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Abstract: In this paper, we present two methods for finding solutions to the one-dimensional nonlinear Burgers’ equation. 

The first method is an analytical one, which is based on the tanh – function method. The second method is based on the 

Adomian decomposition method where two approaches are introduced. The first approach considers the use of the initial 

condition while the other considers the use of the boundary conditions. The accuracy of the proposed numerical method is 

demonstrated by two test problems. The obtained results are presented and compared with the exact solution. The numeri-
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INTRODUCTION 

 In this paper, we consider the one-dimensional nonlinear 

Burgers' equation in the form 

ut + uux uxx = 0, a x b ,   (1) 

where; , are positive parameters and the subscripts t  and 

x  denote differentiation, with initial and boundary condi-

tions: 

u(x,0) = f (x)  

u(a,t) = 1 ,u(b,t) = 2 t > 0 ,   (2) 

 The study of Burgers’ equation is important since it 

arises in the approximate theory of flow through a shock 

wave propagating in a viscous fluid and in the modeling of 

turbulence [1]. The exact solutions of Burgers’ equation 

have been surveyed by Benton and Platzman [2]. In many 

cases these solutions involve infinite series which may con-

verge very slowly or for small values of the viscosity coeffi-

cients. Several studies in the literature have been considred 

before to compute numerical solutions of Burgers’equation 

(see for example [3-5]). 

 In this paper, we are concerned first with introducing an 

analytical solution of Eq. (1) which is not of series form. 

Second, two approaches to approximate the solution of Eq. 

(1) based on the Adomian decomposition method (ADM) are 

proposed. The ADM is a numerical technique for solving 

linear or nonlinear partial differential equations by generat-

ing a functional series solution in a very efficient manner. It 

is closely related to the Taylor series method and fixed-point 

iteration method. It was shown [6-8] among others that the 

effectiveness of the ADM could be dramatically improved 

by determining further components of the solution u (x, t).  
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The paper is organized as follows: In section 2, the use of 

tanh – function method [9-12] is demonstrated to get an ana-

lytical solution of Eq. (1). In section 3, an approximate solu-

tion is obtained by applying ADM using the initial condition 

u(x,0) = f (x) only. Then, a test example is given to demon-

strate the accuracy of the method and to illustrate its perti-

nent feature. In section 4, another approach for using ADM 

with the boundary conditions u(a,t) = 1 ,u(b,t) = 2 is proposed 

to get a numerical solution of Eq. (1), followed by a test ex-

ample to demonstrate the accuracy of the method. 

ANALYTICAL SOLUTION USING THE TANH – 

FUNCTION METHOD FOR BURGERS' EQUATION 

 In this section we find particular solutions for Burgers’ 

equation (1) using the recent tanh-function method. For this, 

consider the transformations: 

u(x,t) = f ( ),      (3) 

where = c( x t) , where c  and  are arbitrary (real) con-

stants. Based on this we use the following change of vari-

ables 

t
(.) = c

d

d
(.) ,

x
(.) = c

d

d
(.) ,

2

x2 (.) = c2 d 2

d 2 (.)   (4) 

 Applying the change of variable to Burgers' equation (1), 

the following ordinary differential equation is obtained. 

c
df ( )

d
+ c f ( )

df ( )

d
c2 d 2 f ( )

d 2 = 0,   (5) 

 Integrating Eq. (5), we get 

c f ( ) +
c

2
f 2 ( ) c2 df ( )

d
= B,    (6) 

where B is the constant of integration. 

 Now we introduce a new independent variable: 

y = tanh( ),      (7) 
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that leads to the change of derivative 

d

d
(.) = (1 y2 )

d

dy
(.),     (8) 

 We introduce the following tanh series 

f ( ) = s(y) = ai yi

i=0

m

,     (9) 

where m is a positive integer. From Eqns. (8) and (9) we get 

c s +
c

2
s2    c2    ( 1 - y2  )  

ds

dy
= 0 .  (10) 

 To determine the parameter m we balance the linear term 

of highest order in Eq. (10) with the highest order nonlinear 

term. This in turn gives m=1, so we get 

s(y) = a0 + a1y      (11) 

 Substituting s(y), and s (y) , from Eq. (11) into Eq. (10) 

yields the system of algebraic equations for a0 ,a1,c, and : 

y0 :    c2  a1   +   0.5 c  a0
2     c  a0   =   0,

y1 :a0 a1c a1c = 0,

y2 : 0.5 c  a1
2    +    c2  a1   =  0

  (12) 

 with the aid of Mathematica we find two solutions: 

a0 =
2c

,a1 =
2c

, = 2c ,

a0 =
2c

,a1 =
2c

, = 2c ,

   (13) 

 So we obtain the solutions 

u(x,t) =
2c

( 1 Tanh[c(x + 2c t]),

u(x,t) =
2c

(1 Tanh[c(x 2c t])

   (14) 

which are solutions of Eq. (1). 

