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Abstract: The Navier-Stokes equations are solved exactly, assuming the Navier slip boundary condition, for flow 

between coaxial circular cylinders (with possibly different slip lengths at the inner and outer walls), and flow in an 

equilateral triangular pipe. The velocity fields and total flow rates are found analytically. A relatively small slip length can 

lead to a large increase in the total rate of fluid flow: in the triangular pipe case the flow doubles when the slip length is 

only about 7.5% of the triangle side. 

INTRODUCTION 

 The idea of slip goes back to Navier
 
[1] in 1823. Later 

works by Helmholtz and Piotrowski and by Kundt and 

Warburg were discussed by Maxwell in 1879 [2]. The recent 

interest is vigorous [3-25]. Briefly, flow through nanometer-

scale channels has shown slip of liquid over solid when the 

interface is hydrophobic. The experimental data [references 

3-9, 11-13, 21 and 24] indicate that slip lengths of the order 

of 10 to 50 nm  characterize liquid flow over hydrophobic 

surfaces. (Slip lengths from 200 nm  to 20 μm have been 

observed in nanograted superhydrophobic microchannels 

[12, 19].) Thus slip can become important (or even 

dominant) for very small channels. 

 Here we shall consider flow with slip in some pipes of 
simple cross-sections, assuming a uniform slip length s, as 
defined (implicitly) by Navier, 

s =
v/ /
v/ / wall

        (1) 

where v/ /  is the velocity component along the wall. The 

normal derivative v/ /  is understood to be taken inward 

into the pipe from the wall or walls. 

 In general, for incompressible steady flow is in the z-

direction, the Navier-Stokes equations reduce to 

x p = 0 = y p  and 

x
2
+ y

2( ) vz =
1

z p        (2) 

where  is the fluid viscosity and p is the pressure. For 

uniform flow vz  does not depend on z, and so the pressure  
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gradient z p  is constant. Hence the flow problem is solved 

when the two-dimensional Laplacian of vz  is constant, and 

(1) is satisfied. 

 Our new results are for flow with slip between coaxial 
circular cylinders, and within a pipe of equilateral triangular 
cross-section. For completeness we shall begin with two 
simple well-known solutions. 

Flow Between Parallel Plates 

 Let the flow be in the z direction, between plates at 

y = h  and y = h . We consider flow far away from the 

sides of the pipe at x = X  and +X . When slip is absent the 

fluid speed is parabolic: 

vz = u0 1
y2

h2
        (3) 

 With slip, the conditions of constant Laplacian and the 
slip boundary condition are also satisfied by a parabolic 
velocity profile: 

vz = u 1
y2

h2 + 2hs
       (4) 

 The maximum flow speeds u0 = h
2 ( z p) / 2  and 

u = (h2 + 2hs)( z p) / 2  follow from (2). 

Circular Pipe 

 In a circular pipe of radius a the velocity (everywhere 
parallel to the pipe wall) is given by the usual Hagen-
Poiseuille flow profile 

vz = u0 1
r2

a2
        (5) 

[the Laplacian r
2
+
1

r r vz  is constant, and vz  is zero at 

r = a ]. 
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 With slip, the flow is again modified in a simple way: 

vz = u 1
r2

a2 + 2as
       (6) 

 Then v/ / = vz  and v/ / = rvz  at the wall r = a  are 

equal to 2aus [a2 + 2as]  and 2au [a2 + 2as]  respectively, 

with ratio s in accord with (1). The speed u determined by 

(2) is u =
1
4 (a

2
+ 2as)( z p) / . The total flow rate in a 

circular pipe (of radius a, area A = a2 ) is thus 

Q =
A2

8
( z p) 1+

4s

a
                  (7) 

CONCENTRIC CIRCULAR PIPES 

 Slip-free flow between coaxial circular cylinders of radii 

a and b (with b > a ) is given by 

vz = u0

ln
r

a

ln
b

a

r2 a2

b2 a2
                  (8) 

