
126 The Open Applied Mathematics Journal, 2008, 2, 126-133

 1874-1142/08 2008 Bentham Open

Open Access
A Symbolic-Numeric Approach to MPL Continuous Logic and to Rule
Based Expert Systems whose Underlying Logic is MPL
E. Roanes-Lozano*,1, Luis M. Laita2 and E. Roanes-Macías1

1Algebra Department, Universidad Complutense de Madrid, Spain
2Artificial Intelligence Department, Universidad Politécnica de Madrid, Spain

Abstract: We first briefly describe an algebraic model of classical and modal many-valued logics due to the authors and
introduced in previous works. A similar approach, also using Computer Algebra techniques (Gröbner bases) and oriented
to perform effective calculus in a continuous logic: Minimal Polynomial Logic (MPL) is presented. The implementation
has been developed in the Computer Algebra System Maple. The possibility to perform knowledge extraction and to
check consistency in Rule Based Expert Systems (RBES) whose underlying logic is MPL, has also been explored. The ar-
ticle is illustrated with examples of very simple RBES.

INTRODUCTION

Motivation

 Since the early nineties, we have been developing an
algebraic approach to knowledge extraction and consistency
checking in Rule Based Expert Systems (RBES) using resi-
due class rings and Gröbner bases (GB). The underlying
logic can be either classical Boolean logic or many-valued
modal logic.
 The effective computations are carried out using Com-
puter Algebra Systems and the implementations are surpris-
ingly brief.
 Different applied works have been successfully carried
out, mainly in Medicine.
 This paper studies the possibility to extend this treatment
to the continuous logic that is, possibly, most similar: Mini-
mal Polynomial Logic (MPL).

Some Introductory Notes About RBES

 Expert Systems (ES) are a particular type of Knowledge
Based Systems. An ES can be considered as a system of
automated deduction from the information provided by ex-
perts. ES basically consist of three components:
• a Knowledge Base (KB), the construction of which

requires to choose an strategy leading to a model of
knowledge gathering, the aim of which is to orderly
collect and symbolically represent the available in-
formation;

• an Inference Engine (IE) which both verifies the con-
sistency of the KB and extracts consequences auto-
matically;

• and, possibly, an interactive Graphic Users Interface
(GUI), for people not necessarily familiar with the
logical and mathematical details of the system con-
struction.

*Address correspondence to this author at the Algebra Department, Facultad
de Educacion, Universidad Complutense de Madrid, c/Rector Royo Villa-
nova s/n, 28040-Madrid, Spain; E-mail: eroanes@mat.ucm.es

The ES treated here are RBES. In this case, the strategy lead-
ing to its logic formulation consists of translating all the in-
formation formulated in natural language into a set of pro-
positional logic formulae, called “production rules”, of the
form δ → φ, where δ is a literal1 or a conjunction of literals,
and φ is a literal or a disjunction of literals. If the underlying
logic is classical Boolean logic, an example of production
rule is:

x1 ∧ x2 ∧ ¬x3 ∧ ¬x5 → x9 ∨ x13
that is read as: “if x1 and x2 and not x3 and not x5 hold, then x9
or x13 holds”.
 The set of all literals in the KB contains a distinguished
subset called “the set of potential facts”. The “potential
facts”, are the literals that do appear in the left side of one
production rule (at least) and such that neither them nor their
contraries appear in the right side of any production rule2,
together with their contraries. For instance, the whole set of
potential facts can be something like:

{x1, ¬x1, x2, ¬x2, x5, ¬x5, x8, ¬x8, x16, ¬x16}
 That a given set of facts (i.e., a subset of the set of poten-
tial facts that is stated as true) is “consistent” means that,
from each pair formed by a potential fact and its contrary,
like (x5,¬x5), only one literal, for instance ¬x5, is chosen.
That it is “maximal” means that such a choosing must be
done in all pairs.
 Some KB also contain other items known as “integrity
constraints” (IC). An IC is a logical formula that translates
some experts' opinions about the convenience of stating that
two or more potential facts, for instance x8 and x16, ought not
to occur simultaneously.
 A (consistent) set of potential facts, together with the set
of production rules and IC, constitute the KB.

1A “literal” is a propositional variable of the underlying logic or its negation.
2In case the underlying logic is modal many-valued, modal connectives also have to be
taken into account here.

