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Abstract:

Introduction:

Large  Eddy  Simulation  (LES)  modelers  must  begin  to  answer  the  question  of  how  to  better  incorporate  large  datasets  into
simulations. This question is important because, at a given location, the diurnal, seasonal, and day-to-day variations of atmospheric
stability have significant consequences for the power generated by wind turbines. The following study provides a methodology to
obtain discrete values of surface flux, inversion height and geostrophic wind for LES using field data over multiple diurnal cycles
(averaged over a month) at  12 Local Time (LT) (during the convective ABL). The methodology will  allow the discrete LES to
quantify the day-to-day variations over multiple diurnal cycles.

Methods:

The study tests the hypothesis that LES can capture the mean velocity and TKE profiles from the averaged variations in surface heat
flux at 12 LT measured in the field (mean, +1 standard deviation, and -1 standard deviation). The discrete LES from the mean, +1
standard deviation, and -1 standard deviation surface heat flux represent the variations in the ABL due to the day-to-day variations in
surface heat flux. The method calculates the surface heat flux for the NREL NWTC M5 dataset. The field data were used to generate
Probability Density Functions (PDFs) of surface heat flux for the January and July 12 LT. The PDFs are used to select the surface
heat fluxes as inputs into the discrete LES.

Results / Conclusion:

A correlation function between the surface heat flux and the boundary layer height was determined to select the initial inversion
height,  and the geostrophic departure function was used to determine the geostrophic wind for each surface heat flux. The LES
profiles  matched the  averaged velocity  profiles  from the  field  data  to  4% and the  averaged TKE profiles  to  6% and,  therefore,
validated the methodology. The method allows for further quantification of day-to-day stability variations using LES.

Keywords: Surface heat flux, Atmospheric boundary layer, LES, Atmospheric stability, Wind energy, Probability density functions.

1. INTRODUCTION

Overland, the surface heat exchange between the ground and the atmosphere is an important driving mechanism for
Atmospheric Boundary Layer (ABL) dynamics. The exchange results in a pronounced diurnal cycle in temperature,
wind, depth and related ABL variables [1 - 3]. During the daytime conditions, the convective heat exchange between
the surface and the atmosphere causes the  large-scale buoyancy  forcing  from the  surface  that drives  the ABL to  be
in a convective stability state. The surface heat exchange results in large-scale vertical motions  that generate turbulence
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mainly dominated by the buoyancy-production mechanisms (and less from the shear-production) of Turbulence Kinetic
Energy (TKE) resulting in a deeper ABL [3, 4]. Higher turbulence results in a well-mixed layer within the convective
ABL where the mean vertical gradients of wind velocity and potential temperature variables are nearly zero in this layer
[5,  6].  An inversion layer at  the top of the mixed layer caps the convective ABL. During nighttime conditions,  the
surface is colder than the atmosphere above, and the turbulence generated in the ABL is a balance between a positive
TKE shear production and a negative buoyancy production [7, 8]. During nighttime conditions, the ABL is in a stable
stability state characterized by a shallower layer with weak and intermittent turbulence.

Various field experiments [9, 10] have confirmed that the vertical flux divergence (between the top flux and surface
flux) plays a significant role in the time change of potential temperature in the ABL by analyzing the ABL budgets of
sensible heat. In general, the top flux is a fraction of the surface flux; hence the ABL dynamics are dictated by the
surface flux. These surface fluxes have significant variations. Grimmond and Oke [11] compared summer heat fluxes at
four different locations. They showed large day-to-day variations in the peak surface heat flux in all four areas. The
most significant variations occurred around 12 Local Time (LT) for each of the four cities. The same is true for the
variation in surface temperatures [12].

In Large Eddy Simulation (LES) of Atmospheric Boundary Layer (ABL) models, such as, SOWFA, the surface heat
exchange processes are represented as surface heat flux and surface temperature specified as lower boundary conditions
[4, 13 - 15]. Overland, significant diurnal changes in the heat flux balance occur. Hence, the prediction of the ground
surface temperature and surface heat flux is critical to obtain successful forecasts of the ABL dynamics. Most of the
LES  studies  are  idealistic  and  simulate  quasi-steady  ABL  flows,  as  constant  surface  flux  boundary  conditions  are
imposed  on  the  lower  boundary.  However,  there  is  no  consistent  methodology  to  incorporate  the  surface  flux
measurements obtained from the field data. Obtaining these values is a challenging problem that stems from large day-
to-day variations in surface heat flux measurements.

