dose-response curve, microarray, classification, information theory, model selection, ORIC. 

1. INTRODUCTION 

 A common experiment in the early drug development is a 
dose-response study that is set up to assess the biological 
activity of a chemical compound. In such a study, the 
response of primary interest is measured at several 
increasing dose levels. Typically, the first dose level is a 
control group with zero dose. In recent years, dose-response 
studies were extended to the microarray setting, in which the 
arrays are administered to measure expression of thousands 
of genes. The goal of the experiment is to identify genes 
whose expressions are affected by dose. 

 Recently, Lin et al. [1] discussed several testing 
procedures, namely Williams' [4,5], Marcus' [6], the global 
likelihood ratio test [2], M [7], and the modified M [1] that 
can be used to identify genes with a monotonic relationship 
between gene expression and doses. In this paper, we follow 
up the investigation on evaluating specific monotonic trend 
of dose response relationship based on the genes selected by 
one of the procedures mentioned above. The question of 
primary interest is the nature (or the curve shape) of the 
dose-response relationship. This question is closely related to 
the problem of determination of the minimum effective dose 
(MED) - that is the smallest dose, at which the mean 
response is shifted from the mean of dose zero [8,9]. Several 
testing procedures were proposed for finding the MED. For  
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example, Williams [4,5] proposed a step-down procedure, in 
which tests are performed sequentially from the highest to 
the lowest  dose level. The  procedure stops at the first dose 
level, for which the null hypothesis (of no dose effect) is not 
rejected. As a result, the MED is the first dose above that 
dose level. Other test procedures, proposed by Tamhane et 
al. [9], are based on contrasts among the sample means of 
gene expressions at different dose levels. Note that Williams' 
procedure assumes monotonicity of the dose-response 
relationship, while the tests based on contrasts of the sample 
means do not require this assumption. 

 In the microarray setting, the testing procedures 
mentioned above are additionally subject to the multiplicity 
problem. To avoid the multiple testing issue in determining 
the MED and in identifying the shape of the dose-response 
curve, we propose to classify possible dose-response trends 
using model selection based on information theory. 
Assuming a monotone relationship, the dose-response curve 
could be either linear, nonlinear, concave or convex. 
Furthermore, for an experiment with K +1 dose levels, there 
is a fixed number of monotonic models that can be fitted. 

 For instance, in a dose-response experiment with four 
dose levels, upon the establishment of a monotonic 
relationship between gene expression and doses, there is a 
set of seven models, shown in Table 1 and Fig. (1), that can 
be fitted to the data. Each model can be associated with a 
MED. For example, g1 is a model with two parameters, and 
the MED is the last dose level. g2 is also a model with two 
parameters, but the MED is the third dose level. 
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Table 1. The Set of Seven Possible Monotonic Dose-Response 

Models (with Different Number of Parameters) for 

an Experiment with Four Dose Levels. i is the 

Mean Response at Dose Level di, MED: Minimum 

Effective Dose 

 

Model   Mean Structure  MED   Parameters  

g1  1 = 2 = 3 < 4 4 2 

g2  1 = 2 < 3 = 4 3 2 

g3  1 < 2 = 3 = 4 2 2 

g4  1 < 2 = 3 < 4 2 3 

g5  1 = 2 < 3 < 4 3 3 

g6  1 < 2 < 3 = 4 2 3 

g7  1 < 2 < 3 < 4 2 4 

 

 The aim is to choose the best model among these 
possible monotonic trends. To this purpose, we propose to 

use the information model selection theory proposed by 
Burnham and Anderson [10]. For a given set of candidate 
models the Order Restricted Information Criterion (ORIC), 
the Akaike Information Criterion (AIC), and the Bayesian 
Information Criterion (BIC) are used to calculate the 
posterior probability of each model in the set. The model 
with the highest posterior probability is selected. This allows 
us to identify both the shape of the dose-response curve and 
the MED level. In particular, in this paper, we address the 
importance of using the ORIC to select the dose-response 
models under order restricted constraints. 

