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Abstract: We consider an Ishida and Korf Moving Target Search (MTS) algorithm with informational distance measures. 

Similarly to the previously defined Informational Learning Real-Time A* algorithm, the suggested algorithm acts on the 

set of partitions of the sample space, on which the probability mass function is defined. The information-based Rokhlin 

metric and its lower bound – Ornstein metric, give the necessary distance measures. We prove that similarly to the Ishida 

and Korf MTS algorithm, the proposed Informational MTS (IMTS) algorithm always terminates and finds the target. The 

comparison of the IMTS algorithm with known models shows that it outperforms known Markov decision process model 

of search with probabilistic and informational decision criteria. These findings help to construct a unified framework of 

search after both static and moving targets, and to bridge the gap between different search procedures that are related to 

both artificial intelligence and information theory. 
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1. INTRODUCTION 

 The problem of search after a moving target is one of the 
oldest problems that appear in different tasks and 
applications. In general, this problem is formulated as 
follows. Consider a target, which is moving within a discrete 
domain, and a searcher looking for that target. At each step, 
the action available to the searcher is to check a sub-domain 
in order to determine whether the target is somewhere within 
this sub-domain or not. If the searcher finds the target in a 
sub-domain that contains only one point, then the procedure 
terminates. Otherwise, the target moves to another point of 
domain, and the search continues. It is assumed that the 
target is not informed about the searcher’s behavior and, in 
contrast to game theoretic formulation, and is not aimed to 
reach any goal. The searcher’s goal, in opposite, is to choose 
a sequence of sub-domains such that the search procedure 
terminates in a minimal expected number of steps. Such 
formulation of the search procedure is motivated by a group-
testing procedure formulated by Dorfman [1]. Although, in 
contrast to the original Dorfman group testing, which implies 
a search after a static target, the formulated problem 
considers a search after a moving target. 

 The problem of search after a moving target was 
considered by the use of different approaches and methods, 
especially by the use of optimization techniques [2, 3]. In 
particular, under additional restrictions on the abilities of the 
searcher and the target, the problem was intensively studied 
in the framework of search and screening theory [4, 5]. For 
the search in discrete space, this direction was continued by 
Eagle [6] and later by Singh and Krishnamurthy [7]. 

 The other approach to the search problem was suggested 
by Ishida and Korf [8, 9]. Based on Korf’s Learning  
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Real-Time A* (LRTA*) algorithm of search after a static 
target [10], Ishida and Korf built the Moving Target Search 
(MTS) algorithm that implements the same principles as 
LRTA* algorithm and acts on a connected graph. Recent 
results on these algorithms were reviewed by Shimbo and 
Ishida [11]. The probabilistic methods into the framework of 
LRTA* was introduced by Koenig et al. [12, 13] who 
considered an implementation of the LRTA* algorithm over 
non-deterministic domains and suggested suitable adaptive 
algorithms that can be applied for the search for both static 
and moving targets. Further studies of the algorithms of such 
type resulted in a unified framework for general search 
procedures that was suggested by Bulitko et al. [14, 15] and 
by the IRCL Research group [16]. 

 The informational version of the LRTA* algorithm that 
implements a search after a static target in probabilistic space 
was suggested by Kagan and Ben-Gal [17]. This 
Informational LRTA* (ILRTA*) algorithm follows the 
Dorfman group-testing procedure [1] although implements a 
representation of search process in the form of search over 
partitions of the domain. Such a representation is motivated 
by a Generalized Optimal Testing Algorithm (GOTA) [18], 
which creates suitable partitions of sample space according 
to the set of available tests, and by the parallelized Huffman 
searching procedure [19] that implements Huffman search 
[20] over a partition of samples space. 

 In the paper, we follow the line of the ILRTA* algorithm 
[18] and extend it to the search for a moving target. 

 The formulated algorithm applies a group-testing 
approach to the MTS algorithm and is based on information-
theoretic measures. It acts on the set of partitions of the 
sample space similarly to other group-testing approaches 
and, in contrast to the existing algorithms of search, uses the 
information-based Rokhlin distance [21] to measure the 
distances between the partitions. Since the used distance 
measure meets the metric requirements, unlike other 
informational measures such as the Kulback-Leibler (KL) 
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distance [22], it can be applied to the MTS algorithm. 
Accordingly, we call the suggested algorithm as the 
Informational MTS (IMTS) algorithm. Unlike other search 
procedures with moving target, the IMTS algorithm can 
utilize side information regarding the distance estimation 
from the searcher to the target, e.g., by implementation of 
Ornstein distance measure [23]. 

 A main goal of the paper is to finalize a development of 
the unified informational search framework, which was 
started by the ILRTA* algorithm [17]. In this paper, we 
formulate the IMTS algorithm and study its main properties. 
The work is organized as follows. In Section 2, we formulate 
a general group-testing model of the search process after a 
moving target and describe the Rokhlin and Ornstein 
metrics. Section 4 includes numerical studies of IMTS 
algorithm and simulated statistical comparisons between the 
IMTS algorithm, the ILRTA* algorithm (in the case of static 
target) [17] and the model of search with informational 
criterions based on Markov decision processes (MDP) [24]. 
In the Conclusion, we summarize the work and discuss its 
future directions. APPENDIX contains the proofs of the 
statements formulated in the main text. 