 This clearly satisfies the conditions of constant Laplacian 

and zero speed at r = a  and r = b . The speed u0  

determined by (2) is u0 =
1
4 (b

2 a2 )( z p) / . The total 

no-slip flow rate is 

Q0 = 2 dr r vz (r) = 8
( z p)(b

2 a2 ) a2 + b2
b2 a2

ln(b / a)
a

b

  (9) 

 Note that Q0 is not simply a constant times the square of 

the area between the pipes, A2 = 2 (b2 a2 )2 , in 

contradistinction to Q0  for the circular pipe (above) and the 

triangular pipe (next section). 

 Next we allow for possibly different slip lengths sa  and 

sb  at the inner and outer walls, applying (1) with the normal 

derivative v/ /  taken inwardly into the pipe at both walls. 

The constant, ln(r)  and r2  terms which appear in the slip-

free solution (8) all have constant Laplacian (zero for the 

constant and ln(r) terms), and can be linearly superposed in 

the right proportions to give the solution corresponding to 

slip lengths sa  and sb  at the inner and outer walls: 

vz = u

(b2 a2 ) ln
r

a
(r2 a2 ) ln

b

a
+
sa
a

b2 r2 2a2 ln
b

r

+
sb
b
2b2 ln

r

a
(r2 a2 )

+2
sasb
ab

(b2 r2 ) ln
b

a
+
sa
a
+
sb
b
(b2 a2 )

   (10) 

 The prefactor u equals u0  (this special result follows 

because the Laplacian of ln r  is zero). At r = a  and r = b  

the fluid velocity takes the values 

va = u

sa
a

b2 a2 2a2 ln
b

a
+
2sb
b
(b2 a2 )

4 ln
b

a
+
sa
a
+
sb
b
(b2 a2 )

vb = u

sb
b

a2 b2 + 2b2 ln
b

a
+
2sa
a
(b2 a2 )

4 ln
b

a
+
sa
a
+
sb
b
(b2 a2 )

             (11) 

 Fig. (1) shows the velocity profiles of the flow between two 

concentric circular cylinders, with b = 2a  and equal slip 

lengths sa = sb  varying from 0 to 0.3a, in steps of 0.1a. (For 

inner and outer radii of 100 nm and 200 nm, the slip lengths 

would be 10, 20 and 30 nm). The shape of the velocity profile 

changes very little with slip, the main change in velocity being 

a constant increase proportional to s, roughly equal to the 

average of va and vb. The increase also depends on r, but the 

variation with r is too weak to show in the figure. 

 

Fig. (1). Flow speed between cylindrical surfaces at r = a  and 

r = b , for b = 2a  and equal slip lengths sa = sb = s , with s equal 

to 0, 0.1a, 0.2a, and 0.3a. The velocity profiles are shown nested, 

and over only one quarter of the circumference, to reveal the 
variation with r. 

 The total flow rate when the slip lengths are sa  and sb  

at the inner and outer cylinder walls is given by 

Q =
8
( z p)

(b2 a2 ) (a2 + b2 ) ln
b

a
(b2 a2 )

+
sa
a
4a4 ln

b

a
(b2 a2 )(3a2 b2 )

+
sb
b
4b4 ln

b

a
(b2 a2 )(3b2 a2 )

+4
sasb
ab

(b2 a2 )2
ln
b

a
+
sa
a
+
sb
b

 (12) 

 To lowest order in sa  and sb , the ratio of Q to Q0  is 

Q

Q0
1+

sa
a

b2 a2 2a2 ln
b

a

2

+
sb
b
2b2 ln

b

a
+ a2 b2

2

(b2 a2 ) ln
b

a
(a2 + b2 ) ln

b

a
+ a2 b2

  (13) 
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 The flow rate increases monotonically with both sa  and 

sb . When sa = s = sb  and b = 2a  the total flow doubles 

when s 0.166a , so a slip length of about 17 nm  is 

sufficient to double the flow between cylinders of radii 

100 nm  and 200 nm.  The total flow when s=a and b=2a 

(corresponding to a slip length of 100 nm for the example 

above, which is well within the experimental range of slip 

lengths) is about 7 times the zero-slip flow, for the same 

pressure gradient. 