 For detailed description of data for analysis, we refer to 
Lin et al. [1]. The resulting data after log2 transformation and 
present/absent filtering consist of 12 samples (for three arrays 
at four dose levels) with 16,998 probe sets. For simplicity, we 
refer to probe sets as genes through our paper [11]. 

 The contents of the paper are organized as follows. In 
Section 2 we briefly discuss the global likelihood test for 
monotonic trend proposed by Barlow et al. [2] and used in 

  

Fig. (1). The set of the seven possible monotonic dose response curves for an experiment with four dose levels. 
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Lin et al. [1] to identify genes, for which there is a monotone 
relationship between gene expression and dose. After the 
initial inference step, in Section 3 we address the problem of 
trend classification within the framework of model selection. 
In Section 4, the ORIC is discussed. We apply the proposed 
methods to our case study in Section 5. Section 6 describes 
the results of a simulation study conducted to compare the 
influence of the use of the four information criteria 
(likelihood, AIC, BIC, and ORIC). Section 7 concludes the 
paper with a discussion. 

2. TESTING NO DOSE EFFECT AGAINST ORDERED 
ALTERNATIVES BY USING ISOTONIC REGRESSION 

 We consider a dose-response microarray experiment 
described in Lin et al. [1]. The first dose level is a control 
(zero dose). 

 For each gene, the following ANOVA model is considered 

 
Yij = μ(di ) + ij , ij ~ N(0, 2 ), i = 0,1, 2, 3, j =1, 2, 3,   (1) 

where Yij  is the gene expression at the ith dose level for 

array j and (di) is the mean gene expression at dose level di. 

We further assume that gene expression increases or 

decreases with doses, although not necessarily in a linear 

fashion. The null hypothesis of no dose effect is 

H 0 :μ(d0 ) = μ(d1 ) = μ(d2 ) = μ(d3 ),      (2) 

and the alternatives, under the assumption of a monotonic 
increasing/decreasing trend, is 

H1
Up :μ(d0 ) μ(d1 ) μ(d2 ) μ(d3 ),

or H1
Down :μ(d0 ) μ(d1 ) μ(d2 ) μ(d3 ),

    (3) 

with at least one strict inequality. Let 

 
μ * = (μ̂0

* , μ̂1
* , μ̂2

* , μ̂3
* ) be the maximum likelihood estimates 

for the means under the ordered alternatives obtained by 

isotonic regression [2,3]. The E01
2

 test statistic is given by: 

 

E01
2 = 1

ˆ
H1

2

ˆ
H0

2 = ij

(yij μ̂)2

ij

(yij μ̂ j
* )2

ij

(yij μ̂)2
.     (4) 

 Lin et al. applied the likelihood ratio test statistic E01
2

 to the 

case study. The distribution of the test statistic E01
2

 was 

approximated by permutations. In total, the null hypothesis is 

rejected for 3499 out of the 16,998 genes that were tested (due to 

a random seed generation for permutations, the number of genes 

found significant can vary). For a more detailed discussion of the 

analysis of the data we refer to Lin et al. [1]. 

3. CLASSIFICATION OF TRENDS BY USING 
INFORMATION CRITERIA 

3.1. Classification of Trends Based on Posterior Probabilities 

 The initial testing procedure discussed in the previous 

section leads to identification of 3499 genes, for which the 

null hypothesis was rejected. In this section we address the 

problem of trend classification (or the identification of the 

dose-response curve shape). For each gene declared 

significant in the first step, the set {g1, g2 , g3, g4 , g5 , g6 , g7} , 

given in Table 1 and shown in Fig. (1), is the set of seven 

possible models with increasing trends for an experiment 

with four dose levels. Analogously, a set of seven models 

with decreasing trends is considered as well, with isotonic 

means given as in Table 1, but with negative values. Note 

that a model selection procedure that leads to a selection of 

the best model from the set of all candidate models will 

allow to identify both dose-response curve shape and the 

MED. On the other hand, using hypothesis testing for the 

determination of the MED will not always allow us to 

identify the shape of the dose-response curve. 