 In a similar way, the following solutions can be obtained 

u(x,t) =
2c

( 1 Coth[c(x + 2c t]),

u(x,t) =
2c

(1 Coth[c(x 2c t])

   (15) 

 Remark: The obtained analytical solutions (14) and (15) 

for Burgers’ equation (1) coincide with the one in [1]. This 

proves that tanh-function method can be applied easily to 

obtain analytical solution of some kinds of partial differential 

equations. 

THE ADM FOR BURGERS' EQUATION (USING THE 

INITIAL CONDITION) 

 For the purpose of illustration of the methodology to the 

proposed method, using the ADM, we begin with consider-

ing Eq. (1) in the operator form: 

Lu + R u( ) + N u( ) = g t( )     (16) 

where L L(.) =
(.)

t
 is a linear operator and R is the re-

mainder of the linear operator. 

 The nonlinear term is represented by N (u). Thus we get 

Lu = g t( ) R u( ) N u( )     (17) 

 Assuming that the inverse operator L
-1

 exists and it can 

be taken as the definite integral with respect to t from t0 to t, 

i.e. 

L 1(.) = (.)dt
t0

t

     (18) 

 Then applying the inverse operator L
-1

 on both sides to 

Eq. (17) yields 

u = f0 + L 1 g(t) R(u) N (u)( ) ,   (19) 

where f0  is the solution of homogeneous equation 

Lu = 0 ,      (20) 

 The integration constants involved in the solution of ho-

mogeneous equation (20) are to be determined by the initial 

condition u0 = u(x,t0 ) = f (x),( ). . The Adomian decomposition 

method assumes that the unknown function u (x, t) can be 

expressed by a sum of components defined by the decompo-

sition series of the form 

u(x,t) = un (x,t)
n=0

,    (21) 

with 
0

u defined as u(x,0)  where u(x,t) will be determined 

recursively. The nonlinear operator in Eq. (16) can also be 

decomposed by an infinite series of polynomials given by 

N  ( u )  =    An
n=0 

,    (22) 

where An  are the appropriate Adomian’s polynomials of 

 
u0 ,u1,u2 ,…,un (that is 

 
An (u0 ,u1,u2 ,…,un )  defined by 

An =
1

n!

dn

d n N iui
i=0 =0

=
1

n!

dn

d n fg( )
=0

 (23) 

where 

f =
iui

i=0

= u0 + u1 +
2u2 +

3u3 + .......  

and g =
i

i=0

uix = u0 x + u1x +
2u2 x +

3u3x + ......  

 Simple calculations give us 

An =
1

n!

dn

d n fg( )
=0

, 

=
1

n!
Dn f( )g +

nC1 Dn 1 f( ) Dg( ) +
nC2 Dn 2 f( ) D2g( ) + ...+ f Dng( )

=0
 

where nCr =
n!

r!(n r)!
 and Dn

=
dn

d n
. 

 It is known in the literature that these polynomials can be 

calculated for all forms of nonlinearity according to algo-

rithms constructed by Adomian [13,14] and recently devel-

oped by an alternative approach (see for example [15,16]). 
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 From the above analysis, the approximate solution of the 

nonlinear Burgers' equation is rewritten in the operator form 

Eq. (16) with the initial condition u(x,0) = u0 = f (x), can be 

determined by the series (23) with the iterative process: 

u0 (x,t) = f (x),

un+1(x,t) = L 1 g(t) R(un ) An( ), n 0
   (24) 

 Appling the inverse operator L
-1

 on both sides of Eq. (1) 

we get: 

u(x,t) = f (x) L 1(uux uxx )    (25) 

 Now, by using Eqns. (21), (22), (23) and (25) we get 

un (x,t)
n=0

= f (x) L 1 An un
n=0 xxn=0

  (26) 