2. A GROUP-TESTING SCHEME OF SEARCH AND 
REQUIRED DISTANCE MEASURES 

2.1. Dorfman Scheme of Search Over Partitions Space 

 Let X = x1, x2 ,…, xn{ }  be a finite sample space of n 

points where the target can be located. According to the 

Dorfman scheme of group-testing [1], at each time moment 

 
t = 0,1, 2,… , the searcher chooses a subset At X  and 

observes it. It is assumed that the observation is perfect, 

hence, the obtained observation result zt  is such that zt = 1  

if the target is located in one of the points of At
, and zt = 0  

otherwise. All subsets A X  that are available to the 

searcher’s choice are included into a search space X. If the 

searcher’s choice of subsets A is not restricted, then the 

search space can be considered as a power set X = 2X  of a 

sample space X that consists of all possible subsets of X 

including the empty set  and the set X itself. 

 The formulated Dorfman search scheme represents a 

general search procedure that, under suitable restrictions, 

covers most cases of search after a static target. In addition, 

such a scheme can be directly applied to the search after a 

moving target that acts on a sample space. In such a case, 

location of the target at time t is denoted by xt X . We 

implement the Dorfman search scheme in the equivalent 

form of search over partitions set  as it was previously 

implemented by the Informational Learning Real-Time A* 

(ILRTA*) algorithm of search for a static target [17] that 

generalizes GOTA [18] and Huffman search [20]. 

 The general procedure of search after a moving target on 

the partitions set  is formulated as follows [24, 25]. Assume 

that at each time moment t the target selects a location 

xt X , and the searcher obtains a perfect observation result 

zt 0,1{ } . Selection of the set At X   

 

and its observation implies that if zt = 1 xt , At( ) = 1 , then 

 
zt = 1 xt , X \ At( ) = 0  and vice versa. Hence, such a selection 

can be represented by the searcher's partition 
t
= At , X \ At{ } , the target location at time moment t can 

be represented by the target’s partition 
t
= xt{ }, X \ xt{ }{ } . 

Accordingly, the Dorfman search procedure on the set  of 

partitions of the sample space X in the case of moving target 

can be formulated as follows [25]: 

1. The target starts for the point x0 X  that 

corresponds to the partition 
0
= x0{ }, X \ x0{ }{ } . 

At each time moment t, the target chooses a point 

xt X  that corresponds to the partition 
t

. 

2. At time moment t, the searcher chooses a partition 
t

. 

3. If t
=

t , then the search terminates. Otherwise time 

increases to t = t +1 , the target chooses the next 

point xt+1 X  and corresponding partition 
t+1

 

and the search continues. 

 It is assumed that the searcher is not informed about the 

target’s location, while the probability of the target’s 

location in the points of sample space X can be available. 

The goal of the searcher is to find a policy for choosing the 

partitions 
t

 that guarantees termination of the search 

within a minimal expected number of steps. 

 In the next sections, we formulate an Informational 
Moving Target Search (IMTS) algorithm that implements 
the above presented search procedure. This algorithm uses 
distances between partitions that are described below. 

2.2. Rokhlin and Ornstein Distance Measures 

 We start with the definitions of the Rokhlin [21] and 
Ornstein [23] distances between partitions. These distances 
were previously used in the implementation of the ILRTA* 
algorithm of search after a static target [17], and in the 
models of search after moving target [24, 25]. 

 Let 
 
X = x1, x2 ,…, xn{ }  be a finite sample space. Assume 

that for every time moment t there is defined a probability 

mass function pt :X 0,1[ ] . Functions pt  determine the 

probabilities pt xi( ) = Pr xt = xi{ }  of the target being located 

in points xi X ,
 
i = 1, 2,…, n , at time moment t, where 

pt xi( )
i=1

n
= 1 . Probabilities pt xi( )  are called the location 

probabilities. If there is no available information on the 

target location, then, basing on the principle of the maximum 

entropy, it is assumed that the probabilities pt xi( )  are equal. 

Below, for an arbitrary fixed time moment, we omit index t 

in the notation of function pt . 
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 Let  be a set of partitions of the sample space X and let 

= A1, A2 ,…{ } , Ai Aj = , i j , A = X , be a 

partition of X. For a subset A , denote 

p A( ) = p x( )
x A

. 

  The entropy of the partition  is defined as follows [26]: 

H ( ) = p A( ) log p A( )
A

, (1)  

where, following the information theory conventions [22], 

the logarithm is taken base 2 and it is assumed that 

0 log0 = 0 . 

 Let 
 

= B1, B2 ,…{ } , Bi Bj = , i j , 

conditional entropy of partition  given partition  is [21, 

26]: 

H |( ) = p A, B( ) log p A | B( )
AB

, (2)  

where p A, B( ) = p A B( )  and p A | B( ) = p A B( ) p B( ) . 

 Finally, the Rokhlin distance between the partitions  and 
 of the sample space is defined as follows [21]: 

d ,( ) = H |( ) + H |( )  (3)  

where conditional entropy is defined by eq. (2). 

 Since the Rokhlin metric (3) is closely related with joint 
entropy and mutual information [17, 25], we also refer to 
such metric as to informational distance measure. In the next 
considerations, the following metric properties of the 
Rokhlin distance [26] will be used: 

1. d ,( ) 0 ; 

2. d ,( ) = 0 ; 

3. d ,( ) d ,( ) + d ,( )  for any partition  of X. 

 The Ornstein metric gives another distance measure 
between partitions of the sample space X with a probability 
mass function p. This metric, which is also called the 
Ornstein distance, was originally suggested as a measure of 
difference between stochastic processes and it implies that 
the partitions are ordered. The metric is defined as follows 
[23]: 

dOrn ,( ) = p X \ i=1
k Ai Bi( )( ) , , , (4)  

where Ai , Bi , and k = max ,( ) . Here  is the 

cardinality of the partition. If > , then  is completed 

by empty sets, and if > , then empty sets are added to 

. In other words, if > , then from both partitions the 

first  elements are taken, and if > , then there are 

taken the first  elements. 