A Symbolic-Numeric Approach to MPL Continuous Logic The Open Applied Mathematics Journal, 2008, Volume 2 127

 Intuitively, “forward firing” is the way in which, what is
stated as “true”, propagates through the RBES. It corre-
sponds to the logic concept of tautological consequence3.
 The IE is a an automated tool (in our case, a program in
the Computer Algebra System -CAS), that verifies consis-
tency (that is, checks that the system does not lead to contra-
dictions) and draws consequences from the information
contained in the KB (that corresponds to the logical concept
of “tautological consequence”).
 A RBES is inconsistent when a consistent set of facts,
such that any formulae formed with the variables contained
in the KB is a tautological consequence of the information
contained in the RBES, exists. In particular, contradiction
would be a tautological consequence of such information.
Example 1: Let us consider the trivial RBES formed by the
three rules:
R1: x ∧ y → v
R2: v → z
R2: w →¬z
 The potential facts are {x,¬x,y,¬y,w,¬w}. If the given set
of facts is {x,w}, only ¬z is obtained by forward firing (no
inconsistency is found starting with this set of facts). But if
{x,y,¬w} are given as facts (it is a consistent set of facts),
both z and ¬z are obtained by forward firing, so the RBES is
inconsistent.
 In case the underlying logic is many-valued, two diffe-
rent types of consistency can be distinguished [1].

An Algebraic Model of RBES Whose Underlying Logic is
Classical Boolean or Modal Many-Valued

 The next theorem relates tautological consequence in
logic with an ideal membership problem in polynomial ring
theory. The theorem is applied to verify consistencies in, and
draw consequences from, the KB.
 The logical and mathematical ideas behind the GB-based
IE can be found in the mathematical model of logic and
RBES in [2,3], that are based on previous works for rewrit-
ing classical Boolean [4,5] and many-valued logics [6].
 For instance, in classical Boolean logic, the polynomial
translations of the logic connectives are

x1∨x2 = x1 + x2 - x1 x2
x1∧x2 = x1x2

¬x1 = 1-x1
 (these are the same polynomials George Boole used in his
seminal works on logic).
 Similarly, the polynomial expressions corresponding to
the basic logical formulae in Lukasiewicz's three-valued
logic (if 2 is assigned to “true”, 1 to “undetermined” and 0 to
“false”, and computations are performed in Z3) are:

¬x1 = 2x1+2
□x1 = x1

2+2x1

3A logical formula, α, is a “tautological consequence” of a set S of formulae, denoted
S⊨ α, if and only if, whenever all formulae in S are true, α is also true.

◇x1 = 2x1
2

x1∨x2 = x1
2x2

2+x1
2x2+x1x2

2+2x1x2+x1+x2
x1∧x2 = 2x1

2x2
2+2x1

2x2+2x1x2
2+x1x2

(where □ means “necessarily” and ◇ means “possibly”).

Theorem 1

 A logical formula, α, is a tautological consequence of the
set of formulae M={A1,A2,..., Am} in a certain p-valued modal
logic (where p is a prime number) if and only if the polyno-
mial translation4 of ¬α in the ring Zp[x1, x2, ..., xn]/I (where5
I=<x1

p-x1,x2
p-x2,...,xn

p-xn>), denoted Pol(¬α), belongs to the
(polynomial) ideal <Pol(¬A1),Pol(¬A2),..., Pol(¬Am)>.
 The effective methods for calculating normal forms (NF),
i.e., reduction modulo ideals, in polynomial rings and char-
acterizing ideals via some very special bases (GB) are due to
Bruno Buchberger [7]. Implementations of GB and NF are
nowadays included in most CAS.
 We usually denote by K the polynomial ideal generated
by the polynomial translations of the negation of the ele-
ments of a consistent subset of the set of potential facts.
Similarly, J is the ideal generated by the polynomial transla-
tions of the negation of the production rules and IC of the
RBES. We shall use this notation hereinafter.
 So we have an effective method what can decide whether
a logical formula, α, can be obtained by forward firing from
a consistent set of facts and the production rules and IC of
the RBES or not:

a logical formula, α, can be obtained by forward firing
from a consistent set of facts and the rules and IC in the