Recent advances in Large Eddy Simulation (LES) allowed researchers to perform a simulation of a diurnal cycle in
the ABL [16 - 18]. LES modelers achieve the diurnal cycle by changing the surface heat flux in real time. Kumar et al.
[16] used surface heat flux data from the HATS experiments to generate the surface heat flux boundary condition (over
24  hours)  in  LES.  The  simulation  captured  both  convective  and  stable  atmospheric  conditions  including  the
entrainment-based  growth  of  the  convective  ABL,  nocturnal  jets,  and  mean  velocity  profiles.

The ability to perform LES of the diurnal cycle led to the study of wind turbines through a diurnal cycle. Lee and
Lundquist [19] studied the wake evolution during evening transition of the diurnal cycle using WRF. Their research
showed that the wind farm created a 10% increase in wind-speed deficits, a 50% increase in TKE, and a 20% increase
in surface heat flux during the convective ABL. Akbar et al. [20] studied wake flow in a wind farm during the diurnal
cycle and showed that increased mixing during the convective ABL reduces power deficits from 56% to 28%. The
results confirm other studies that compared stable and convective wakes in wind farms [13, 21 - 23].

These studies allow for the ability to look at variations in wind energy for a single diurnal cycle, but there are also
variations that occur over multiple diurnal cycles. One outstanding question is how do the day-to-day variations in the
strength of stability affect energy production in wind farms? The current study seeks to begin to answer this question by
focusing on the day-to-day variations in surface heat flux because it is used in LES as a boundary condition to drive
stability. The study tests the hypothesis that LES can capture the mean velocity and TKE profiles from the averaged
variations in peak surface heat flux measured in the field (mean, +1 standard deviation, and -1 standard deviation). The
study investigates the variations in multiple diurnal cycles by averaging the measured surface heat flux at each hour for
an entire month. The focus is on the variations at 12 LT. The study tests the hypothesis using measured field data from
the  National  Renewable  Energy  Laboratory  (NREL)  National  Wind  technology  center  (NWTC)  M5  met  tower  in
Colorado [24, 25]. The methodology will aid in quantifying the effects of day-to-day variations of stability on wind
energy production which will allow for an accounting of the variations in multiple diurnal cycles.

In  this  study,  we  will  use  the  field  data  to  determine  the  inputs  of  surface  heat  flux,  inversion  height,  and
geostrophic wind for the discrete LES of the ABL. The field data comes from a Meteorological tower that has wind,
temperature, and pressure measurements at multiple heights (see Appendix A for a complete description) [24, 25]. The
tower  is  135  m  tall  and,  therefore,  the  geostrophic  wind  and  inversion  heights  are  not  directly  measured,  but  are
determined using the wind speed and temperature measurements. Sonic anemometers allow for a direct measurement of
turbulent fluctuations for both wind speed and temperature so that Turbulent Kinetic Energy (TKE) can be computed.
The turbulent fluctuations for wind and temperature at 3 m are used to estimate the surface heat flux.
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The objectives of the study are as follows:

To  understand  the  day-to-day  variations  of  surface  flux  and  its  implications  on  the  LES  of  wind  turbines1.
simulations
To develop a methodology to obtain discrete values of surface flux, inversion height and geostrophic wind for2.
LES that represent the day-to-day variations (of a given month)
To select the best fit probability function for surface heat flux3.
To understand the correlation between the variability in surface heat flux with turbulence kinetic energy, friction4.
velocity, wind speed, and wind shear
To  validate  the  TKE  and  velocity  profiles  obtained  from  LES  using  the  above  boundary  conditions  with5.
averaged field data over specified surface heat flux and wind speed of January and July 2016

The manuscript is as follows. The methodology for using the field data and setting up LES is described in Section 2.
The results and discussion are shown in Section 3. The conclusions are presented in Section 4.

