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Abstract: An analytical solution for nonlinear vibration of an initially stressed beam with elastic end restraints resting on 

a nonlinear elastic foundation is obtained. As a first step in solving nonlinear vibration equation, the linear vibration mode 

functions for a beam with elastic end restraints resting on a linear elastic foundation are obtained. Then, the nonlinear 

vibration equation is solved by employing the linear mode functions to obtain frequency equation and nonlinear response 

using Jacobi elliptic integral. The nonlinearity due to lateral vibrations, the nonlinearity of foundations and lateral 

displacement due to lateral elastic restraints at beam ends not included in previous analytical work are considered in the 

present work. The effects of spring stiffness at the beam ends, foundation stiffness, axial load and vibration amplitude on 

the frequency parameter are studied. The present solution can be used to measure the accuracy of approximate methods. 
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1. INTRODUCTION 

 Many practical engineering applications as railroad 
tracks, highway pavement, buried pipelines and foundation 
beams are modeled as beams resting on elastic foundations. 
To investigate the dynamics of the vibrational behavior of 
these applications, solutions need to be obtained. Few 
analytical solutions, limited to idealized cases for vibrations 
of such models are found in the literature. This is due to the 
intractable mathematical nature of the problem. Numerical 
methods such as finite element method [1-2], transfer matrix 
method [3], differential quadrature element method (DQM) 
[4-6], perturbation techniques [7-8] are used to obtain the 
vibration behavior of different types of linear or nonlinear 
beams resting on linear or nonlinear foundations. 

 Semi-analytical methods, such as series solutions, are 
suggested to obtain frequencies and mode functions of 
nonuniform beams resting on elastic foundation [9, 10]. Taha 
M.H. [11] studied the transient response of beams resting on 
viscoelastic foundation under stochastic dynamic loads. Taha 
M.H. and Abohadima S. [12] analyzed the vibrational 
behavior of a nonuniform flexural beam using Bessel’s 
functions. Abohadima, S. and Taha M.H. [13] extended their 
works to the vibrational behavior of a nonuniform beam 
resting on a nonuniform foundation. 

 However, in most studies, the boundary conditions 
assumed to simulate the actual conditions at beam supports 
are idealized to obtain simple solutions. In fact, there is no 
absolutely clamped or pinned support, actually all supports 
always allow some movements. Also, few researchers 
studied the effects of axial load on the vibration behavior of 
such beams and nonlinearity due to stretching resulting from 
lateral vibrations. 

 

 

*Address correspondence to this author at the Department of Engineering 

Mathematics and Physics, Faculty of Engineering, Cairo University, Giza, 

Egypt; Tel: +20-2-37348595; Fax: +20-2-37348594;  

E-mail: mtaha@alfaconsult.org 

 In the present work, the effects of above mentioned 
parameters are taken into account. The nonlinear vibration of 
an initially stressed beam with elastic end restraints resting 
on a nonlinear elastic foundation is solved using elliptic 
integrals. The obtained solutions are verified against those 
obtained from numerical methods and found in close 
agreement. Parametric study to investigate the influences of 
foundation stiffness, elastic end restraints stiffnesses, initial 
axial load and vibration amplitude are conducted and results 
are depicted in graphs for a wide range of the different 
practical characteristics. 

2. ANALYSIS 

2.1. Vibration Equation 

 The equation of motion of a uniform beam with elastic 
end restrains, initially stressed by an axial load Po, resting on 
a nonlinear elastic foundation, shown in Fig. (1) is given as: 
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where EI is the flexural stiffness of the beam, L is the beam 
length, μ is the beam mass per unit length, k1 and k2 are the 
foundation stiffnesses coefficients per unit length, E is the 
modulus of elasticity of the beam, A is the area of the beam 
cross section, Y(X, t) is the lateral response of the beam, X is 
the coordinate along the beam and t is time. 

 Using the dimensionless parameters x=X/L and y=Y/L, 
eqn. (1) may be rewritten as: 
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 The solution of the nonlinear partial differential eqn. (2) 
is obtained by employing the linear mode functions and 
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integrating over the domain of the dimensionless spatial 
variable x to separate the time variation. However, the 
solution of eqn. (2) depends on the boundary conditions at 
beam ends. 

Fig. (1). Initially stressed beam-foundations system. 