RBES ⇔
⇔ NF(Pol(¬α),K+J)=0

(in the ring Zp[x1, x2, ..., xn]/I).
 We can alternatively check with the CAS whether
NF(Pol(¬α),I + K + J) is 0 or not (in the ring Zp[x1, x2, ...,
xn]).
 We ask whether Pol(¬α) belongs to I+K+J or not in the
ring Zp[x1, x2, ..., xn], instead of asking whether Pol(¬α)
belongs to K+J or not in the ring Zp[x1, x2, ..., xn]/I, because
most CAS cannot perform calculations in residue class rings.
 And we also have an effective method that can decide
whether a RBES is inconsistent or not. With the notation
above,

a consistent set of facts leads to inconsistency ⇔
⇔ GB(J+K)=<1>

(in the ring Zp[x1, x2, ..., xn]/I)6, that can be decided in the
CAS by checking whether GB(I + K + J) is [1] or not (in the
ring Zp[x1, x2, ..., xn]), because, if this basis is [1], from
Theorem 1, any formula is a tautological consequence of the
information provided by the KB (which means inconsis-
tency).

4The polynomial translation of the logic connectives will depend on p and on the logic
chosen. For instance, Lukasiewicz's three-valued logic and Kleene's three-valued logic
lead to different polynomial expressions.
5“<” and “>” are used to represent the ideal generated by the elements between those
symbols.
6An ideal is the whole ring if and only if its GB is [1].

128 The Open Applied Mathematics Journal, 2008, Volume 2 Roanes-Lozano et al.

A BRIEF OVERVIEW OF MPL

 MPL [8,9] is a generalization of classical propositional
logic allowing truth values in the closed interval [0,1]. The
polynomials

x1∨x2=1-(1-x1)(1-x2)
x1∧x2=x1x2

¬x1=1-x1
fit the truth-table entries of the ordinary logic connectives,
and are the ones used by the “lowest degree polynomial
logic”, denoted PL0 (note that these polynomials are the
same as those used in the previous section).
 Now MPL is obtained from PL0 the following way
(Definition 3 of [8]):
 “Given a propositional formula e, its MPL version em is
obtained from the PL0 version ep by distributing + over ×
throughout and then substituting subexpressions of the form
xi

k (with k>1) with xi. This substitution will be sometimes be
denoted (•)m.”
 Truth values in MPL can be interpreted either as
probabilities of assertions being true, as in Nilsson’s
probabilistic logic or, also, as the degrees of truth of those
assertions, as in fuzzy logic.
 As in Boolean logic, e⊨e’ is trivially equivalent to e→e’.
It can be proved (Corollary 7 of [8]) that e⊨e’ if and only if
em≡(eme’m)m. It can also be proved that e⊨e’ if and only if
em≤e’m for any truth values in [0,1] of the propositional vari-
ables (Theorem 11 of [8]).
 The theoretical details about MPL can be found in [8,9]
(we shall only deal here with an straightforward algebraic
approach and its implementation in a CAS).

APPROACHING MPL FROM ALGEBRA AND
COMPUTER ALGEBRA

 Let us observe that the substitution (•)m introduced in
Definition 3 of [8] (quoted above) can be interpreted as the
NF of the PL0 version of the propositional formula (a poly-
nomial of7 R[x1,...,xn]) modulo the ideal <x1

2-x1,..., xn
2-xn>.

 Therefore, from an algebraic point of view [10], it is
straightforward and trivial to consider the MPL version of
the propositional formulae as polynomials lying in the resi-
due class ring

R[x1,...,xn]/I ; I=<x1
2-x1,...,xn

2-xn>
 Nevertheless, there is a quantitative difference w.r.t. the
model of classical Boolean and many-valued logic that we
had previously developed. Let us detail it.

THE ALGEBRAIC APPROACH TO MPL
COMPARED TO THE ALGEBRAIC APPROACH TO
CLASSICAL BOOLEAN LOGIC

 In the Boolean case (and also in the p-valued case,
substituting all the 2 by p in the definitions of the ring and of
ideal I), the residue class ring

Z2[x1,...,xn]/I ; I=<x1
2-x1,...,xn

2-xn>

7They could also be considered as polynomials of Z[x1,..., xn], although we shall con-
sider their real roots and shall substitute x by real values.

is a polynomial model where ideals of the logic Boolean
algebra do correspond one-to-one with the ideals of the po-
lynomial Boolean algebra (that are the same as the ideals of
the polynomial Boolean ring). Therefore, it is not important
which expression of the polynomial translation of a formula
is chosen (i.e., which generator of the polynomial ideal8 gen-
erated by a polynomial translation of the formula is chosen).
 Summarizing, in the Boolean case we have the beautiful
diagram in Fig. (1).