 We note in passing that there is no fundamental reason 
for the slip length to be substantially smaller than the pipe 
dimensions. The greatest drag reductions are obtained by 
modifying the surface with hydrophobic protrusions (see for 
example [12]), which reduce the effective contact area 
between the fluid and the surface. The slip lengths obtained 
in this way exceed 20 μm, for rectangular pipes in which the 
smallest dimension is as low as 76 μm [12]. The smallest 
dimension can in principle be reduced further, the physical 
difficulty being to retain an even gap between the 
protrusions forming the slipping surface and the opposite 
wall. 

 The effect of slip (for given slip lengths) is clearly 

greatest for small inter-cylinder spacing. For small b a  the 

leading terms in Q0  and Q are of different degree in b a : 

Q0 = 6
( z p) a(b a)3 +O(b a)4    (14) 

Q =
2
( z p) a(b a)2

sasb
sa + sb

+O(b a)3   (15) 

EQUILATERAL TRIANGULAR PIPE 

 So far we have considered geometries that are 
mathematically one-dimensional (for example, dependent 
only on the radial distance from the axis of symmetry). Two-
variable geometries are more interesting, and more complex. 
One motivation for looking at a triangular geometry is 
curiosity about slip-flow in the corners. In the absence of slip 
the flow speed goes to zero linearly with the distance from 
the walls, except at the corners, where it goes to zero 
quadratically (with angular dependence). What happens with 
slip? 

 Fig. (2) shows an equilateral triangle of side a with no-
slip laminar flow, the solution of which is well-known as one 
of the simplest of an infinity of solvable flows [26]. 

 If L = 0 , R = 0  and B = 0  symbolically denote the 

linear equations for the left, right and basal sides of the 

triangle (given for a particular coordinate system in (16) 

below), the solution of (2) satisfying vz = 0  on the sides of 

the triangle is vz ~ LRB . The value of the constant of 

proportionality depends on the value of the (constant) right-

hand side of (2), and on our choice of L, R and B. Let the 

base coincide with the line y = 0 , and let the line x = 0  

bisect the triangle. Then we can take 

L =
a

2
+ x

y

3
, R =

a

2
x

y

3
, B =

2y

3
  (16) 

and the zero-slip velocity profile is given by 

vz =
27u0
a3

LRB       (17) 

(The factor 27 / a3  is chosen to make vz = u0  at the centroid 

of the triangle). The Laplacian of vz  is 36u0 / a
2

, so (2) 

gives u0 =
a2

36
( z p) . The total rate of slip-free fluid flow 

through the pipe (volume per unit time) is 

Q0 = 2 dx
0

a /2

dy vz (x, y) =
0

3
a

2
x

9 3

80
u0a

2
=

A2

20 3
( z p)  (18) 

where A =
1

4
3a2  is the area of the triangle. 

 

Fig. (2). Velocity distribution in an equilateral triangular pipe, 

without slip. The contours are drawn at 0.1 to 0.9 in increments of 

0.1 of the maximum velocity (which is located at the centroid of the 

triangle). 

 Now we consider flow with slip, with constant slip length 

s. We still need to satisfy Navier-Stokes equation (2), but 

now the boundary condition is that vz  on the boundary is 

non-zero, and equal to s times its normal derivative (taken 

inward from the pipe walls). The symmetry of the problem, 

and the fact that the Laplacian of vz  must be a constant, 

suggests adding terms proportional to LR + RB + BL  and 
L + R + B  to the zero-slip flow field (17). Note that the use 

of symmetry implies a particular choice of relative 

normalization of L, R and B. If these are expressed as 

mx + ny + c = 0 , we have chosen m2 + n2 = 4 / 3  in writing 

(16). With this choice we have L + R + B = a  and 

LR + RB + BL =
a2

4
+
ay

3
x2 y2    (19) 
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 The trial velocity profile is taken to be 

vz =
27u

a3
LRB +

3v

a2
(LR + RB + BL) + w    (20) 