 Similar to the Rokhlin distance, the Ornstein distance 
meets the metric requirements [23]. For the Rokhlin and 
Ornstein distances the admissibility property holds. 

 Lemma 1 [17]. If  and  are partitions of the same 

space X with probability function p, then 

dOrn ,( ) d ,( ) . 

 In the next section we apply the above-presented metrics 
to the formulated search problem, and implement them in the 
Informational Moving Target Search (IMTS) algorithm. 

3. THE INFORMATIONAL MTS ALGORITHM AND 
ITS MAIN PROPERTIES 

 The suggested Informational Moving Target Search 
algorithm (IMTS algorithm) implements above presented 
general Dorfman search procedure on the set  of partitions 
of the sample space X. This algorithm is a special case of the 
Ishida and Korf Moving Target Search (MTS) algorithm [8, 
9]. Similar to the ILRTA* algorithm of search after a static 
target [17] both the required distances and the neighborhood 
of the states in the IMTS algorithm are defined using 
informational Rokhlin and Ornstein metrics. 

 Let, as above, X = x1, x2 ,…, xn{ }  be a sample space 

with corresponding location probabilities p xi( ) , 

 
i = 1, 2,…, n , p xi( )

i=1

n
= 1 , and let  be the set of all 

possible partitions of X that includes both the trivial partition 

= X,{ }  and the discrete partition 

 
= x1{ }, x2{ },…, xn{ }{ } . 

 Assume that for every pair of partitions ,  one can 

define the Rokhlin distance d ,( )  and a distance 

estimation 
 
d ,( ) , such that they satisfy 

 
d ,( ) d ,( ) , , . (5)  

 Property (5) is called the admissibility property. In the 

light of Lemma 1, it can be assumed that  d  is the Ornstein 

metric, thus 
 
d ,( ) = dOrn ,( ) . Note that, without loss of 

generality, it is assumed that for the discrete partition  and 

every  estimation, 
 
d ,( ) = 0  and the algorithm can 

still be applied. 

 The neighborhood of the states is a key concept in the 

MTS algorithm since the distance estimation between states 

is accurate only between the neighbors. For the MTS 

algorithm [8, 9] the neighborhood of the state is defined as a 

set of its successors in the graph over which the search is 

conducted. In the suggested IMTS algorithm, in contrast, the 

neighbors are defined by the use of the proposed 

informational distances between partitions from  as follows. 

Let r be a positive constant, 0 r H X( ) , where H X( )  is 

the entropy of sample space X. For any partition , we 

say that N , r( )  is the set of neighbors of  if N , r( )  

meets the following requirements: 
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1. N , r( ) ; 

2. for every partition N , r( )  it holds true that 

 
d ,( ) r d ,( ) . 

 Notice that in contrast to the neighborhood definition that 
appears in Ishida and Korf’s MTS algorithm [8, 9], this one 
essentially uses the distances and distance estimations 
between the partitions - a situation that is often justified in 
practical applications. 

 Denote by  (with suitable indices) the partitions chosen 
from  by the target (which is often defined by a single-point 
subset and its complementary subset) and denote by  (with 
suitable indices) the partitions chosen from  by the 
searcher. 

 In the proposed algorithm, the target’s movements are 

restricted so that for every movement from  to cur  it holds 

true that d cur ,( ) < r . 

 Let  and  be arbitrary initial searcher’s and target’s 

partitions, respectively, and let 
 
d0 ,( ) , , , be the 

initial distance estimations. In the worst case, from the 

searcher’s viewpoint it may be assumed that d0 ,( ) = 0  

for all , . The IMTS algorithm is formulated as 

follows. 

 Algorithm IMTS. Given r, , , 
 
d0 ,( ) , , , 

1. Init distance estimations by 
 
d0 ,( ) , , . 

2. Init searcher’s current partition cur  by the initial 

partition . 

3. Init target’s current partition cur  by the initial 

partition . 

4. While d cur , cur( ) 0  do 

 Searcher’s Turn 

a. Choose next partition next  (ties are resolved 

arbitrarily): 

next argmin N cur , r( )
d , cur( ){ } . 

b. Set distance estimation for current partition cur : 

 

d cur , cur( ) max d cur , cur( ), r +min N cur , r( )
d , cur( ){ } . 

c. Move to next partition: 

cur next . 

 Target’s Turn: 

d. Target moves from partition  to partition cur : 

cur . 

e. Searcher updates estimation for partition : 

 
d cur ,( ) max d cur ,( ), d cur , cur( ) r{ } . 

 End while. 

 The actions of the IMTS algorithm are illustrated by Fig. 
(1). In the figure, triangles denote the searcher’s partitions 
and the star denotes the target’s partition. 

 In the figure we consider the case where the searcher 

location is represented by the partition i  and the target 

location is represented by the partition i . 

 The suggested IMTS algorithm follows the principles of 
the ILRTA* algorithm of search after a static target [17]. In 
addition, as mentioned above, the IMTS algorithm can be 
viewed as an informational version of the MTS algorithm [8, 
9], in which distances and distance estimations are strictly 
defined using the information-theoretic metrics. On the other 
side, the original MTS algorithm can be viewed as a 
particular case of the suggested IMTS algorithm applied to 
an equiprobable sample space. 

 Before the next consideration, let us formulate the 
following standard lemma of correctness. This lemma 
guarantees that the introduced requirements and restrictions 
do not contradict. 

 Lemma 2 (of correctness). The requirements for the 
neighborhood and the target’s movement are correct in the 
terms of distances and distance estimations. 