2. METHODOLOGY

2.1. Methodology and NREL NWTC Data

Fig. (1) shows a brief overview of the methodology. The overall idea is to conduct discrete LES that represents day-
to-day variations in atmospheric stability using realistic boundary conditions from field data. The LES tool requires
discrete  values  for  surface  heat  flux  on  the  lower  boundary,  initial  inversion  height  (specified  using  a  3-layer
temperature  profile  as  explained  in  section  2.2),  and  geostrophic  wind  on  the  upper  boundary.  The  methodology
consists of following steps, which will be explained in detail in this section: (1) Obtaining the instantaneous surface
heat flux from the field data, (2) gathering the surface heat flux data occurring between 12-13 LT (for each month), (3)
fitting the gathered data to multiple Probability Density Functions (PDFs), (4) selecting the best fit PDF using, and (5)
determining the discrete boundary conditions required for LES using the surface heat flux PDF. The inversion height
for each surface heat flux is determined from the field data correlation between surface heat flux and boundary height as
shown in Fig. (5). The geostrophic wind for each surface heat flux is determined from the departure function defined by
Clarke and Hess [26].

The PDF for the data occurring between 12LT-13LT represents  the day-to-day variations at  12LT for an entire
month.  The  study  uses  the  PDF  to  determine  discrete  values  for  the  surface  heat  flux  data  occurring  between
12LT-13LT.  The  discrete  surface  heat  flux  values  become inputs  into  LES in  addition  to  the  corresponding  initial
inversion height, and geostrophic wind. The LES profiles are compared to the field data wind speed and TKE profiles to
validate the methodology. The Correlations of surface heat flux and: TKE, friction velocity, wind shear, and wind speed
for the LES simulations and measured data are compared to understand the implications of day-to-day variations on
wind turbines.

The data used in this study is from the 135-m tall  M5 meteorological tower installed at the NREL NWTC near
Boulder  Colorado  [27].  The  data  consists  of  high-frequency  measurements  of  wind  speed,  wind  direction  and  air
temperature at elevations of 15, 30, 50, 76, 100, and 131 above the ground January, May, July and October of the year
2016. These months correspond to Winter, Spring, Summer, and Fall for that year. For our analysis, the measured data
were used to obtain the derived atmospheric variables, namely, Surface heat flux, atmospheric boundary layer height,
wind shear, and Turbulent Kinetic Energy (TKE) (see Appendix A for details [24].

Fig.  (2a)  shows  the  monthly-averaged  surface  heat  flux  for  each  hour  of  the  day  for  January,  May,  July,  and
October. The vertical bars denote one standard deviation (+1σ to -1σ) from the mean. Fig. (2b) shows the standard
deviation (σ) of the surface heat flux at each hour. In general, a positive value of surface heat flux refers to convective
stability  state  of  the  atmosphere,  whereas  negative  values  denote  a  stable  atmosphere,  and  a  zero  value  refers  to  a
neutral atmosphere [3]. The strength of the stability is related to the magnitude of the value. Significant differences in
both the values of the mean surface flux and the standard deviation from the mean is observed between the 4 selected
months. The mean surface heat flux during the early morning hours (00 to 05 LT) is negative for all the 4 months with
values ranging from -0.0295 kms-1 for January to -0.158 kms-1 for May. Positive mean surface heat flux occurs between
times of 9-15 LT, 6-16 LT, 6-17 LT, and 7-15 LT for January, May, July, and October respectively. The maximum
mean surface heat flux occurs near 12 LT for all the months, but the magnitude ranges from 0.088, 0.234, 0.231, and
0.177  kms-1  for  January,  May,  July,  and  October  respectively.  During  the  later  hours,  the  mean  surface  heat  flux
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transitions back to negative values.

Fig. (1). Methodology to incorporate boundary and initial conditions into LES.