 Identifying the zero
th

 component u0(x, t) as f(x), the re-

maining components un (x,t),n 1 can be determined by using 

the recurrence relation (26). That is, 

u0 (x,t)= f (x)

un+1(x,t) = L 1 An (un )xx( ) , n 0
   (27) 

where An are adomian’s polynomials that represent the non-

linear term (uux). One can see that the first few terms of An 

are given by: 

A0 = u0 xu0 ,

A1 = u0 xu1 + u1xu0 ,

A2 = u0 xu2 + u1xu1 + u2 xu0 ,

A3 = u0 xu3 + u1xu2 + u2 xu1 + u3xu0

   (28) 

 The rest of polynomials can be generated in a similar 

way. The scheme in (27) can easily determine the compo-

nents un (x,t),n 0  and the first few components of un (x,t)  

take the following form 

u0 (x,t) = f (x)

u1(x,t) = L 1 A0 (u0 )xx( ),

u2 (x,t) = L 1 A1 (u1 )xx( ),

u3 (x,t) = L 1 A2 (u2 )xx( )

u4 (x,t) = L 1 A3 (u3 )xx( )

    (29) 

 Calculating more components in the solution series can 

enhance the numerical solution obtained by decomposition 

series. Consequently, one can recursively determine each 

individual term of the series un (x,t)
n=0

, and hence the solu-

tion u(x,t)  is readily obtained in a series form. For numerical 

purposes to test the accuracy of the proposed method, based 

on ADM, we consider two test cases for the Burgers’ equa-

tion. The obtained numerical approximate solution for each 

case, uappr . (x,t),  is compared with the exact solution where 

uappr . (x,t) = u0 (x,t) + u1(x,t) + u2 (x,t) + u3 (x,t) + u4 (x,t) + ...  (30) 

Test Case: 1 

 Consider the following analytic solution of Burgers’ 

equation [1]: 

u(x,t) =
1

2
1 Tanh

1

4
x 15

1

2
t ,  t 0,   (31) 

and the initial condition 

u(x,0) =
1

2
1 Tanh

1

4
x 15( ) ,    (32) 

where x [0, 30]  

 Remark: This test problem has known initial conditions 

and applying ADM one needs initial conditions only the Ac-

cording to this example and the scheme in (29), we get: 

u
1
  =   

0.0625 t
   1  -   tanh2  [  

1
4

(x-15) ]     

u2 =
0.0078125

2 t 2Sech2 [
1

4
(x 15)]Tanh[

1

4
(x 15)]

u
3
  =    

t3

3072 3
  sech2  [  

1

4
(x-15) ] 

   1   3 tanh2  [  
1

4
(x-15) ]    

Or 

u
3
  =   

t3

3072 3
  sech4[  

1

4
(x-15) ] 

 4  +  3 cosh2[  
1

4
(x-15) ]    sinh2[  

1
4

(x-15) ] 

 (33) 

 We obtain a numerical approximate solution for Burgers’ 

equation. The obtained numerical results are summarized in 

Tables 1-4. From these results, we conclude that the pro-

posed method, to calculate the approximate numerical solu-

tion of the Burgers’ equation, gives remarkable accuracy in 

comparison with the exact solution for some values of time t. 

Table 1. The Errors Between the Numerical and Exact Solu-

tions for t = 1 and  = 0.5 

 

x U Approximate U Exact Absolute error 

4 0.99998986 0.99998987 4.00932 x 10-9 

8 0.99944700 0.99944722 2.13127x10-7 

12 0.97068831 0.97068776 5.45743x10-7 

16 0.37754702 0.37754066 6.35561 x 10-6 

20 0.01098545 0.01098694 1.48505 x 10-6 

24 0.00020339 0.00020342 3.48687x10-8 

28 3.726 x 10-6 3.7266x10-6 6.4136x10-10 

 