 The model selection criterion that we propose to use to 
select the best model is the posterior probability of the 
model, given the data (Burnham and Anderson 2002), 
defined by 

 

P(gi | D) =
P(D | gi )P(gi )

r=1

R

P(D | gr )P(gr )
i =1,…,R.      (5) 

 Here, P(D | gi ) and P(gi )  are the likelihood and the 

prior probabilities of the ith model, respectively, and R is the 

number of all the possible models. Note that if the data are 

monotonic and we use a non-informative prior, i.e., 

P(gi ) = 1 / R , the isotonic regression model obtained will 

have the highest posterior probability. However, the 

posterior model probabilities (5) do not take the complexity 

of the model into account. In what follows we focus on the 

model selection procedures based on information criteria, 

that take into account both the goodness-of-fit and the model 

complexity. In other words, we focus on the question 

whether the monotonic model can be further simplified. 

3.2. Akaike Weights and Bayesian Posterior Model 
Probabilities 

3.2.1. Akaike Weights 

 The model selection theory discussed by Burnham and 
Anderson [10,12] allows to incorporate the need to balance 
between goodness-of-fit and model complexity within the 
model selection procedure. The starting point for Burnham 
and Anderson's model selection theory is the 
Kullback-Leibler information (K-L) given by 

I( f , g) = f (x)log
f (x)

g(x | )
dx.       (6) 

 Here, f represents the density function of the true and 

unknown model, g represents the density function of the 

model that is used to approximate f, and  is the unknown 

parameter to be estimated. The K-L information is 

interpreted as the loss of information when the true model f 

is approximated by the model g(x | ˆ) , where ˆ  is the 

parameter estimate for the unknown parameter . For a 

given set of candidate models 
 
{g1, g2 ,…, gR} , one can 

compare the K-L information for each model and select the 

model that minimizes the information loss across the 

considered set of models [10,12,13]. However, in practice 
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I( f , g)  can not be computed since the true model f is 

unknown. 

 Akaike [14,15] made the link between the K-L 
information and the likelihood theory and showed that the 
expected Kullback-Leibler information can be expressed as 

 
Ê(K L) =log ( | D) K ,       (7) 

where 
 
( | D)  is the likelihood of model g(X | )  and K 

is the number of parameters in the model. The well-known 

Akaike's Information Criterion (AIC) is given by 

 
AIC = 2log ( | D) + 2K .       (8) 

 Akaike's approach allows for model selection that takes 
into account both goodness-of-fit and model complexity. 
Because the individual AIC values are not interpretable, as 
they contain arbitrary constants and are much affected by 
sample size, for a given set of R models, Burnham and 
Anderson (2004) proposed to rescale the AIC to 

 
AICi = AICr AICmin , r =1,…,R,      (9) 

with AICmin  being the smallest AIC value across the set of 

R models. The AIC differences, AICr , are interpreted as 

the information loss when model gr , rather than the best 

model gmin , is used to approximate f. Some simple rules of 

thumb are used in assessing the relative merits of the models 

in the set [10]: models with AICr 2  have substantial 

support (evidence); those with 4 AICr 7  have 

considerably less support; and models with AICr > 10  

have essentially no support. 

 Akaike [16] advocated the use of exp(
1

2
AICr )  as the 

relative likelihood of the model given the data by 

 
(gr | D) e

1

2
AICr .       (10) 

 Note that the model likelihood 
 
(gr | D)  takes into 

account both goodness-of-fit and model complexity, while 

P(gr | D)  takes into account only goodness-of-fit. Similar 

to the posterior probabilities in (5), Akaike [10] defined 

Akaike's weights by 

PA (gr | D) =
exp(

1

2
AICr )p(gr )

r=1

R

exp(
1

2
AICr )p(gr )

.     (11) 

 Akaike's weight PA (gr | D)  can be interpreted as the 

weight of evidence that model gr  is the best K-L model 

given a set of R models and given that one of the models in 

the set must be the best K-L model. Note that for 

non-informative prior probabilities P(gr ) = 1 / R , Akaike's 

weights can be interpreted as the posterior probabilities of 

the models. 