Fig. (2). Mean and variability of surface heat flux at different hours for different months using NREL data. (a) shows the mean and
one standard deviation error bars (b) shows the standard deviation.
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Fig.  (2b)  shows  the  month  of  October  to  have  the  highest  standard  deviations  from the  mean  at  10  LT  with  a
standard deviation of 0.126 kms-1 whereas, for July, the highest standard deviation is 0.125 kms-1 at 12 LT. The highest
standard deviation for January and May is 0.070 kms-1 and 0.124 kms-1 which occur at 10LT and 12LT respectively. The
July 12 LT standard deviation is nearly 58% of the mean surface heat flux at that hour, which indicates the day-to-day
variations of the surface flux are significant. It is interesting to observe that though the general trend of mean surface
heat  flux  is  similar  for  all  the  months;  the  standard  deviation  from the  mean  does  not  follow the  same  trend.  The
difference is due to the fact the maximum mean surface heat flux for the summer month of July is over two times the
value than January. The difference in maximum mean surface heat flux occurs even though the minimum values of the
mean surface heat flux are comparable between all the 4 months. July exhibits the highest peak surface flux, but the
variability is highest for May, July, and May.

The  magnitude  and  variation  of  surface  heat  flux  changes  between  different  seasons,  especially  during  the
convective portion of the day from 8 to 16 LT. July shows the largest mean surface heat flux of 0.24 kms-1  with its
highest standard deviations of 0.125 kms-1 at 12 LT while January shows the lowest mean surface heat flux of 0.088
kms-1 and the lowest standard deviation of 0.06 kms-1 at 12 LT. The results show clear seasonal (differences between the
four months) and diurnal variations in surface heat flux exist between these four months. In addition, the surface heat
flux standard deviation from the mean shows a day-to-day variation as well.

The  day-to-day  variations  over  multiple  diurnal  cycles  are  studied.  For  this  purpose,  a  scatter  plot  of  10-min
averaged surface heat flux for the entire month at a given time is analyzed. Fig. (3a) shows the 10-minute averaged
surface heat flux for averaged data that falls between 12 LT and 13 LT time for all the days of July (referred to as July
12LT).  The  x-axis  of  is  the  day  of  the  month  for  July  2016.  The  figure  shows significant  day-to-day  variations  in
surface heat flux with the highest value of 0.52 kms-1  and the lowest value of 0.05 kms-1.  The day-to-day variations
observed  in  the  average  surface  heat  flux  for  the  July  12  LT  can  be  well  represented  using  a  Probability  Density
Function (PDF) using mathematical probability theory [28]. A normal PDF fitted to the data from July 12 LT is shown
in Fig. (3b). Fitted in this manner, 68% of the data is within the ±1σ, 95% of the data is within ±2σ, and 99% fall within
±3σ.

The  PDF  represents  the  variability  at  12LT  and  will  be  used  to  select  the  inputs  for  LES.  The  actual  PDF  is
determined in section 3.1. The focus of the current study is on day-to-day variations, particularly for the July 12 LT,
because of the large mean surface heat flux and standard deviation from the mean that occurs at that time. In addition,
the January 12 LT will also be studied to investigate the implications of smaller mean and standard deviation from the
mean of the surface heat flux.

Fig. (3). (a) 10 min averaged surface heat flux for the July 12 LT local time for each day (b) probability density function for the July
12 LT local time surface heat flux.

(b) 

(a) 
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Next, we investigate the correlations of the surface heat flux with TKE and ABL height. The correlation with TKE
helps  to  understand  how  the  variations  in  surface  heat  flux  will  impact  the  output  of  the  LES.  Fig.  (4)  shows  the
correlation of 10-min averaged surface heat flux and TKE for different months of the NREL data at an elevation of 76
m  above  the  ground.  There  is  a  positive  correlation  between  surface  heat  flux  and  TKE  (R2  of  0.45).  The  low  R2

indicates some variability, but the correlation has a p-value <0.01 indicating the correlation is significant even with the
variability. The methodology to incorporate surface heat flux variations into LES will need to capture the relationships
shown to be used in LES applications. The surface heat flux correlations will be used to validate the LES in section 3.3.

Fig. (4). Correlation of heat flux and TKE at 76 m during convective hours for different months.

Finally, we investigate the correlation between surface heat flux and the approximated ABL height (shown in Eq.
16). The relationship is shown by plotting the two on a log-log scaled plot as seen in Fig. (5). The data show a positive
correlation.  The  correlation  function  between  surface  heat  flux  and  ABL  height  is  a  power  law,  described  as

, rather than linear as found with TKE. This relationship had slightly less variability than TKE
with an R2 value of 0.55 compared to 0.47. Again, the p-value is <0.01, which indicates significance to the correlation.