Fig. (1). Isomorphisms relating the propositional Boolean algebra
and the polynomial residue class ring.

Example 2

 The polynomial translation of the formula x1∧x1 (of clas-
sical Boolean logic) in the residue class ring Z2[x1,...,xn]/I is
x1

2=x1. And there is no inconvenience in considering, e.g.,
x1

7 as a polynomial translation of x1∧x1 in this residue class
ring: for any truth value in {0,1}, it is the same to consider x1
or x1

7.
 Nevertheless, when we try to do something similar for
MPL, R[x1,...,xn]/I ; I=<x1

2-x1,...,xn
2-xn> is not a polynomial

model of MPL in the same sense, with a one-to-one corres-
pondence between ideals, but a residue class ring where only
a certain polynomial translation of each logic formula (the
canonical representative of the residue class) behaves as the
logic formula that it translates!

Example 3

 Let us consider the same formula of Example 2. The po-
lynomial translation of the formula of MPL x1∧x1 in
R[x1,...,xn]/I would be x1. Despite the fact that in that residue
class ring, e.g. x1

7=x1
2=x1, x1 and only x1 behaves as x1∧x1

for all values in the closed interval [0,1].

EFFECTIVE COMPUTATIONS IN MPL USING
COMPUTER ALGEBRA TECHNIQUES

 The NF of a polynomial in R[x1,...,xn] modulo the ideal
<x1

2-x1,..., xn
2-xn>, can be effectively computed in any CAS

including the possibility to perform GB computations, like
Maple, Mathematica, CoCoA…
 Let us observe that the polynomials of MPL are reduced
modulo ideal I, and therefore an upper bound of its degree in
each variable is 1 (and, consequently, an upper bound of its
total degree is the number of propositional variables consid-
ered).

MAPLE IMPLEMENTATION

 We can easily implement this idea in a CAS, for instance,
in Maple.

8All ideals in these rings are principal.

����������	
�
����
	 �����

����������	
�
����
	 ��	�

��	�

�����
����
	
�����������

�����������

����	���
�
�����
����
	

����	���
�
�����
	� ��	�

A Symbolic-Numeric Approach to MPL Continuous Logic The Open Applied Mathematics Journal, 2008, Volume 2 129

 We have to begin loading the GB package and defining
the sequence of propositional variables, for instance x1,...,x10:
> with(Groebner):

> SV:=x[i] $ i=1..10:

 Then we can define ideal I (renamed iI, as I is a reserved
word in Maple), using an auxiliary function, denoted fu (in
fact, a GB of the ideal, w.r.t. pure lexicographic order, is
directly assigned to iI):
> fu:=var->var^2-var:

> iI:=Basis(map(fu,[SV]),plex(SV)):

 Now we are ready to define the basic logic connectives:
> `NEG`:=(m::algebraic)-> 1-`m`:

> `&AND`:=(m::algebraic,

 n::algebraic)

 -> NormalForm(expand(`m`*`n`),

 iI, plex(SV)):

and the “derived” ones:
> `&OR`:=(m::algebraic,

 n::algebraic)

 -> NormalForm(NEG(NEG(`m`)

 &AND NEG(`n`)),

 iI, plex(SV)):

> `&IMP`:=(m::algebraic,

 n::algebraic)

 -> NormalForm(NEG(`m`) &OR `n`,

 iI, plex(SV)):

> `&XOR`:=(m::algebraic,

 n::algebraic)

 -> NormalForm((NEG(`m`) &AND

 `n`) &OR (`m` &AND NEG(`n`)),
 iI, plex(SV)):

> `&IFF`:=(m::algebraic,

 n::algebraic)

 -> NormalForm((`m` &IMP `n`)

 &AND (`n` &IMP `m`),

 iI, plex(SV)):

(the binary ones will be input to Maple in infix mode) and to
define tautology and contradiction as constants:
> t:=1:

> c:=0:

 Let us observe that the reductions modulo iI performed
by command NormalForm above are computed conside-
ring the order for variables of sequence SV and the order for
monomials “pure lexicographic”.
 The restriction of the MPL connectives to the Boolean
truth values {0,1} return the same truth-values as the Boolean
connectives, as shown in Fig. (2).

Fig. (2). MPL binary connectives restricted to {0,1} (computed with
Maple’s implementation of MPL).

SYMBOLIC EXAMPLES

 The CAS can perform computations with non-assigned
variables, so we can obtain and compare polynomial expres-
sions of formulae (and consequently compare the logical
formulae themselves).