 

3.2.2. Bayesian Posterior Model Probabilities 

 The Bayesian Information Criterion (BIC), proposed by 
Schwartz [17], is given by 

 
BIC = 2log ( | D) + Klog(N ),      (12) 

where N is the number of observations (in our case, arrays). 
The BIC uses a higher penalty on the number of observations 
than the AIC that penalizes on the number of parameters in 
the model. Therefore BIC leads to the selection of less 
complicated models. The posterior model probabilities are 
given by 

PB (gr | D) =
exp(

1

2
BICr )p(gr )

r=1

R

exp(
1

2
BICr )p(gr )

.     (13) 

 Burnham and Anderson (2002) show that, for prior 
probabilities defined by 

P(gr ) = B exp(
1

2
BICr ) exp(

1

2
AICr )     (14) 

it follows that PB (gr | D) = PA (gr | D) , where B is a 

constant. 

4. ORDER RESTRICTED INFORMATION 
CRITERION 

 Anraku [18] proposed an information criterion for 
parameters under an order restriction (ORIC). In contrast to 
the AIC, the ORIC method is particularly suitable for 
detecting the configuration of the isotonic means under order 
restriction. 

 In contrast to the AIC and BIC, which penalize on the 
number of parameters in the model or on the sample size, the 
ORIC takes into account the level probability for the number 
of parameters under each order restricted models in set R. 
The ORIC, proposed by Anraku [18] is given by, 

 

ORIC = 2log ( | D) +
i=1

K

iP(i,K ,wi ),     (15) 

where P(i,K ,wi )  is the level probability [3] that for given 

K+1 doses under H0 the isotonic regression will result in i 

unique isotonic means, wi = ni / i , ni  is the number of 

arrays at dose i (
 
i = 0,…,K ), and i  is the variance at dose 

i. For the case that
 
wi =… = wK , or K = 2 , it follows that 

 
ORIC = 2log ( | D) + 1 / i  [3]. 

 The posterior model probabilities (with non-informative 
priors) are given by 

POR (gr | D) =
exp(

1

2
ORICr )

r=1

R

exp(
1

2
ORICr )

.      (16) 

 Under simple order alternatives, i.e., H1
Up

 or H1
Down

, in 

the setting of four doses (control and three higher doses) and 

equal number of arrays per dose, the level probabilities 
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P(i,K ,wi ) , given by Robertson et al. [3], are equal to 0.25, 

0.45833, 0.25, and 0.04167 for i = 0, 1, 2, and 3, 

respectively. 

 Table 2 lists the value of penalty given by the AIC, BIC, 

and ORIC. Note that the relative magnitude of penalty used 

by the ORIC for models g1 , g2 , g3  (two parameters) and 

models g4 , g5  g6  (three parameters) is large as compared 

to that used for model g7  (four parameters). Thus, due to 

the small penalty difference between models g4 , g5 , g6 , 

and model g7 , the latter is more likely classified as the best 

model in set R. 

Table 2. Comparison of Penalty Values by the AIC, BIC and 

ORIC for Models g1 to g7. N is the Total Number of 

Arrays 

 

Models   Parameters  AIC   BIC  ORIC 

g1, g2, g3   2 2 2 2 log(N)  2 1.16666  

g4, g5, g6   3 2 3  3 log(N) 2 1.91666 

g7   4 2 4 4 log(N)  2 2.08334 

 

 So far we have discussed the model selection by using 
the information theory in order to classify the dose-response 
curve shape and identify the MED level. An alternative 
approach to determine the MED are the hypothesis testing 
procedures, such as Williams' [4,5] and Marcus' [6] 
procedures, which identify the MED based on hypothesis 
test conducted in a step down fashion. However, 
identification of the MED by using these procedures does 
not imply the shape of the dose-response curve. On the other 
hand, model selection procedures based on the information 
theory can simultaneously address two objectives - 
determination of the MED and classification of trends. Once 
the best model from the candidates is selected, the MED can 
be identified from the selected model. Note that the methods 
discussed above are conditional on the result of testing for 
monotonic trend that is essential. The model selection 
procedure is applied to those genes, for which there is an 
evidence of a monotone relationship between gene 
expression and dose. Hence, the best monotone model must 
be in the model set as required. Moreover, the initial testing 
step reduces the computational time for the model selection, 
as the direction of the trend (upward or downward trend) is 
known from the initial step. 