 

Fig. (1). Actions of the Informational Moving Target Search (IMTS) algorithm. 

 
           j                    i            j  

    jid  ,
~

 

           jid  ,
~

              iid  ,
~

       jid  ,  

           jid  ,                   iid  ,  
 

 
     0    i  
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 The proof is given in APPENDIX. 

 Now let us show that for the IMTS algorithm the basic 
properties of the MTS algorithm [8, 9] still hold. The 
provided below new proofs of these properties are based on 
the proposed informational metrics and do not depend on the 
proofs regarding MTS algorithm. 

 The next lemma guarantees that the IMTS 

algorithm preserves the admissibility property (5) of 

distances d and distance estimations d . 

 Lemma 3. The IMTS algorithm preserves the 

admissibility of estimation values 
 
d ,( ) , ,( ) , 

i.e., throughout the IMTS algorithm’s trial it holds true that 

d ,( ) d ,( ) . 

 The main result regarding IMTS algorithm is the 
following. 

 Theorem 1. If for every pair ,( )  it the 

admissibility property d0 ,( ) d ,( )  holds and that it 

holds true that d ,( ) d ,( ) < d ,( ) d ,( ) , 

, , , , then the IMTS algorithm always terminates. 

 The proofs of Lemma 3 and Theorem 1 are given in 
APPENDIX. 

 The above formulated statements show that suggested 
IMTS algorithm has the similar properties as the 
conventional MTS algorithm [8, 9]. Although, notice that the 
requirements of Theorem 1, which guarantee the termination 
of the suggested IMTS algorithm, are weaker than the 
requirements for the MTS algorithm. Also, similarly to the 
ILRTA* algorithm [17] of search for a static target, the 
suggested IMTS algorithm allows an application of different 
probability measures on the sample space X, that makes it 
rather useful for different tasks. 

4. NUMERICAL STUDY AND SIMULATION 
RESULTS 

 In this section we present the results of some numerical 
simulations of search with the IMTS algorithm. The 
simulations address the search after a target governed by 
different moving rules. In all simulations, we use the 
Rokhlin metric as a measure of a distance between partitions 
and as its estimates. Each simulation contained 1000 
replications of the search algorithm. These replications were 
executed by a suitable C++ program. 

 In the simulations, we considered three types of target’s 
movements: 

1. Static target; 

2. Markovian target with uniformly distributed 
transition probabilities, 

3. Brownian target with uniformly distributed transition 
probabilities. 

 When considering the target’s movement we followed 
the conventional approach that implements Markovian or 
Brownian movements of the target. These models 
correspond to real-life constrains and assumptions of moving 

targets, e.g., movement continuity and a limit memory of 
real targets on a terrain [27, 28]. 

 We analyzed the search procedures with different values 
of the radius r that determines the neighborhoods of the 
searcher’s partitions and the searcher’s expectations 
regarding a “length” of the target’s steps. Various 
implementations of the proposed algorithm were tested 
under different search spaces, including for a search over 
large databases [29, 30], as well as for a search by 
autonomous mobile agents [27, 28, 31]. Let us note that for 
large domains, a group-testing procedure after static targets, 
such as the ILRTA* algorithm [17], can be applied at the 
beginning of search; such offline procedures provide an 
initial partitioning of the sample space with initial location 
probabilities of the target. At later stages of the search, the 
propose IMTS procedure can be used over a smaller domain, 
while updating the partitions and their probabilities. 

 Using an offline search procedure at the beginning of the 

search is very appealing, since most of the offline group-

testing procedures (e.g., the ILRTA* or Huffamn) reach the 

entropy lower-bound for the expected number of tests. This 

bound, in the worst case, is close to the entropy of the 

location probability plus one. This fact implies that even if 

the search space contains for example 10,000 points, it will 

require only [log2 10,000]=14 binary group-tests to reach the 

vicinity of the target. Taking these observations into account, 

in the simulated study we focus on the last stage of the 

search near the target, while ignoring the relatively fixed 

(and optimal) number of test rounds till this area is reached. 

Below, we present the results of straightforward application 

of the algorithm for a search in the last stages of the search 

over a sample space X of the size X = 9  points. 

 The first simulation trials were conducted for the search 
after a static target. The results of the simulations of search 
for a static target with different values of the radius r are 
presented in Table 1. 

Table 1. Search for a Static Target 
 

Number of Steps 
Radius r 

Min Max Mean Std. Dev. 

r = 0.1  1 15 8.255 4.584 

r = 0.5  1 15 8.235 4.592 

r = 1  1 15 8.284 4.575 

r = 2  1 15 8.262 4.576 

r = 3  1 15 8.239 4.576 

 

 The results presented in Table 1 show that the average 

number of search steps slightly depends on the radius r but it 

quite robust with respect to this parameter. The Welch’s t-

test ( = 0.05 ) shows that the differences between the 

maximum mean value obtained for r = 1  and minimal mean 

value obtained for r = 0.5  is not significant ( tobserved = 0.239  

and tstat = 1.960 ). 



6    The Open Applied Informatics Journal, 2013, Volume 6 Kagan  and Ben-Gal 

 The next simulation trials were conducted for the search 
after a Markovian target. The results of the simulations for 
different values of the radius r are presented Table 2. 

Table 2. Search for a Markovian Target 

 

Number of Steps 
Radius r 

Min Max Mean Std. Dev. 

r = 0.1  1 76 9.264 11.021 

r = 0.5  1 75 9.220 10.916 

r = 1  1 76 8.737 10.267 

r = 2  1 79 8.767 10.392 

r = 3  1 78 8.957 10.502 

 

 For the search after Markovian target, the average 

number of search steps reaches its maximum for r = 0.1  and 

minimum for r = 1 , however, according to the Welch’s t-test 

( = 0.05 ), this difference is not significant ( tobserved = 1.106  

and tstat = 1.960 ). 