Table 2. The Errors Between the Numerical and Exact Solu-

tions for t=3 and = 0.5 

 

x U Approximate U Exact Absolute error 

4 0.99999543 0.99999627 8.39849 x 10-7 

8 0.99975179 0.99979657 4.47788 x 10-5 

12 0.98891035 0.98901305 1.02707 x 10-4 

16 0.62015142 0.62245933 2.30791 x 10-3 

20 0.02890743 0.02931223 4.04797 x 10-4 

24 0.00054256 0.00055277 1.02176 x 10-5 

28 9.9418x10-6 1.013 x 10-5 1.88157 x 10-7 
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Table 3. The Errors Between the Numerical and Exact Solu-

tions for t=1 and = 0.4 

 

x U Approximate U Exact Absolute error 

4 0.99999942 0.99999942 7.6743 x 10-10 

8 0.99991507 0.99991518 1.1337 x 10-7 

12 0.98756129 0.98756834 7.0518 x 10-6 

16 0.34871176 0.34864513 6.66311 x 10-5 

20 0.00359200 0.00359360 1.5927 x 10-6 

24 0.00002428 0.00002430 1.1512 x 10-8 

28 1.6366x 10-7 1.6373x10-7 7.7609 x 10-11 

 

Table 4. The Errors Between the Numerical and Exact Solu-

tions for t=3 and = 0.4 

 

x U Approximate U Exact Absolute error 

4 0.99999968 0.99999983 1.5567 x 10-7 

8 0.99995268 0.99997569 2.3012 x 10-5 

12 0.99474997 0.99640639 1.6564 x 10-3 

16 0.65542194 0.65135486 4.0670 x 10-3 

20 0.01195175 0.01243165 4.7989 x 10-4 

24 0.00008124 0.00008481 3.5667 x 10-6 

28 5.4745x10-7 5.715 x 10-7 2.4048 x 10-8 

 

 The following figures (Figs. 1-12) show the behavior of 

the approximation solutions for the first test case. 
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Fig. (1). The numerical solution (  =0.5 from t=0 to t = 1). 
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Fig. (2). The numerical solution (  =0.5 from t=0 to t = 1.5). 
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Fig. (3). The numerical solution (  =0.5 from t=0 to t = 2). 
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Fig. (4). The numerical solution (  =0.5 from t=0 to t = 3.0). 
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Fig. (5). The numerical solution (  =0.5 from t=0 to t = 3.5). 
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Fig. (6). The numerical solution (  =0.5 from t=0 to t = 3.75). 
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Fig. (7). The numerical solution (  =0.4 from t=0 to t = 1). 
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Fig. (8). The numerical solution (  =0.4 from t=0 to t = 1.5). 
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Fig. (9). The numerical solution (  =0.4 from t=0 to t = 2). 
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Fig. (10). The numerical solution (  =0.4 from t=0 to t = 3.0). 
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Fig. (11). The numerical solution (  =0.4 from t=0 to t = 3.5). 
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Fig. (12). The numerical solution (  =0.4 from t=0 to t = 3.75). 

THE ADM FOR BURGERS' EQUATION (CONSIDER-

ING THE BOUNDARY CONDITIONS) 

 Let R =

2

x2
. Then Eq. (1) can be expressed as 

Ru =
1

ut + uux[ ] , x [a,b]    (34) 

 Applying the inverse operator R 1  on both sides to Eq. 

(34) yields 

u(x,t) = +
1

R 1 ut + uux[ ]     (35) 

where R 1
= (, )dxdx  and = C(t) + x B(t) . Using Eqns. (21) 

and (22), Eq. (35) becomes 

un (x,t)
n=0

= +
1

R 1 unt
n=0

+ An
n=0

   (36) 

where An = un m
m=0

n

umx . Now we decompose  into = n
n=0

 

(double decomposition [3]). We have 

un (x,t)
n=0

= n
n=0

+
1

R 1 unt
n=0

+ An
n=0

 

 Identifying u0 = 0 = C0 (t) + xB0 (t) , all other components 

are determined by 

un+1 = n+1 +
1

R 1 unt + An[ ]     (37) 

where n+1 = Cn+1 + xBn+1, n 0 . The integration constants C’ 

s and B’ s are determined by satisfying the boundary condi-

tions with the approximate solution n+1 = uk
k=0

n

, n 0 ; Thus, 

n+1(a,t) = u (a,t) = 1  

n+1(b,t) = u(b,t) = 2  

 Our first approximation is 1 = u0 ,  or 1 = C0 (t) + xB0 (t)  

 Since 1(a,t) = u (a,t) = 1 , 1(b,t) = u (b,t) = 2 . 