Example 4

 For instance, we can check that ∨ is associative (observe
that this is not formally a proof: we only check it for proposi-
tional variables x[1], x[2] and x[3]; nevertheless it will also
hold if x[1], x[2] and x[3] are substituted by any polynomial
expressions, so it will be true in general)9:
> x[1] &AND (x[2] &AND x[3]);

 x1x2x3

> (x[1] &AND x[2]) &AND x[3];

 x1x2x3

Example 5

 Check idempotency of ∨:
> x[1] &OR x[1];

 x1

Example 6

 Check one of the de Morgan laws:
> NEG(x[1] &AND x[2]);

 1-x1x2

> NEG(x[1]) &OR NEG(x[2]);

 1-x1x2

Example 7

 Unlike what happens in many-valued modal logics,
x1∧¬x1 is a contradiction:
> x[1] &AND NEG(x[1]);

 0

 The previous examples were really simple and could be
easily performed by hand. For complex or long examples,
using a computer is highly preferable, and this simple Maple
implementation (or a similar one in another CAS) could the-
refore be a very convenient tool.
 Let us underline that the formulae that can be handled in
this approach are completely general (for instance, implica-
tions are not restricted to Horn clauses, like in some logic
languages and programs).

9In Maple, statement separator “;” produces echo, meanwhile “:” produces no echo.

x[1] x[2] x[1]_and_x[2] x[1]_or_x[2] x[1]_xor_x[2]

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

130 The Open Applied Mathematics Journal, 2008, Volume 2 Roanes-Lozano et al.

NUMERICAL EXAMPLES

 The CAS can also perform numeric computations. There-
fore we can calculate the truth value of a logical formula or
the truth value of a propositional variable in a formula for
the formula to have a certain truth value.

Example 8

 Let P be the logical formula
x[1] ∧ x[2] → x[3].

 If the truth values of x[1], x[2] and x[3] are 0.3, 0.75 and
0.8 (respectively), we can easily compute the truth value of P
substituting all the ocurrences of these propositional vari-
ables by their numerical values (what command subs does
in Maple):
> P:=(x[1] &AND x[2]) &IMP x[3];

> subs(x[1]=0.3,x[2]=0.75,x[3]=0.8,

 P);

0.9550

 Moreover, given the values of all but one propositional
variables, we can compute the truth value of the other pro-
positional variable in order the formula to have a given truth
value.

Example 9

 Let us consider the formula of Example 8. If the truth
values of x[1] and x[3] are 0.3 and 0.8 (respectively), then
we can compute the truth value of x[2] for the logical for-
mula P: x[1] ∧ x[2] → x[3] to have truth value 0.955 using
command fsolve (numeric solve) :
> fsolve(

 subs(x[1]=0.3,x[3]=0.8,P)=0.9550,

 x[2]);

 0.7500000000
so the solution is: x[2] should have truth value 0.75 (this
procedure is the converse of Example 8).
 Nevertheless, it is not always possible to find such a solu-
tion, as shown in Example 10.

Example 10

 Let us consider, again, the simple formula P of Example
8 for the truth values of x[1] and x[3] being 0.3 and 0.8 (re-
spectively). Then, if we try to compute the truth value of
x[2] for the logical formula P to have truth value 0.2:
> fsolve(

 subs(x[1]=0.3,x[3]=0.8,P)=0.2,

 x[2]);

 13.3333333

is obtained, a value that is outside interval [0,1] and there-
fore not a possible truth value in MPL.
 Anyway that a certain formula cannot reach a certain
truth value is not a critical drawback. For instance, in Lu-
kasiewicz’s three-valued logic, no value of the propositional
variables q and r make the logical formula ◇q ∨ ◇r undeter-
mined.

 Finally, we can also ask the CAS to compute when a for-
mula has a truth value fulfilling an inequality.

Example 11

 If the truth values of x[1] and x[3] are 0.3 and 0.8 (re-
spectively), for which truth values of x[2] does formula P of
Example 8 have a truth value strictly greater than 0.95?
> solve(

 subs(x[1]=0.3,x[3]=0.8,P)>0.95,
 x[2])

 intersect RealRange(0,1);

 RealRange(0, 1) intersect
 RealRange(-infinity,
 Open(0.8333333333))

that is, interval [0,0.8333333333…). Let us underline that we
have used the non-numeric solving command solve instead
of fsolve in this case.