5. APPLICATION TO THE DATA 

 Based on the 3499 genes found to be significant in the 
initial inference step (see Section 3.1), the classification of 
trends for these genes is to be obtained. Using the four 
information criteria (likelihood, AIC, BIC, and ORIC) the 
genes are classified into the seven curve shapes shown in 
Fig. (1) (see Table 3). Using the likelihood-based posterior 
probabilities, defined in (5), 1710 genes (48.85%) are 
classified as g7 - the isotonic regression model with four 
parameters. As shown in Table 3, when the AIC and BIC 
criteria are used to calculate the posterior probabilities, the 
number of genes that are classified as g1 (isotonic regression 

with two parameters) increases from 344 to 1528 and 1648, 
respectively. The same pattern is observed for models g2 and 
g3 (both are isotonic regression models with two parameters). 
For the ORIC, the number of genes classified to models from 
g1 to g6 decreases as compared to the AIC and BIC. On the 
other hand, 816 genes are classified as g7. 

Table 3. Classification of Genes into Dose-Response Trends. 

Numbers of Genes Classified as Each Model (from 

g1 to g7) are Shown in the Table 

 

Model   Likelihood   AIC   BIC   ORIC 

g1  344   1528   1648   1348 

g2  25   307   369   221  

g3  14   106   126   86 

g4  343   370   337   253 

g5  885   823   715   655 

g6  178   170   149   120 

g7  1710   195   155   816  

 

 Fig. (2) shows the data for gene 3467. Based on the 
likelihood and ORIC, the best model for the gene is g7 (solid 
line). Using the AIC, the gene is classified as g6 (dotted line). 
For both models, the second dose level is selected to be the 
MED level. Using the BIC, the model is further reduced and 
the gene is classified as g2 (dashed line), and the MED level 
is identified as the third dose level. 

 Note that, although models g1, g2, and g3 have the same 
number of parameters, the MED are not the same. The 
effective dose level for model g1 is the highest dose level, 
while for g2 and g3 the MED are the third and the second 
dose levels, respectively. In general, the AIC and BIC criteria 
favor the two-parameter models, as compared to the 
three-parameter models g4, g5, g6, and to the four-parameter 
model g7, which is favored by the likelihood. Table 3 shows 
that the AIC and BIC classify most of genes as g1 and g5, the 
ORIC classifies most of genes as g1 and g7, while the 
likelihood criterion classifies genes mostly as g7. 

6. SIMULATION STUDY 

 Two simulation studies are conducted to investigate the 
performance of the model selection procedure. In particular, 
two questions are of interest: (1) is the initial inference step 
of filtering out genes with monotonic trends necessary, and 
(2) when the AIC, BIC, and ORIC are used to reduce the 
complexity of the models, does the selection favor some 
models over others? In the first study, we compare the 
proposed model selection methods for classification of dose 
response curve shapes with and without the initial step of 
testing monotonic trends. In the second study, we evaluate 
whether the model selection criteria are sensitive to the shape 
of the seven possible dose-response relationships. 

6.1. The Influence of the Initial Inference Step 

 In this study, we investigate two different approaches to 
classification of genes into the seven models under ordered 
alternative (see Fig. 1), under the null model and under 
non-monotonic models. The first approach is to classify all 
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the genes into different models from the experiment by using 
the four information criteria. Hence, the classification is 
done without an initial inference step. The second approach 
is divided into two steps. In the first step null hypothesis (2) 
is tested against order restricted alternatives (3) or (4). After 
the initial step of filtering out non significant genes, in the 
second step, monotonic genes are further classified into one 
of the seven monotonic models. The first approach avoids 
the problem of hypothesis testing and multiplicity. The 
second approach zooms in on the genes of interest with 
monotonic trends, and controls the FDR. 