 The Laplacian of 
z
v  is a constant, namely 

(36u +12v) a2 , so (2) can be satisfied. To satisfy the 

boundary condition (1) we calculate vz  and vz  on the 

walls. For example, on the base B = 0  we have 

vz
3

4
v 1

2x

a

2

+ w      (21) 

yvz
3

a

9

2
u 1

2x

a

2

+ v     (22) 

 The ratio of (21) to (22) will be a constant (equal to the 
slip length s) if 

v = 6 3u
s

a
, w = 18u

s

a

2

    (23) 

 The velocity at the centroid x = 0, y = a 2 3{ }  is 

V0 = u + v + w = u 1+ 6 3
s

a
+18

s

a

2

   (24) 

 The velocity on the base y = 0  is 

Vb =
9 3

2
u
s

a
1

2x

a

2

+
4

3

s

a
    (25) 

 At the corners x = ±a / 2  this gives a quadratic 

dependence on the slip length: 

Vc = 18u
s

a

2

      (26) 

 The Laplacian of 
z
v  is 

36u

a2
1+ 2 3

s

a
, which 

equals ( z p) /  by (2). Thus 

vz (x, y) =
( z p) 3LRB / a + 2 3(LR + RB + BL)s / a + 2s2

1+ 2 3
s

a

 (27) 

 Fig. (3) shows the velocity profiles for s equal to 0, 0.1a, 
0.2a, and 0.3a. Note how the flow is constrained at the 
vertices of the triangle, even for a substantial s/a ratio. 

 Finally, the total flow rate is computed from (27), as in 
(18). We find 

Q =
A2

20 3
( z p) 1+10 3

s

a
+ 40

s

a

2

1+ 2 3
s

a
 (28) 

 At s = 0.02a  the increase due to slip predicted by (28) is 

27%, which is remarkable for such a small slip length. The 

flow rate doubles when s is about 7.5% of a side length; 

when s = a  the flow rate is about 13 times the zero slip 

value (Alternatively: at constant flow rate the pressure drop 

decreases by factors of 2 and 13, respectively). 

 

Fig. (3). Flow pattern in an equilateral triangular pipe with the slip 

length varying from 0 to 0.3a, in steps of 0.1a. 

CONCLUSION 

 The Introduction gave examples of the importance of slip 

on fluid flow in small channels. Just how important slip is 

depends on the geometry as well on the relative size of the 

slip length to the dimensions the channels. For the circular 

pipe of radius a and slip length s, the rates of flow ratio Q/Q0 

is equal to 1+ 4s / a . For the equilateral triangular pipe of 

side a, Q/Q0 equals (1+10 3s / a + 40s2 / a2 ) / (1+ 2 3s / a) . 

Between concentric circular cylinders of radii a and b the 

flow is more complicated (see (10) and (12)). When the slip 

lengths at the inner and outer walls are equal, the leading 

term in Q/Q0 when s is large compared to both a and b is 

4s(b a) ln
b

a

(a2 + b2 ) ln
b

a
+ a2 b2

     (29) 

 For slip lengths large compared to the other pipe 

dimensions, the ratio of slipping flow to non-slip flow thus 

becomes proportional to s for the circular pipe, for the 

concentric cylinders, and for the triangular pipe. For small 

slip lengths, the total flows increase linearly with slip: the 

leading terms are given by (13) for concentric cylinders, and 

by 1+ 8 3s / a for the equilateral triangular pipe. However, 

the intermediate behaviour is quite different in the two cases. 

 We conclude that slip can have a dramatic effect on fluid 
flow when the slip lengths are commensurate with the pipe 
dimensions, and that the effects are strongly dependent on 
pipe shape. 
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