 The final simulation trials were conducted for the search 
after a Brownian target. The results of the simulations for 
different values of the radius r are presented in Table 3. 

Table 3. Search for a Brownian Target 

 

Number of Steps 
Radius r 

Min Max Mean Std. Dev. 

r = 0.1  1 72 10.766 11.503 

r = 0.5  1 78 10.887 11.786 

r = 1  1 80 10.615 11.221 

r = 2  1 72 10.759 11.244 

r = 3  1 78 10.558 11.269 

 

 For a search after a Brownian target, the average number 

of search steps reaches its maximum for r = 0.5  and 

minimum for r = 3 . As for the previous cases, according to 

the Welch’s t-test ( = 0.05 ), here again the difference is 

not significant ( tobserved = 0.639  and tstat = 1.960 ) and the 

procedure is found to be robust. 

 The last set of simulations compares the suggested IMTS 
algorithm with popular Markov Decision Processes (MDP) 
models of search [32] with both probabilistic and 
informational criterions. The MDP model and its variants 
rely on an expectation regarding the target’s locations at the 
next time steps, which determined the searcher’s selections 
[24]. 

 We conducted such simulations of the IMTS algorithm 
that uses the same partitions as MPD models. In particular, 
we used partitions space  that includes only such partitions 
that consists of two subsets and one of the subsets includes 
only one point. The results of simulation trials of the IMTS 
algorithm with restricted partitions are presented in Table 4. 

Table 4. Search for with Restricted Partitions 

 

Number of Steps Parameter r and Type  

of Target Movement 
Min Max Mean Std. Dev. 

Static target 1 8 4.486 2.253 

Markovian target 1 26 4.875 4.089 r = 0.1  

Brownian target 1 33 4.987 4.607 

Static target 1 8 4.521 2.252 

Markovian target 1 26 4.627 3.849 r = 1.0  

Brownian target 1 33 5.005 4.675 

 

 The results presented in Table 4 show that in spite of a 
large difference between the maximal number of the steps 
required for finding the static and the moving targets (for 
Markovian target the number of step is more than three times 
greater than for the static target and for Brownian target it is 
more than four times greater than for the static target), the 
average number of search steps are rather close. This fact 
demonstrates that the suggested algorithm provides a 
successful search both for static and for moving targets, and, 
consequently, can be considered as an effective solution of 
the old problem [33], which requires extending classical 
two-cell Pollock model of search [34] to the search over 
arbitrary number of cells. 

 The results presented in Table 4 were compared with 
those obtained by the MDP models of search [24]. Note that 
both the search by IMTS algorithm and the search using 
MDP models include an expectation about the next target’s 
location. The MDP model is based on the known target’s 
transition probabilities, while the IMTS algorithm uses 
constant expectation and assumes that the target applies the 
step, which is the worst for the searcher. 

 Using the Welch’s t-tests ( = 0.05 , tstat = 1.960 ), we 

compared the results obtained by the IMTS algorithm with 

r = 1.0  with the results obtained by using the MDP model 

with maximum expected information criterion. The results of 

the comparison are the following: 

1. Static target: tobserved = 3.385 ; the expected number of 

search steps 4.521 obtained by the IMTS algorithm is 

significantly less than the expected number of search 

steps 4.928 obtained by using the MDP model. 

2. Markovian target: tobserved = 4.303 ; the expected 

number of search steps 4.627 obtained by the IMTS 

algorithm is significantly less than the expected 

number of search steps 5.535 obtained by using the 

MDP model. 

3. Brownian target: tobserved = 1.333 .; the expected 

number of search steps 5.005 obtained by the IMTS 

algorithm is statistically equivalent to the expected 

number of search steps 4.747 obtained by using the 

MDP model. 

 As it is expected, the results of the comparison show that 
in the case of the static target and in the case of Markovian 
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target, the IMTS algorithm, which applies the worst-case 
expectation, demonstrates better results than the MDP model 
of search, which expects with certainty the target movement 
at the next step. In the case of Brownian target search, both 
algorithms demonstrate statistically equivalent results, since 
such a target cannot stay in its current location and the 
worst-case expectation is close to the expectation based on 
the transition probabilities matrix. 

 Finally, we compared the results of the application of the 

IMTS algorithm to the search after a static target with the 

best results of such a search obtained by the ILRTA* 

algorithm [17]. The Welch’s t-tests ( = 0.05 , tstat = 1.960 ) 

give the following results: 

1. ILRTA* algorithm with Huffman neighborhood, the 

Rokhlin distance and zero estimations (average 

number of steps is 5.575) and IMTS algorithm with 
r = 1.0  and general neighborhood (average number 

of steps is 8.284) were found to be significantly 

different, tobserved = 17.339 . 

2. ILRTA* algorithm with Huffman neighborhood, the 

Rokhlin distance and zero estimations (average 

number of steps is 5.575) and IMTS algorithm with 

r = 1.0  and restricted neighborhood (average number 

of steps is 4.521) were found to be significantly 

different, tobserved = 11.396 . 

3. ILRTA* algorithm with unrestricted neighborhood, 

the Rokhlin distance and the Ornstein estimations 

(average number of steps is 2.790) and IMTS 

algorithm with r = 1.0  and restricted neighborhood 

(average number of steps is 4.521) were found to be 

significantly different, tobserved = 18.723 . 