 The performance of the two approaches is evaluated by 

the misclassification error and correct classification for each 

model. In the simulations 100 data sets with 12 microarrays 

(three arrays for each of four dose levels) and 17,000 genes 

each, are randomly generated. Among all the genes, 250 

genes are generated under each of the seven models with an 

increasing and decreasing trend that accounts for 3500 genes. 

Another 3500 genes are generated under a non-monotonic 

trend. Finally, the remaining 10,000 genes are generated 

under the null model. The sample means used for simulation 

are given in Table 4, with scale factor  = 1 and the variance 
2 = 0.01 . 

 The results of the simulations (with correct classification 
and misclassification error rates) are summarized in Table 5 
(first approach: classification without initial inference step) 
and Table 6 (second approach: initial inference step follows 
by classification step). 

Table 4. Means for Simulated Data. For Each Model (from g1 

to g7), Each i is Multiplied by the Factor  Given in 

the Last Column, where  = 1 

 

Model  1  2 3 4   = 1 

g1:  (1  1   1   2)  2 / 3  

g2:  (1   1   2   2)   

g3: (1   2  2   2) 2 / 3  

g4: (1   2   2   3)  / 2  

g5: (1   1   2   3)  2 / 11  

g6: (1   2   3   3)  2 / 11  

g7: (1 2 3.5 4)   / 5  

null:   (0  0 0 0)  

non-mon: (1 -1 2 -2)   / 5  

 

 The misclassification and correct classification rates are 

computed as follows. Suppose that Xi genes are classified as 

model gi. Among these Xi genes, Yi genes are truly generated 

under gi. The proportion of correct classifications for model 

gi is thus equal to Yi/250; for non-monotonic model, it is 

equal to Yi/3500; and for the null model, it is equal to 

 

Fig. (2). Classification of trend for an example gene. The best model according to the likelihood, AIC, BIC, and. Solid line is the isotonic 

regression model g7 (four parameters) selected by the likelihood and ORIC, dotted line is g6 (three parameters) selected by the AIC, and 

dashed line is g2 (two parameters) selected by the BIC. 
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Yi/10000. The misclassification rate is defined as the relative 

proportion, mimicking the concept of FDR: the proportion of 

misclassifications (false positives) among the number of 

classifications (total discoveries). The proportion of 

misclassifications for each model is equal to (Xi Yi ) / Xi . 

From Tables 5 and 6, it is easy to note that the correct 

classification rate obtained for the two approaches, is quite 

similar for the AIC and BIC, while the likelihood criterion 

under the second approach yields a higher correct 

classification rate than that under the first approach. This is 

because the testing procedure filters out non-significant 

genes and controls the FDR. On the other hand, the 

misclassification errors, obtained by using the AIC, BIC, and 

ORIC, for the seven models under the order alternatives in 

the second approach, are much lower than those in the first 

approach. The initial testing step in the second approach 

selects the genes rejected with a test that results in favor of 

the monotonic ordered alternatives and allows them to be 

correctly classified into one of the seven models. This 

greatly improves the misclassification error. On the other 

hand, in the first approach, a large number of non-monotonic 

genes are misclassified into one of the seven models under 

the order restriction after the penalization used by the AIC, 

BIC, and ORIC, that results in high misclassification errors. 

Thus, the second approach is recommended to ensure a 

correct classification of genes of interests. 

 We also observe that, for g7, both the misclassification 

error and the correct classification proportion, obtained by 

using the ORIC, are higher than those obtained by using the 

AIC and BIC. However, the opposite results can be observed 

for models g4, g5, and g6. This is because the penalty used by 

the ORIC favors g7 as noted in Section 4. As the number of 

genes classified as g7 (X7) increases, the number of correct 

classification (Y7) increases as expected. Thus, the proportion 

of correct classification Y7/250 also increases. On the other 

hand, the misclassification error (X7 Y7 ) / X7  increases at 

the same time, due to an increase in X7. 