A COMPARISON WITH KLEENE OR
LUKASIEWICZ THREE-VALUED LOGIC
CONNECTIVES

 We have computed with Maple the truth tables of ∧ and
∨ in MPL, restricting the input values to {0,½,1} (see Fig. 3).
If 0, ½, 1 represented false, undertermined/undecided and
true (respectively), the truth table obtained in Kleene or Lu-
kasiewicz three-valued logics would have been the same,
except the central line, that would have been: ½, ½, ½, ½

Fig. (3). MPL binary connectives restricted to {0,1/2,1} (computed
with Maple’s implementation of MPL).

 The ¼ and ¾ would be the expected answers if we were
thinking of probabilities and x[1] and x[2] were independent
events.

DESIGNING RBES WHICH UNDERLYING LOGIC IS
MPL

 Let us observe that we are going to consider the most
general case, where:

x[1] x[2] x[1]_and_x[2] x[1]_or_x[2]

0 0 0 0

0
1
2

0
1
2

0 1 0 1

1
2

0 0
1
2

1
2

1
2

1
4

3
4

1
2

1
1
2

1

1 0 0 1

1
1
2

1
2

1

1 1 1 1

A Symbolic-Numeric Approach to MPL Continuous Logic The Open Applied Mathematics Journal, 2008, Volume 2 131

• any value in [0,1] can be assigned as truth value of a
fact, rule and IC,

• the variables that are not potential facts (i.e., that ap-
pear in consequents) can have truth values ranging in
[0,1] too.

Note that in our previous works based on the theory for
many-valued modal logics in [2,3], we have always consid-
ered that the rules and IC, as well as the given facts are
stated as “true” (never as undertermined/undecided), al-
though the forward reasoning is performed according to the
many-valued modal logic chosen (modal connectives can
appear within the antecedents and the consequents of the
rules).

KNOWLEDGE EXTRACTION IN RBES WHICH
UNDERLYING LOGIC IS MPL

 If the underlying logic of a RBES is Boolean logic, what
can be asked is whether a formula can be obtained by for-
ward firing from the facts, rules and IC or not.
 If the underlying logic is MPL, the certainty with which a
formula can be obtained from the facts, rules and IC can be
asked too (as done above for only one implication).

Example 12 (Part I)

 Let us consider now as propositional variables x, y, z, p,
q, r, s, u, v, w. The only difference w.r.t. to the implementa-
tion used above is that, in the beginning, its second line of
code will be
> SV:=x,y,z,p,q,r,s,u,v,w:

 Let the rules be, for instance:
R1: x ∧¬ y → z

R2: z → p∨u
R3: v → ¬u
R4: p → w
R5: r → ¬w
that is, in Maple:
> R1:=(x &AND NEG(y))&IMP z:

> R2:= z &IMP(p &OR u):

> R3:= v &IMP NEG(u):

> R4:= p &IMP w:

> R5:= r &IMP NEG(w):

 Then, the potential facts are: x, y, v, r (and their nega-
tions).
 The ideal of rules and IC (there are no IC in this case) is:
> iK:=[NEG(R1),NEG(R2),NEG(R3),

 NEG(R4),NEG(R5)];

iK := [x-x*z-x*y+x*y*z, z-z*u-
z*p+z*p*u, u*v, p-p*w, r*w]

 A consistent set of facts is {x, ¬y, v}, and the correspon-
ding ideal is:
> iJ:=[NEG(x),NEG(NEG(y)),NEG(v)];

 iJ = [1-x, y, 1-v]

 The GB of I+J+K with respect to the variable order in
sequence SV and pure lexicographical ordering for monomi-
als is:
> base:=Basis([op(iI),op(iJ),

 op(iK)], plex(SV));
[-1+w, v^2-v, u*v, u^2-u,
s^2-s, r^2-r, q^2-q, p-1,

 -1+z, -1+y, -1+x]

 Let us exit the example for a moment.
 We can now perform knowledge extraction two ways.
 One is using GB in a “booleanized” environment: truth
values strictly greater than 0 are upgraded to 1 and 0s are left
as they are. This is a only sufficient condition10 for a formula
to follow by forward firing (without determining truth val-
ues).