 The results of the above comparisons show that the 
effectiveness of the search after a static target depends on the 
type of neighborhood and on the estimation scheme. A 
search based on the ILRTA* algorithm without estimation 
and with an Huffman neighborhood gives significantly better 
results than the search by using the IMTS algorithm with an 
unrestricted neighborhood and the worst estimation. 
Nevertheless, the outcome of the same ILRTA* algorithm is 
significantly worse than the outcome of the IMTS algorithm 
with the same estimation and a restricted neighborhood. 

CONCLUSIONS 

 In this paper, we considered the problem of search after a 
moving target. The target moves over a discrete sample 
space, and the action, which is available to the searcher, is to 
check a subset of locations and to determine whether the 
target is located somewhere in this subset or not. The 
procedure terminates if the searcher finds the target in a 
subset, which contains only one point. The goal is to find a 
sequence of subsets such that the search procedure 
terminates in a minimal average number of steps. 

 The proposed Informational Moving Target Search 
(IMTS) algorithm follows a group testing theory approach. 
This algorithm is based on the MTS algorithm and, in 
contrast to known search methods, allows taking into 
account available side information about possible target’s 
location, if such information exists. 

 The suggested IMTS algorithm acts over the set of 
partitions of the sample space. Thus, the searcher can take 
into account both the chosen subset of the sample space and 
the set of remaining subsets. We use the Rokhlin metric and, 

Table 5. Comparative Summary of the IMTS Algorithm and Other Known Algorithm of Search 
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if need, the Ornstein metric as distance measures between 
the partitions and as admissible distance estimations. 

 The features of the suggested IMTS algorithm are 
analyzed theoretically and it is proven that it always 
terminates with finding the target. Numerical simulations 
show that the suggested IMTS algorithm outperforms the 
known MDP model of search with probabilistic and 
informational decision criteria. The results of the 
comprehensive study of the suggested IMTS and other 
known procedures of search are summarized in the Table 5. 
Bold letters mark those algorithms that provide the best 
results in terms of minimal average number of search steps. 

 The suggested algorithm can be applied to a number of 
practical problems. In addition to straightforward search, its 
key ideas were rather fruitful for path-planning and 
navigation of mobile robots [27, 28, 35] and for 
consideration of data-mining problems [36]. The algorithm 
can be also be applied for a paging process in cellular 
networks and for other applications that allow a formulation 
in the form of stochastic local search. 

 Finally, the IMTS algorithm can be generalized for a 
search after a number of targets and to a search by multiple 
searchers. Following preliminary results regarding such a 
search after a static target by multiple searchers [37], these 
studies are remained for future research. 
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APPENDIX 

 Proof of Lemma 2. Let searcher’s partition be i 1  and 

target’s partition be i 1 . Assume that the searcher moves to 

partition i N i 1, r( )  and that the target moves to the 

partition i . Since i N i 1, r( ) , it holds true that 

 
d i 1, i( ) r d i 1, i( ) , and according to the assumed 

restriction for target’s movement it holds true that 

 
d i 1, i( ) d i 1, i( ) < r . 

 We need to show that the inequality 

 
d i , i( ) d i , i( ) d i 1, i( ) d i 1, i( )  is consistent. 

 If i N i 1, r( ) , then 
 
d i , i( ) = 0 , and since 

estimation  d  is a metric, it follows that i = i . Thus 

d i , i( ) = 0 , as well. Hence, the required inequality 

becomes 0 d i 1, i( ) d i 1, i( ) , that follows from the 

definition of distance estimation. 

 Let i N i 1, r( ) . Then 
 
d i 1, i( ) > r  and 

d i 1, i( ) > r . Therefore, we have: 

d i , i( ) d i 1, i( ) + d i 1, i( ) , r d i 1, i( ) , 

r < d i 1, i( ) ; 

 
d i , i( ) d i 1, i( ) + d i 1, i( ) , r d i 1, i( ) , 

 
r < d i 1, i( ) . 

 Subtracting the second inequality from the first, we 
obtain: 

 

d i , i( ) d i , i( ) d i 1, i( ) +

d i 1, i( ) d i 1, i( ) d i 1, i( )
 

that is correct since d i 1, i( ) r , d i 1, i( ) > r , 

 
d i 1, i( ) r  and 

 
d i 1, i( ) > r . Q.E.D. 

 Proof of lemma 3. Let 
 
d0 ,( ) d ,( )  for every 

available pair ,( ) . We need to show that 

following steps of the IMTS algorithm it is guaranteed that 

 
d cur ,( ) d cur ,( ) . 

 Let us consider the actions. 

 Searcher’s turn. If it holds true that 

 
d cur , cur( ) min N cur , r( )

d , cur( ) + r{ } , then by step 4.b 

of the algorithm the estimation updating is 

 
d cur , cur( ) d cur , cur( ) , and the admissibility holds 

since 
 
d cur , cur( ) d cur , cur( ) .   

Let 
 
d cur , cur( ) <min N cur , r( )

d , cur( ) + r{ } ,  and define 

 
min = argmin N cur , r( )

d , cur( ){ } . Then, by step 4.b we 

have 
 
d cur , cur( ) < d min , cur( ) + r  and we need to show 

that 
 
r + d min , cur( ) d cur , cur( ) .  If cur N cur , r( )  then 

 
d min , cur( )= 0 ,  d cur , cur( ) = d cur , min( )  and the 

required inequality becomes r d cur , min( ) , that holds 

according to definition of neighborhood. Let 

cur N cur , r( ) . So r < d cur , cur( ) . Using the triangle 

inequality, we obtain:  

 
r + d min , cur( ) d cur , min( ) + d min , cur( ) . Recalling that 

r d cur , min( )  and 
 
d min , cur( ) d min , cur( )  we obtain 

the required inequality. 