6.2. Evaluation of the Four Criteria 

 In the simulation study, 100 data sets are generated, each 

with 12 microarrays (three arrays for each of four dose 

levels) containing 5000 genes. The proportion of genes 

generated under different models, follows the results 

obtained by the AIC shown in Table 3. The isotonic means at 

different dose levels are assumed to correspond to those 

shown in Table 4 with =1 and 2 = 0.01 . The results 

obtained by using the four information criteria are presented 

in Table 7. As we observe, except for model g7, classification 

based on the AIC and BIC achieves better results when 

compared to the classification based on the likelihood. The 

former reduces not only the misclassification error, but also 

its standard error. However, as compared to the AIC and 

BIC, the ORIC achieves a better classification for model g7, 

while it performs worse for models g1- g6. 

 For example, 2184 genes (i.e., 43% of 5000 genes in total 
in each data set) are generated under g1. Using likelihood 
criterion for classification, 25% of these genes are 
misclassified as g4, 24.87% are misclassified as g5, and 
16.5% as g7. The total misclassification error rate (number of 
correct classification/2184) is 66.46% (=25%+24.87%+ 

Table 5. Misclassification and Correct Classification Rates Under Each Simulated Model (from g1 to g7). Fist Approach: 

Classification Without Initial Inference Step. L=Likelihood, A=AIC, B=BIC, O=ORIC, NA=Not Available 

 

Error Correct 
Trend  Model 

 L   A   B   O  L   A   B  O 

 g1  NA   0.7113   0.6608   0.8593   0.0000   1   1  0.9995 

 g2  NA   0.6968   0.6501   0.8481  0   0.9960   0.9981   0.9885  

U  g3  NA   0.7125   0.6617   0.8593  0   0.9999   0.9999   0.9993  

p  g4  0.9421   0.2780   0.2499   0.3389  0.0011   0.7842   0.7903   0.6741 

 g5  0.8847   0.0266   0.0146   0.0512  0.0019   0.9834   0.9895   0.8513  

 g6  0.8674   0.2378   0.2659   0.0979  0.0018   0.9830   0.9890   0.8469 

 g7  0.7884   0.0710   0.0503   0.3540  0.9965   0.7176   0.6526   0.9545 

 g1  NA   0.7118   0.7144   0.9330  0   0.99988   1  0.9992 

 g2  NA   0.6962   0.6500   0.8480   0   0.9966   0.9984  0.9890 

D  g3  NA   0.7103   0.6588   0.8592   0   0.9999   0.9999  0.9996  

o  g4  0.8835   0.098   0.0608   0.1766  0.0024   0.9792   0.9861   0.8352 

w  g5  0.8799   0.0273   0.0153   0.0537  0.0018   0.9825   0.9886  0.8447 

n  g6  0.8495   0.2415   0.2672  0.0977  0.0023   0.985   0.9900   0.8492 

 g7  0.7882   0.0713   0.0523   0.3567  0.9970   0.7101   0.6483   0.9544 

  null   NA   0   0   0   0   0.6163   0.7053   0.0954 

  non.mon   0.7606   0.0398   0.0077   0.0091   1   0.9999   0.9604   0.4434 
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16.5%) with the standard error of 0.0105. When using the 
AIC and BIC, the error rates are reduced to 0.01% and 
0.004%, respectively. Similar patterns are observed for all 
the models except g7. For model g7, the misclassification is 
due to the fact that g6 that is similar to g7 when the isotonic 
means are considered with only a slight difference at the two 
highest dose levels.  

 To enhance a distinction between g6 and g7, we modified 

the isotonic means for model g7 to (1 2 3 5) / 5 , that 

makes them substantially different from those for model g6. 

After the modification, the results of this simulation for 

model g1- g6 are the same as shown in Table 7. The results 

for model g7 are summarized in the last row of Table 7. It 

shows a substantially improved performance for model g7 for 

the AIC and BIC. 