The correlation function  is  used to obtain the initial  inversion height  for  LES simulations
based on the boundary condition given for surface heat flux [29].

Fig. (5). Correlation of surface heat flux and ABL height during convective hours for different months.

In  summary,  the  NWTC  Metrological  tower  data  for  January,  May,  October,  and  December  2016  shows  the
presence of day-to-day variability of surface heat flux over multiple diurnal cycles. Results have been shown for July 12
LT. However, all four months show similar trends (section 3.1). These results are comparable to Grimmond and Oke
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[11] who showed the largest day-to-day variations of surface heat flux occur near midday. The 10-minute averaged
surface heat flux showed correlations with both TKE and ABL height, which is also described by Obukhov theory [30].
A linear correlation exists between the averaged surface heat flux and TKE, whereas the correlation is a power law with
the ABL height. The correlations have implications to the modeling of LES. The variations of surface heat flux affect
the TKE output of the simulation, which is important in may LES applications. The study investigates multiple PDFs to
best define the variations in surface heat flux. The study uses multiple discrete LES simulations determined from a
mathematical PDF (section 3.1) that represent the monthly day-to-day variations, rather than a one mean value. The
LES methodology is described in subsection 2.2.

2.3. Description of LES Methodology

The Large Eddy Simulation (LES) has been performed using the Simulator for Wind Farm Applications (SOWFA)
solver  developed  by  the  National  Renewable  Energy  Laboratory  (NREL).  The  LES  uses  ideal  assumptions  with  a
homogenous  pressure  gradient,  flat  terrain,  and  steady  conditions  (Churchfield  et  al.  [13,  31]).  For  the  sake  of
completeness,  the  details  of  the  solver  are  repeated  here.  The  governing  equations  are  the  filtered  Navier-Stokes
(momentum and potential temperature transport equations) with Boussinesq approximations as follows:

(1)

(2)

(3)

where, a tilde denotes the spatially resolved filtered component at scale, denotes the modified pressure. The spatial
gradient of the mean pressure term acts to drive the flow convection, (u1, u2, u3) = (u, v, w) are the components of the
velocity field (u  is  the axial  component;  v  is  the lateral  or  y-component,  and w  is  the vertical  component).  θ  is  the
resolved potential temperature; θO is the reference temperature. The Subgrid Stresses (SGS) are included in the τ term
along with the fluid stress tensor. The SGS flux and SFS temperature flux are parameterized, respectively as follows:

where D is the deviatoric SGS stress tensor; vSGS is the SGS eddy viscosity; and PrSGS is the SGS Prandtl number.
The SGS flux is computed using the Moeng’s model [14], where the turbulent viscosity and turbulent kinetic energy are
modeled as follows:

using the mesh cells in x, y and z directions (the resolved strain-rate tensor is) and PrSGS is constant (ref dependent
on stratification level).

The  finite  volume  solver  uses  the  Pressure  Implicit  with  Splitting  of  Operations  (PISO)  algorithm to  solve  the
momentum equation [32]. The pressure and velocity are solved implicitly in this method using Crank-Nicholson time
advancement for the predictor and two corrector steps [13]. The code solves the buoyant term, the SGS viscosity, and
the Coriolis terms explicitly. The pressure gradient, , drives the flow and is constant in space. The pressure
gradient is adjusted to maintain the geostrophic wind at the top of the domain. The Coriolis parameter, fc, is calculated
based on the latitude, which is 40° where the NREL site is located [17]. The deviatoric SGS stress tensor, , is equal
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to  where vSGS is the SGS viscosity and  is the resolved strain rate tensor. The SGS viscosity is modeled
using the one-equation SGS model given by Moeng [4].