 Therefore, 

C0 + aB0 = 1      (38) 

C0 + bB0 = 2      (39) 

 Solving (38) and (39), we get 

B0 =
2 1

b a
 

C0 =
b 1 a 2

b a
 

 Hence, 

u0 =
(x a) 2 + (b x) 1

b a
    (40) 

 To calculate u1, we have 

u1 = C1 + xB1 +
1

R 1 u0t + A0[ ]    (41) 

 A two- term approximation is given by 

2 = 0 + u1 = u0 + u1  

 Hence, 

2 =
(x a) 2 + (b x) 1

b a
+

1
R 1[u0t + A0 ]+ C1 + xB1  (42) 

 Since 2 (a,t) = 1  and 2 (b,t) = 2 , we have 

a + C1 + aB1 = 0      (43) 

b + C1 + bB1 = 0      (44) 

where, 

a =
1

R 1(u0t + A0 )
x=a

 and b =
1

R 1(u0t + A0 )
x=b

 

 Eqns. (43) and (44) give 



One-Dimensional Nonlinear Burgers' Equation The Open Applied Mathematics Journal, 2007, Volume 1    7 

B1 =
a b

b a
     (45) 

C1 =
a b b a

b a
     (46) 

 Using (45), (46) and (42), we get 

u1 =
a b b a

b a
+ x a b

b a
+

1
R 1 u0t + A0[ ]   (47) 

 We can continue in this manner to calculate u2 ,u3 ,..... . 

Test Case: 2 

 The Burgers’ equation has the analytic solution form 

[17]: 

u(x,t) =
1+ t

x + Tan[
x

2 + 2 t
] , t 0 ,  (48) 

and the boundary conditions with a = 0.5, b = 1.5 gives 

1 = u(0.5, t) =
1+ t

1

2
+ Tan[

1

4 + 4 t
] ,  

2 = u(1.5,t) =
1+ t

3

2
+ Tan[

3

4 + 4 t
] ,   (49) 

 Using Eqns. (48) and (49); the two-term approximation 

2 = u0 + u1 , we get the following results: 

 Remark: This test problem has known both initial and 

boundary conditions. For the technique applied in this case, 

we use the boundary conditions. Also, note that in general 

not all test problems have both initial and boundary condi-

tions handy. 

Table 5. The Errors Between the Numerical and Exact Solu-

tions for t = 2.1 and = 1/500 

 

X 
2 =  U Approximate U Exact Absolute error 

0.6 0.00181349 0.00180833 5.16 x 10-6 

0.8 0.00245054 0.00243143 1.911 x 10-5 

1.1 0.0034405 0.00340559 3.491 x 10-5 

1.4 0.00447673 0.00445588 2.085 x 10-5 

 
Table 6. The Errors Between the Numerical and Exact Solu-

tions for t = 2.1 and = 1/50 

 

X 
2 =  U Approximate U Exact Absolute error 

0.6 0.0172417 0.0172003 4.14 x 10-5 

0.8 0.0232607 0.0231078 1.529 x 10-4 

1.1 0.032594 0.0323034 2.906 x 10-4 

1.4 0.0422987 0.0421337 1.65 x 10-4 

 

 From Tables 5 and 6, we note for a small viscosity 

( =1/500) that the numerical solution is very close to the 

exact solution. 

 Figs. (13-18) show the behavior of the numerical solution 

for some viscosity coefficients and various times. 
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Fig. (13). The numerical solution (  =1/500 from t=0 to t = 0.7). 
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Fig. (14). The numerical solution (  =1/500 from t=0 to t = 2.1). 
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Fig. (15). The numerical solution (  =1/50 from t=0 to t = 0.7). 
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Fig. (16). The numerical solution ( =1/50 from t=0 to t = 2.1). 
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Fig. (17). The numerical solution (  =1/20 from t=0 to t = 0.7). 
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Fig. (18). The numerical solution ( =1/20 from t=0 to t = 2.1). 

CONCLUDING REMARKS 

 In this paper, we considered analytical and numerical 

treatment for the solution of the Burgers’ equation. From the 

theoretical analysis and the numerical results, we have the 

following remarks. 

1. We can claim that tanh-function method is very suc-

cessful for solving the Burgers equation. 

2. The proposed tanh-function method is applicable for 

similar physical partial differential equations. 

3. The obtained numerical results for Burgers’ equation 

(1) showed that applying ADM with initial condition 

u(x,0) = f (x) provides remarkable accuracy, for vari-

ous Reynolds number. 

4. Although applying ADM with boundary conditions 

gives acceptable accuracy. The ADM in this case 

needs further study to improve the accuracy. 

5. A Mathematica program is written easily and run on a 

PC Pentium IV, which takes a small run time. 
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