 From the last row of Table 7 we can observe that the 
performance of classification by using the AIC and BIC for 
the modified model g7 is satisfactory. The misclassification 
errors are 0.0122 and 0.0242 when using the AIC and BIC, 
respectively. When model g7 is substantially different from 
the other models, the AIC and BIC perform as good as the 
likelihood. 

7. DISCUSSION 

 In this paper, we have investigated the issue of 
classifying dose response curve shapes for the genes that 
tested positively for a monotonic trend. After the initial 
inference step, the set of all possible models is considered 
and a non-informative prior is given to these models. The 
likelihood, AIC, BIC, and ORIC are used to assess  the good- 
 

ness-of-fit and complexity of the models. The Akaike 
weights, representing the posterior probabilities of the 
models, are calculated from the AIC of the models; Bayesian 
posterior probabilities are obtained from the BIC; the 
posterior probability obtained from the ORIC takes order 
restriction into account. We have shown that using the 
likelihood to calculate the posterior probabilities of the 
model leads to the selection of the isotonic regression model, 
which maximizes the likelihood under the ordered 
constraints. For the setting of four doses, the ORIC tends to 
classify genes as model g7 as opposed to models g4, g5, and 
g6 that have one parameter less. And, as expected, using the 
AIC and BIC leads to a selection of simpler models with less 
parameters (compared with the model selection based on the 
likelihood). Moreover, we have shown that after a 
classification is made, the mean structure of the selected 
model can be used to estimate the minimum effective dose 
level. 

 From our simulation study, we note that the initial 
inference step of testing monotonic trends reduces the 
misclassification error by filtering out the genes with 
non-monotonic trends. Moreover, the classification based on 
the AIC and BIC leads to a smaller classification error when 
compared to the use of likelihood. The ORIC performs better 
for model g7, but worse for the other models in set R. 

 The R is used to perform the analysis in our paper. 
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Table 6. Misclassification and Correct Classification Rates Under Each Simulated Model (from g1 to g7). Approach Two: Initial 

Inference Step Followed by Classification Step. L=Likelihood, A=AIC, B=BIC, O=ORIC, NA=Not Available 

 

Error Correct 
Trend Model  

 L   A   B   O  L   A   B  O  

 g1  0.022   0.0291   0.0320  0.0263   0.3369   0.9999   1  0.9995 

 g2  0.0272   0.0310   0.03560  0.0261   0.2505   0.9960   0.99810 0.9885  

U  g3  0.0253   0.0300   0.0327   0.0265   0.333   0.9999   0.9999  0.9993 

p  g4  0.6112   0.2188   0.2160  0.2191  0.4033   0.7842   0.7903  0.6741 

 g5  0.5093   0.0149   0.0108   0.0182  0.5041   0.9834   0.9895  0.8513 

 g6  0.5106   0.2307   0.2638  0.0661  0.4995   0.9830   0.9890  0.8469 

 g7  0.6796   0.0710   0.0503   0.3350  0.9965   0.7176   0.6526  0.9545 

 g1  0.0255   0.0456   0.0480  0.0427  0.3336   0.9999   1  0.9992 

 g2  0.0216   0.0289   0.0341  0.0236  0.2507   0.9966   0.9984  0.9890 

D  g3  0.0270   0.0300   0.0322   0.0269  0.3399   0.9999   0.9999 0.9996  

o  g4  0.5220   0.0238   0.0210   0.0259  0.4972   0.9792   0.9861  0.8352 

w  g5  0.5141   0.0144   0.0113   0.0179  0.4987   0.9825   0.9886  0.8447 

n  g6  0.5097   0.2338   0.2649  0.0660  0.5025   0.985   0.9900  0.8492 

 g7  0.6798   0.0713   0.0523   0.3991  0.9970   0.7102   0.6483  0.9544 

  null   NA   0   0   0   0   0.8796   0.9390  0.8796  

  non.mon   0.7396   0.2449   0.1337   0.2449  0.9989   0.9988   0.9988  0.9988  
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