 Target’s turn. If it holds true that 

 
d cur ,( ) d cur , cur( ) r ; then the estimation updating is 

 
d cur ,( ) d cur ,( ) , and since 

 
d cur ,( ) d cur ,( )  the 

admissibility holds. Let 
 
d cur ,( ) < d cur , cur( ) r . Then 

we need to show that 
 
d cur , cur( ) r d cur ,( ) . 

According to the triangle inequality, we have 

d cur ,( ) + d , cur( ) d cur , cur( ) , and since 
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d , cur( ) < r  and 
 
d cur , cur( ) d cur , cur( ) , holds true that 

 
d cur ,( ) + r d cur , cur( ) d cur , cur( ) , that is the 

required inequality. Q.E.D. 

 Proof of Theorem 1. Let the searcher’s partition be i 1  

and the target’s partition be i 1 , and suppose that the 

searcher moves to partition i N i 1, r( )  and the target 

moves to the partition i . We need to show that after 

updating it is guaranteed that  

 
d i , i( ) d i , i( ) < d i 1, i 1( ) d i 1, i 1( ) . 

 Since the target was not found on the previous step, it 

follows that i 1 N i 1, r( ) , 
 
d i 1, i 1( ) > r  and 

d i 1, i 1( ) > r . If i N i 1, r( ) , then 
 
d i , i( ) = 0 , and 

since estimation  d  is a metric it leads to i = i  and the 

algorithm terminates. 

 Let i N i 1, r( ) . Then 
 
d i 1, i( ) > r  and 

d i 1, i( ) > r . Suppose that the searcher moved from i 2  

to i 1  and the target move from i 1  to i . Denote by 

d ,( )  the estimation values obtained after updating. 

 Let the searcher’s next partition be 

 
i = argmin N i 1, r( )

d , i 1( ) + r{ } . The estimation 

updating at the searcher’s move is 

 
d i, i 1( ) = max d i 1, i 1( ), d i, i 1( ) + r{ } , and the 

estimation updating at the target’s move is 

 
d i, i( ) = max d i, i 1( ), d i, i( ) r{ } . Then we have 

the following cases for updating. 

(a) 
 
d i, i 1( ) = d i 1, i 1( ) , 

 
d i, i( ) = d i, i 1( ) . 

 According to the triangle inequality for distance and 
distance estimation, we obtain: 

 
d i, i 1( ) d i 1, i( ) + d i, i 1( ) , 

 
d i, i( ) d i 1, i( ) + d i, i 1( ) ; 

d i 1, i 1( ) d i 1, i( ) + d i, i 1( ) , 

d i, i( ) d i 1, i( ) + d i, i 1( ) . 

 Subtraction of the first inequalities from the second ones 
gives: 

 

d i 1, i 1( ) d i, i 1( ) d i1, i( )

d i 1, i( ) + d i, i 1( ) d i, i 1( )
 

 

d i, i( ) d i, i( ) d i 1, i( )

d i 1, i( ) + d i, i 1( ) d i, i 1( )
 

 So, 
 
d i , i( ) d i , i( ) < d i 1, i 1( ) d i 1, i 1( )  is 

guaranteed, if it holds true that  

 
d i 1, i( ) d i 1, i( ) < d i 1, i( ) d i 1, i( ) , that is the 

assumption of the theorem. 

(b) 
 
d i, i 1( ) = d i 1, i 1( ) , 

 
d i, i( ) = d i, i( ) r . 

 Since 
 
d i, i( ) d i 1, i( ) + d i, i 1( ) , for  

 
d i, i( ) = d i, i( ) r  it also holds true that 

 
d i, i( ) d i 1, i( ) + d i, i 1( ) . Thus, this case is the 

same as the previous one. 

(c) 
 
d i, i 1( ) = d i, i 1( ) + r , 

 
d i, i( ) = d i, i 1( ) . 

 According to Lemma 3, the IMTS algorithm preserves 

admissibility of estimations. Hence  

 
d i, i 1( ) = d i, i 1( ) + r d i, i 1( ) . 

 Since d i 1, i( ) r  and  

 
d i, i 1( ) = d i, i 1( ) + r d i 1, i( ) + d i, i 1( ) , we 

have 
 
d i 1, i( ) = r , and this is the case when i  lies on the 

bound of N i 1, r( ) , for which the reasons of the case (a) 

are still true. 

(d) 
 
d i, i 1( ) = d i, i 1( ) + r , 

 
d i, i( ) = d i, i( ) r . 

 This case is a combination of the situations, considered in 
cases (a) and (b). Q.E.D. 

REFERENCES 

[1] R. Dorfman, “The detection of defective members of large 

population”, Ann. Math. Stat., vol. 14, pp. 436-440, 1943. 
[2] D. P. Bertsekas, Dynamic Programming and Optimal Control. 

Athena Scientific Publishers: Boston,1995. 
[3] S. M. Ross, Introduction to Stochastic Dynamic Programming. 

Academic Press: New York, 1983.  
[4] S. S. Brown, “Optimal search for a moving target in discrete time 

and space”, Oper. Res., vol. 28, no. 6, pp. 1275-1289, 1980. 
[5] L. D. Stone, Theory of Optimal Search. Academic Press: New 

York, 1975. 
[6] J. N. Eagle, “The optimal search for a moving target when the 

search path is constrained”, Oper. Res., vol. 32, pp. 1107-1115, 
1984. 

[7] S. Singh, and V. Krishnamurthy, “The optimal search for a 
Markovian target when the search path is constrained: the infinite-

horizon case”, IEEE Trans. Automat. Contr., vol. 48, no. 3, pp. 
493-497, 2003. 