Each simulation is initialized with an initial temperature and velocity profile shown in Eq. 4. where C is a constant
and is 280 for the January simulations and 300 for the July simulations. The initial temperature profile is a three-layer
structure [33]. The first is a constant temperature gradient to the inversion height. At the initial inversion height, the
temperature is changed by 8° K over 150 m. Finally, a constant temperature gradient of 0.003 Km-1 is given from the top
of the inversion height to the top of the domain [13]. The initial velocity is prescribed as a constant geostrophic wind
velocity throughout the domain. Random temperature perturbations and a sinusoidal velocity perturbation are added
near  the  surface  to  decrease  the  amount  of  time  to  generate  realistic  turbulence.  As  the  simulation  progresses,  the
profiles develop to those of an ABL.

(4)

All lateral boundary conditions are specified as periodic. The upper-velocity boundary condition is specified as zero
velocity normal to the boundary and zero gradient parallel to the boundary. A Neumann boundary is prescribed as the
upper-pressure boundary condition that is determined from the normal momentum equation. The upper-temperature
boundary condition is specified as a constant temperature gradient of 0.003 to match the initialized temperature profile.
The upper SGS stress boundary condition is given as a zero gradient.

The surface roughness zO [8], which represents different land and surface types, sets the lower velocity boundary
condition.  zO  is  given as 0.15 m  The lower pressure boundary condition is  given as the gradient  determined by the
normal momentum equation. The lower temperature boundary condition is given as a constant temperature flux (surface
heat  flux).  The  lower  SGS viscosity  boundary  condition  is  determined  using  the  Schumann  Model  [34].  The  SGS
viscosity values are determined to satisfy the Schumann Model surface stress as described by Churchfield et al. [13].

The domain of the simulation is 4000 m x 4000 m x 2000 m. The predominant wind is set at an angle through the
domain  such  that  the  large-scale  structures  can  properly  form [13]  and  the  turbulent  statistics  did  not  change  with
increased domain size. Simulations were performed with grid points of Nx, Ny, and Nz as 160, 160 and 128 in the
horizontal (x), spanwise (y), and vertical (z) - directions respectively. The grid points in the horizontal direction are
equally spaced while the spacing in the vertical direction increases such that the last cell is four times larger than the
first cell where Δz = .146 Nz + 5.98. The simulations were run for 9,000s and then the statistics were taken for another
2,000s (the eddy turnover times ranged from 6-12 min). Table 1 gives a list of LES cases performed for the validation.
These were determined using the PDFs for surface heat flux as described in Section 3.5.

Table 1. The LES cases used for validation which were selected by using the July and January PDFs acquired from field data.
The table shows the boundary and initial conditions for each case.

Case PDF Surface Heat Flux (kms-1) Inversion Height (m) Geostrophic Wind (ms-1) L (m)
1 July Mean 0.231 756 7.61 -30.6
2 July -1SD 0.106 659 6.2 -31.7
3 July +1SD 0.356 820 9.1 -29.1
4 Jan Mean 0.088 622 5.8 -23.1
5 Jan -1SD 0.029 501 5.1 -42.2
6 Jan +1SD 0.146 698 6.5 -21.7

3. RESULTS AND DISCUSSION

3.1. Best Fit PDF for Surface Heat Flux

The Probability Density Functions (PDFs) are generated by grouping together surface heat flux values over a given
hour, applying multiple types of PDFs to the set of data, and selecting the PDF with the best fit as determined by an R2

value [35]. Normal and logistic distributions were tested. The equations for the PDFs are:

     𝑇 = 𝐶 𝑧 ≤ 𝑧𝑖  

         = 0.053(𝑧 − 𝑧𝑖) + 𝐶 𝑧 > 𝑧𝑖  & 

 𝑧 ≤ 𝑧𝑖 + 150

         = 0.003(𝑧 − 𝑧𝑖 + 150) + 𝐶 + 8 𝑧 > 𝑧𝑖 + 150

   

−2𝜈𝑆𝐺𝑆�̃�𝑖𝑗 �̃�𝑖𝑗 
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(5)

(6)

where µ is the mean, σ is the standard deviation, and s is the shape parameter.