2.2. Boundary Conditions 

 The boundary conditions due to elastic end restraints at 
x=0 are given as; 
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and at x=1 are: 
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where kT0 and kTL are the elastic stiffnesses of lateral 
restraints at x=0, 1.0 respectively and kR0 and kRL are the 
elastic rotation stiffnesses of beam support at x=0, 1.0 
respectively. 

2.3. Solution of Linear Vibration Equation 

 A linear version of eqn. (2), neglecting the initial axial 
load, can be expressed as: 
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 Following the separation of variables analogy, the 
solution of eqn. (4) may be assumed as: 

y(x, t) = yo (x) (t)  (5) 

where (x) is the linear mode function, (t) is a function 
representing the variation of the response with time and yo is 
the dimensionless vibration amplitude (obtained from the 
initial conditions). Substituting eqn. (5) into eqn.(4), eqn.(4) 
is separated into: 
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where  is the separation constant which represents the 
natural frequency and f is the frequency parameter which is 
given as: 
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 The general solution of eqn. (6) is given as: 

(x) = C1 cos( F x) + C2 sin( F x) + C3 cosh( F x) + C4 sinh( F x)  (9) 

and the solution of eqn. (7), is: 

(t) = A1 cos( t) + A2 sin( t)  (10) 

where constants A1 and A2 are obtained from initial 
conditions. 

 Substitution eqn. (9) into boundary conditions, eqns. (3), 
yields a system of homogeneous algebraic equations in 
unknown constants Ci, i=1, 2, 3, 4 with parameter f. 
However, the condition of nontrivial solution for such 
system leads to the frequency equation as: 
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2 = (KRL / F ) sin( F )+ cos( F )  (15b) 

3 = (KRL / f ) cosh( f )+ sinh( f )  (15c) 

4 = (KRL / f ) sinh( f )+ cosh( f )  (15d) 

and the restraints stiffness parameters are: 
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 The frequency equation (11) can be solved using any 
proper iterative technique to obtain the frequency parameters 

fm, where m=1,2, … is the mode number, hence the natural 
frequency m can be calculated by means of eqn. (8). 
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 The normalized mode function is obtained assuming C1 
=1 then, the values of the other three constants can be 
obtained in terms of 1 and 2. The m-mode function is 
obtained as: 

m (x) = sin fm x + ( 2 o 1 ) cos fm x o sinh fm x

+ ( 2 1 o ) cosh fm x
 (18) 

where: o =
A11
A12

 

 Substituting eqn. (10) and eqn. (18) into eq. (5), the 
lateral vibration for linear case of a beam resting on linear 
elastic foundations is obtained as: 

ym (x, t) =

sin fm x +

( 2 o 1 ) cos fm x

o sinh fm x +

( 2 1 o ) cosh fm x

(A cos mt + B cos mt)  (19) 

 Constants A and B are obtained from initial condition and 
orthogonality properties of mode functions. 

2.4. Solution of the Nonlinear Vibration Equation 

 The linear m-mode function is employed in the nonlinear 
vibration equation to obtain the solution of nonlinear case. 
The nonlinear vibration is assumed as: 

y(x, t) = yo m ( fm x) (t)  (20) 

 Substitution of eqn. (20) into eqn. (2) and integrating 
over the x-domain leads to: 
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where m is the linear m-mode natural frequency. Integrating 
eqn. (21) with respect to time and assuming at t=0,  =1 and 
d /dt=0, eqn. (21) may be rewritten as: 
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 Substituting (t) = cos ( ), where = (t) into equation 
(23), one gets: 
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 The integration of eqn. (25) is the elliptic integral of the 

first kind, its inversion yields the Jacobi elliptic 

function; cn[ mt,km ] . 

 Then, the variation in the lateral displacement of the 
beam at any location with time can be expressed as: 

m (t) = cn[ mt,km ] . (26) 

 The period of the Jacobi elliptic function is defined by 
the complete elliptic integral: 
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 Then, the natural frequency  for m-mode in nonlinear 
vibration is: 

m =
2

Tm
 (28) 

2.5. Verification of Present Solution 

 To verify the obtained solutions, values of the frequency 
parameter calculated using the present solution and those 
obtained from numerical [1] and semi-analytical methods 
[10] are shown in Table 1 for conventional support 
condition. It is obvious that the obtained results are in close 
agreement with results obtained from FEM and semi-
analytical method. Also, it is found that value of 1E5 for 
restraint stiffness parameter K is enough to represent 
absolutely rigid condition (no movement) 