Example 12 (Part II)

 In this particular RBES, if x, ¬y, v are the given facts,
and facts, rules and IC with a truth value strictly greater than
0 are associated the truth value 1, we have: from R1 and R2,
p ∨ u is obtained, but from R3 we have ¬u, so we have p,
and then, by R4, w is obtained.
 This can be checked in the same RBES using classical
Boolean logic:
> NormalForm(NEG(p),base,plex(SV));

 0

> NormalForm(NEG(w),base,plex(SV));

 0

 The interpretation of these outputs (in continuous logic)
would be that the formulae p and w can be reached by for-
ward firing (with a non null truth value, not determined).
 The “booleanization” process could be improved in case
each propositional variable always appeared in the antece-
dents of the rules either preceded by ¬ or not, but not in
some rules one way and in other rules the other way (unfor-
tunately this is not always the case). Those preceded by ¬
and with truth values in (0,1) could be assigned the truth
value 0 and those not preceded by ¬ and with truth values in
(0,1) could be assigned the truth value 1.
 The second method for knowledge extraction considered
is straightforwardly obtained from the algebraic-numeric
interpretation of formulae in continuous logic above and can
precise the numerical truth values of the different formulae.
Unfortunately, it has a drawback: substituting numerical val-
ues in the polynomial equations can lead to a non compatible
system. This is not a logic inconsistency but a numerical one.
Let us illustrate with a trivial example.
Example 13
 Let us consider the trivial RBES
R1: x → z
R2: y → z

10It is not a necessary condition, as shown in the following example. If the truth values
of x and y are 0.9 and 0.1, respectively, then x ∧¬y has truth value 0.9·(1-0.1)=0.81,
meanwhile, if booleanized as suggested, 1·(1-1)=0 would be obtained.

132 The Open Applied Mathematics Journal, 2008, Volume 2 Roanes-Lozano et al.

 In the Boolean case, we have that either none or some of
the two rules can be fired. If none can be fired, z is not ob-
tained by forward firing. If exactly one or both can be fired, z
is reached by forward firing.
 Let us consider now the same rules in the continuous
case. In the particular example, for instance, that the truth
values of x, y, R1 and R2 are 8/10, 2/10, 7/10, 85/100 (re-
spectively), solving the two linear equations for z, we would
have:
> solve(subs(x=8/10,R1)=7/10,z);

 5/8

> solve(subs(y=2/10,R2)=85/100,z);

 1/4

that is, z=5/8 and z=1/4, that, from the algebraic point of
view, are incompatible.
 One possibility would be to allow only RBES where this
did not happen. But this often happens. For instance in a
RBES about car care, different rules lead to “stop engine
immediately”.
 Another option, if we wanted to precise the truth values
of all formulae, would be to proceed step by step performing
numerically the forward firing and actualizing (at each step)
the truth values obtained for each variable to its maximum.
Unfortunately this is not a polynomial process.

LOGIC INCONSISTENCY OF RBES WHICH
UNDERLYING LOGIC IS MPL USING GB

 We shall consider a “worse case consistency”: we shall
say that the RBES is inconsistent if and only if a consistent
set of facts can be found, from which, if stated as true, by
forward firing the rules and considering the IC (all stated as
true), any formula can be obtained.

Example 14

 Let us consider the trivial RBES formed by the two rules:
R1: x ∧ y → z
R2: w →¬z
that is, in Maple:
> R1:=(x &AND y) &IMP z:

> R2:= w &IMP NEG(z):

 There is inconsistency, because x, y, w are potential facts,
and, if they are all true (i.e., if they have the truth value 1), as
R1 and R2 are also true, we would have:
> subs(x=1,y=1,t=1,R1)=1;

 z=1

> subs(x=1,y=1,t=1,R2)=1;

 1-z=1

that is an incompatible system, as 1=z=0 is obtained.
 We can alternatively check it using ideals, computing the
GB of the ideal I+K+J (i.e., the ideal generated by the poly-
nomials in I and the negation of the facts, rules and IC):
> iK:=[NEG(x),NEG(y),NEG(t)];

 iK = [1 - x, 1 - y, 1-w]

> iJ:=[NEG(R1),NEG(R2)];

 iJ = [x y - x y z, z w]

> Basis([op(iI),op(iK),op(iJ)],

 plex(SV));
 [1]

Example 15

 Let us consider again the simple RBES of Example 12,
which rules were:
R1: x ∧¬ y → z
R2: z → p∨u
R3: v → ¬u
R4: p → w
R5: r → ¬w
 As above:
> iK:=[NEG(R1),NEG(R2),NEG(R3),