[8] T. Ishida and R. E. Korf, “Moving target search”, In: Proc. IJCAI 
Conference, 1991, pp. 204-210. 

[9] T. Ishida and R. E. Korf, “Moving target search: a real-time search 
for changing goals”, IEEE Trans. Pattern Anal., vol. 17, no. 6, pp. 

609-619, 1995. 
[10] R. E. Korf, “Real-time heuristic search”, Artif. Intell., vol. 42, no. 

2-3, pp. 189-211, 1990. 
[11] M. Shimbo and T. Ishida, “Controlling the learning process of real-

time heuristic search”, Artif. Intell., vol. 146, pp. 1-41, 2003. 
[12] S. Koenig and G. Simmons, “Real-time search in non-deterministic 

domains”, In: Proc. IJCAI Conference, 1995, pp. 1660-1667. 
[13] S. Koenig and M. Likhachev, “Real-time adaptive A*”, In Proc. 

AAMAS Conference, 2006, pp. 281-288. 
[14] V. Bulitko and G. Lee, “Learning in real-time search: a unifying 

framework”, J. Artif. Intell. Res., vol. 25, pp. 119-157, 2006. 



10    The Open Applied Informatics Journal, 2013, Volume 6 Kagan  and Ben-Gal 

[15] V. Bulitko, N. Sturtevant, J. Lu and T. Yau, “Graph abstraction in 

real-time heuristic search”, J. Artif. Intell. Res., vol. 30, 51-100, 
2007. 

[16] IRCL Research Group. Available, http://sites.google.com/a/ualber 
ta.ca/ircl/projects/rths [accessed on 14 January 2013]. 

[17] E. Kagan and I. Ben-Gal, “A group-testing algorithm with online 
informational learning”, Trans. IIE, 2013. 

[18] C. R. P. Hartmann, P. K. Varshney, K. G. Mehrotra and C. L. 
Gerberich, “Application of information theory to the construction 

of efficient decision trees”, IEEE Trans. Inf. Theory, vol. 28, no. 4, 
pp. 565-577, 1982. 

[19] J. Abrahams, “Parallelized Huffman and Hu-Tucker searching”, 
IEEE Trans. Inf. Theory, vol. 40, no. 2, pp. 508-510, 1994. 

[20] S. Zimmerman, “An optimal search procedure”, Am. Math. Mon., 
vol. 66, pp. 690-693, 1959. 

[21] V. A. Rokhlin. “Lectures on the entropy theory of measure-
preserving transformations”, Russ. Math. Surv+., vol. 22, pp. 1-52, 

1967. 
[22] T. M. Cover and J. A. Thomas, Elements of Information Theory. 

John Wiley & Sons: New York, 1991. 
[23] D. S. Ornstein, Ergodic Theory, Randomness, and Dynamical 

Systems. Yale University Press: New Haven, 1974. 
[24] E. Kagan and I. Ben-Gal, “A MDP test for dynamic targets via 

informational measure”, In: Proc. IIE Research Meeting, 2007, pp. 
39-53. 

[25] E. Kagan and I. Ben-Gal, “An informational search for a moving 
target”, In: Proc. IEEE 24-th Convention EEEI, 2006, pp. 153-155. 

[26] Y. G. Sinai, Introduction to Ergodic Theory. Princeton University 
Press: Princeton, 1977. 

[27] E. Kagan, G. Goren and I. Ben-Gal, “Probabilistic double-distance 

algorithm of search after static or moving target by autonomous 
mobile robot”, In: Proc. IEEE 26-th Convention EEEI, 2010. 

[28] E. Kagan, G. Goren and I. Ben-Gal, “Algorithm of search for static 
or moving target by autonomous mobile agent with erroneous 

sensor”, In: Proc. IEEE 27-th Convention EEEI, 2012. 
[29] I. Ben-Gal, E. Kagan and N. Shkolnik, “Constructing classification 

trees via data mining and design of experiments concepts”, In: 
Proc. ENBIS Conference, 2008. 

[30] Ben-Gal, N. Shkolnik and E. Kagan, “Greedy learning algorithms 
and their applications to decision trees”, In: Proc. ENBIS 

Conference, 2007. 
[31] G. Chernikhovsky, E. Kagan, G. Goren and I. Ben-Gal, “Path 

planning for sea vessel search using wideband sonar”, In: Proc. 
IEEE 27-th Convention EEEI, 2012. 

[32] D. J. White, Markov Decision Processes. John Wiley & Sons: 
Chichester, 1993. 

[33] J. M. Dobbie, “A two-cell model of search for a moving target”, 
Oper. Res., vol. 22, no. 1, pp. 79-92, 1974. 

[34] S. M. Pollock, “A simple model of search for a moving target”, 
Oper. Res., vol. 18, pp. 883-903, 1970. 

[35] E. Kagan, E. Salmona and I. Ben-Gal. “Probabilistic mobile robot 
with quantum decision-making”, In: Proc. IEEE 25-th Convention 

EEEI, 2008, pp. 418-422. 
[36] E. Kagan, I. Ben-Gal, N. Sharkov and O. Maimon, “Unsupervised 

zoning of scientific articles using Huffman trees”, In: Proc. IEEE 
25-th Convention EEEI, 2008, pp. 339-402. 

[37] E. Kagan and I. Ben-Gal, “Search after a static target by multiple 
searchers by the use of informational distance measures”, In: Proc. 

IE&M Conference, 2010, p. 72. 

 

 

Received: March 11, 2013 Revised: May 23, 2013 Accepted: May 30, 2013 

 

© Kagan and Ben-Gal; Licensee Bentham Open. 
 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) 

which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. 

 