3. NUMERICAL RESULTS 

 The derived expressions are used to study the influence 
of different parameters on the natural frequency of the beam-
foundation system. However, the natural frequency of the 
system increases as the overall stiffness of the system 
increases. The overall stiffness of the system depends on the 
flexural stiffness of the beam, the stiffness of the foundation, 
the stiffness of the elastic end restraints. In the case of 
compression axial load, the lateral component of the axial 
load in the deformed configuration is in the opposite 
direction of the resultant restoring force resulted from system 
overall stiffness and in the same direction in case of axial 
tension load. Therefore, as the compressive axial force 
increases, the resultant of the total restoring force decreases, 
and the natural frequency of the system decreases. As the 
magnitude of the axial compression load approaches a 
certain critical value, its lateral component compensates the 
effect of the system restoring force and the system 
transforms to aperiodic one approaching asymptotically the 
equilibrium deformed configuration. Indeed, this critical 
value is the buckling load of the beam-soil system. 

 On the other hand, in case of initial axial tension, it 
causes an increase in the vibration frequency of the system. 
Moreover, as the vibration amplitude increases, the  
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stretching due to deformed configuration produces an axial 
tensile force which increases the frequency parameter of the 
system. Bearing in mind these facts, the effects of different 
parameters on the vibration behavior of the beam-foundation 
system can be predicted qualitatively. 

 For the case of linear vibration of a beam resting on 
linear elastic foundations (Po=0, k2=0 and stretching due to 
transverse vibration is neglected) values for frequency 
parameter fm against different values of end restraints are 
shown in Table 2. It is clear that the frequency parameter 
increases as the stiffnesses of the end restraints increase. The 
frequency parameter for subsequent mode is shifted by  for 
conventional end supports and by value less than  for 
elastic end restrains. However, the effect of stiffness of 
elastic end restrains is more noticeable for frequency 
parameter of lower modes. 

 

 The m-frequency parameter fm for the nonlinear case is 
defined as: 

fm
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 Using dimensionless parameters with respect to 
geometric properties of the beam eliminates the effect of the 
geometric properties of the beam on the frequency 
parameter. 

 The effects of dimensionless vibration amplitude on the 
fundamental frequency parameter f (m=1) for different 
values of load parameter Po, end conditions and foundation 
stiffnesses ( k1, k2) are shown in Fig. (2). Fig. (2A) 
represents the case of a beam without foundation and Fig. 
(2B) represents the beam-foundation system. The 
dimensionless load parameter and foundation parameters are 
defined as: 

Table 1. Frequency Parameter fm for Linear Vibration 

 

Elastic End Restraints Stiffness Mode (m) 

KT0 KTL KR0 KRL 1 2 3 4 
Analysis Supports 

1E5 1E5 1E5 0 3.924 7.061 10.191 13.312 Present 

1E5 1E5 1E5 0 3.927 7.07 10.21 13.352 [1]  

1E5 1E5 1E5 0 3.93 7.075 10.216 13.361 [10] 

Clamped – Pinned 

1E5 1E5 1E5 1E5 4.725 7.839 10.963 14.072 Present 

1E5 1E5 1E5 1E5 4.73 7.782 11.013 14.155 [1] 

1E5 1E5 1E5 1E5 4.694 7.794 10.917 14.04 [10] 

Clamped – Clamped 

1E5 1E5 0 0 3.141 6.282 9.416 12.546 Present 

1E5 1E5 0 0 3.141 6.283 9.425 12.566 [1] 
Pinned -Pinned 

[1] Naidu using FEM. 

[10] Wang Using Fourier transforms. 