 NEG(R4),NEG(R5)]:

and for the consistent set of facts {x, ¬y, v}:
> iJ:=[NEG(x),NEG(NEG(y)),NEG(v)]:

 This consistent set of facts does not lead to inconsistency
(the following GB is not [1]):
> Basis([op(iI),op(iJ),op(iK)],

 plex(SV));
 [w-1, -1+v, u, s^2-s, r,
 q^2-q, -1+p, -1+z, y, -1+x]

 Meanwhile, the consistent set of facts {x, ¬y, v, r} does
lead to an inconsistency:
> iJ:=[NEG(x),NEG(NEG(y)),NEG(v),

 NEG(r)]:
> Basis([op(iI),op(iJ),op(iK)],

 plex(SV));
 [1]

CONCLUSIONS

 A surprisingly tiny implementation for performing effec-
tive computations in Minimal Polynomial Logic (MPL) that
is based on algebraic methods (Gröbner bases) and can be
implemented in any Computer Algebra System has been
presented. We consider it very convenient.
 Although this approach can be applied to perform kno-
wledge extraction and verification of general RBES whose
underlying logic is MPL, it only provides partial results and
sufficient conditions, unlike the Boolean and many-valued
cases.

ACKNOWLEDGMENTS

 This work was partially supported by the research pro-
jects MTM2004-03175 (Ministerio de Educación y Ciencia,
Spain) and UCM2005-910563 (Comunidad de Madrid–
Universidad Complutense de Madrid, research group
ACEIA).

A Symbolic-Numeric Approach to MPL Continuous Logic The Open Applied Mathematics Journal, 2008, Volume 2 133

 We would like to thank the anonymous referees, whose
comments and suggestions have greatly improved this paper.

ABBREVIATIONS

ES = Expert System(s)
KB = Knowledge Base
IE = Inference Engine
GUI = Graphic Users Interface
RBES = Rule Based Expert System(s)
IC = Integrity Constraint(s)
CAS = Computer Algebra System(s)
NF = Normal Form
GB = Gröbner Basis/Bases
MPL = Minimal Polynomial Logic
PL0 = Lowest Degree Polynomial Logic

REFERENCES
[1] Roanes-Lozano E, Roanes-Macías E, Laita LM. Geometric Inter-

pretation of Strong Inconsistency in Knowledge Based Systems.
Computer Algebra in Scientific Computing. Proceedings of CAS-
C'99. Springer-Verlag, Berlin 1999; 349-63.

[2] Roanes-Lozano E, Laita LM, Roanes-Macías E. A Polynomial
Model for Multivalued Logics with a Touch of Algebraic Geome-
try and Computer Algebra. Math Comp Simul 1998; 45(1): 83-99.

[3] Laita LM, Roanes-Lozano E, de Ledesma L, Alonso JA. A Compu-
ter Algebra Approach to Verification and Deduction in Many-
Valued Knowledge Systems. Soft Comp 1999; 3/1: 7-19.

[4] Kapur D, Narendran P. An Equational Approach to Theorem Pro-
ving in First-Order Predicate Calculus. General Electric Corporate
Research and Development Report 84CRD296, Schenectady, NY
1984.

[5] Hsiang J. Refutational Theorem Proving using Term-Rewriting
Systems. Art Intell 1985; 25: 255-300.

[6] Chazarain J, Riscos A, Alonso JA, Briales E. Multivalued Logic
and Gröbner Bases with Applications to Modal Logic. J Symb
Comp 1991; 11: 181-94.

[7] Buchberger B. An Algorithm for Finding a Basis for the Residue
Class Ring of a Zero-Dimensional Polynomial Ideal. Ph.D. Thesis
in German. Math. Inst. Univ. of Innsbruck, Insbruck 1965.

[8] Poli R, Ryan M, Sloman A. A new continuous propositional logic.
Procs. Of 7th Portuguese Conf. on AI, EPIA 95. Springer-Verlag
LNAI 990, Berlin-Heidelberg 1995; 17-28.

[9] Poli R, Kerber M. Minimal Polynomial Logic: Properties and Ex-
tensions. The University of Birmingham CSRP-96-2, Birmingham,
UK 1996.

[10] Cox D, Little J, O’Shea D. Ideals, Varieties, and Algorithms.
Springer-Verlag, New York 1992.

Received: March 27, 2008 Revised: June 27, 2008 Accepted: August 13, 2008

© Roanes-Lozano et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the
work is properly cited.