Table 2. Frequency Parameter fm for Linear Vibration 

 

Elastic End Restraints Stiffness Mode (m) 

KT0 KTL KR0 KRL 1 2 3 4 

Designation 

1E5 0 1E5 0 1.874 4.691 7.847 10.979 Clamped - Free 

1E5 10 1E5 0 2.638 4.791 7.868 10.986  

1E5 100 1E5 0 3.639 5.613 8.077 11.058  

1E5 1E5 1E5 0 3.924 7.061 10.191 13.312 Clamped - Pinned 

1E5 0 1E5 100 2.206 5.101 8.149 11.221  

1E5 100 1E5 100 3.739 5.703 8.324 11.289  

1E5 1E5 1E5 100 4.231 7.26 10.339 13.428  

1E5 0 1E5 1000 2.341 5.425 8.528 11.627  

1E5 100 1E5 1000 3.827 5.796 8.628 11.667  

1E5 1E5 1E5 1000 4.616 7.672 10.746 13.816  

1E5 1E5 1E5 1E5 4.725 7.839 10.963 14.072 Clamped - Clamped 

0 0 0 0 4.73 7.853 10.995 14.144 Free - Free 

1E5 1E5 0 0 3.141 6.282 9.416 12.546 Pinned - Pinned 
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 In case of beam without foundation, as the value of Po 
approaches the buckling value, the frequency parameter 
approaches zero (Aperiodic system). Also, it should be noted 
that, the value for critical axial load (buckling load) in case 
of beam-foundation system is greater than its value in case of 
beam without foundation. 

(A) Beam without foundation ( k1 = k2 = 0 ) 

 

(B) Beam – foundation system ( k1 =1E2 and k2 = 1E5 ) 

 

Fig. (2). Influence of dimensionless vibration amplitude yo on frequency Parameter f. 
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 Fig. (3) shows the influences of elastic rotational stiffness 
at one end on frequency parameter f for different values of 
foundation parameters in Fig. (3A) and for different values 
of load parameter in Fig. (3B). It is obvious that the 

frequency parameter increases as the system stiffness 
increases and as the load parameter decreases. The limiting 
values of the frequency parameter represent the case of 
conventional end conditions. 

(A) Effects of foundation parameters ( Po = 1 ) 

 

(B) Effects of load parameter ( k1 =1E2 and k2 = 1E5 ) 

 

Fig. (3). Influence of rotational stiffness parameter on frequency parameter f (KT0 = KTL = KR0 = 1E5). 
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 Fig. (4) depicts the influences of dimensionless vibration 
amplitude yo and elastic stiffness at one end on the frequency 
parameter. Fig. (4A) represents the effects of elastic rotation 

stiffness at one end and Fig. (4B) represents the effects of 
elastic lateral translation stiffness. 

(A) Effects of rotation stiffness (KTL = 1E5) 

 

(B) Effects of lateral translation stiffness (KRL = 1E5) 

 

Fig. (4). Influences of vibration amplitude and load parameter on frequency parameter f (KT0 = KR0 = 1E5 and k1 =1E2, k2 = 1E5 ). 
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 In Fig. (5), the effects of the load parameter on the 
frequency parameter for different end restrains are shown. 
The figure predicts both the frequency parameter for beam-
foundation system of different characteristics and the critical 
(Buckling) load for such cases. 

 Fig. (6) shows the influence of end lateral translation 
stiffness parameter on the frequency parameter f for 
different values of foundation parameters, while the load 
parameter takes the value of Euler critical load for simply 
supported beam without foundation. The effect of variation 

(A) Beam clamped at one end (KR0 = 1E5) 

 

(B) Beam pinned at one end (KR0 = 0) 

 

Fig. (5). Influences of load parameter and rotational stiffness on frequency parameter f (KT0 = KTL = 1E5). 
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of elastic end restrains stiffness is less noticeable for beams 
resting on foundations. 

4. CONCLUSIONS 

 Analytic expressions for the natural frequencies of nonlinear 
vibration of an initially stressed beam with elastic end restraints 
resting on a nonlinear foundation are obtained. It is found that 
the natural frequency of the beam-foundation system increases 
as the overall stiffness of system increases. The overall stiffness 
of the system is composed of the flexural stiffness of the beam, 
the stiffness of elastic restraints at ends and the foundation 
stiffness. The natural frequency of the system decreases as the 
axial compression load increases. However, as the axial 
compression load approaches certain value, the system 
transforms to aperiodic system and approaches asymptotically 
the deformed equilibrium configuration. Indeed, this critical 
value is called the buckling load. The stretching due to lateral 
vibration amplitude releases the effect of axial compression 
load, leading to an increase in the natural frequency of the 
system. Furthermore, the shifting of higher modes in case of 
elastic end restraints is smaller than  while it is approximately 
equal  for conventional end conditions. 
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Fig. (6). Influence of lateral translation stiffness on frequency parameter f ( Po = 1  and KT0 = KR0 = KRL = 1E5). 