One method to validate the fits of the PDFs is by using the cumulative density function. The cumulative density
function represents the probability a random variable X will be less than or equal to x. The field data is compared to the
PDF, and an R2 can be determined. Fig. (6) shows the cumulative density function fits for the PDFs of surface heat flux.
Fig. (6) shows the cumulative density function fit for the (a) Normal PDF and (b) Logistic PDF using data from July at
hour 12 LT. Fig. (6) also shows the cumulative density function fit for the (c) Normal PDF and (d) Logistic PDF data
from July at hour 21 LT. The figure shows the 12 LT and 21 LT as representative examples for both a convective and a
stable instance in the ABL. Most of the deviation between the fit and the observation occurs near the extremes of the
cumulative density function. Appendix B gives a complete list of R2 values for each hour of each month. Tables 4-7
record the probability functions and their parameters at each hour for the January, May, July, and October data sets. The
table shows that the normal distribution had a better fit during the convective portion of the day between 8 and 16 LT.
The convective part of the day also had higher R2 values ranging from 0.93 to 0.99. The logistic distribution had a better
fit during night time conditions between 18 and 6 LT. During this time the R2 values were much smaller ranging from
0.61 to 0.89 (which represents a poor fit). The convective ABL data showed a strong fit with the normal distribution.
Therefore, the normal PDF was used to select discrete inputs for LES.

𝑓(𝑥|𝜇, 𝜎2)
1

√2𝜎2𝜋
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−
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2 
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Fig. 6 cont.....
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Fig.  (6).  Cumulative  probability  with  fits  (a)  NREL July hour  14 LT Normal  Distribution (b)  NREL July hour  14 LT Logistic
Distribution (c) NREL July hour 21 LT Normal Distribution (d) NREL July hour 21 LT Logistic Distribution.

3.2. Selection of LES Inputs from the NREL Data

The study simulated LES cases for July 12 LT and January 12 LT using the discrete surface flux value obtained
from the normal PDF. The simulations consisted of the mean, -1 standard deviation and +1 standard deviation surface
heat flux for each July 12 LT and January 12 LT normal PDF. For July 12 LT the mean surface heat flux mean was 0.23
kms-1 with a standard deviation of 0.125 kms-1. The mean surface flux in January 12 LT is 0.088 kms-1 with a standard
deviation was 0.06 kms-1. The July 12LT was selected because it had the largest mean surface heat flux and near the
largest standard deviation. The January 12 LT was selected for comparison because the mean and standard deviation
were much smaller. The correlation between boundary layer height and surface heat flux shown in Fig. (5) was then
used to calculate the boundary layer height for each of the six surface heat fluxes. The boundary layer heights set the
initial inversion height. Finally, the geostrophic wind was estimated using u* in the geostrophic departure described by
Clarke and Hess [26] where the A and B coefficients are experimental values used to correct the departure function. The
assumption was made to use the same values found experimentally at noon by Clarke and Hess.

The LES boundary and initial conditions for the six cases are in Table 1.  The table shows the case number, the
selected month and surface heat flux from the PDF, the surface heat flux used as a boundary condition, the inversion
height  used  as  an  initial  condition,  and  the  geostrophic  wind  used  to  drive  the  flow.  The  table  also  shows  the
corresponding Monin-Obukhov Length from each simulation. Neutral conditions generally occur near -300 m [36]. All
values for the Monin-Obukhov Length fall between -20 m and -43 m and are therefore portions of the convective ABL
[5]. The six cases cover a broad range of the data gathered from the datasets to validate the LES. The data used for
validation comes by averaging the profiles of the field data that fall into bins corresponding to each simulation. The bins
collect  the  meteorological  tower  data  that  is  between  12LT-13LT  of  the  corresponding  month,  ±  0.5σ  of  the
corresponding  surface  heat  flux,  and  ±  0.5  m  /  s  of  the  hub  height  wind  speed  for  the  corresponding  LES.

(c) 

(d) 
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3.3. Validation of LES

The  mean  velocity  and  temperature  profiles  (not  shown)  matched  those  expected  for  a  well-mixed  convective
boundary  layer.  The  potential  temperature  increases  near  the  surface  for  the  first  100-200  m.  After,  the  potential
temperature is constant up to the inversion height where there is a sharp increase in potential temperature. The increase
represents the capping inversion. Finally, the potential temperature increases at a constant rate to the top boundary. The
velocity profiles have a gradient for the first  100 m.  Then there is  a nearly constant velocity profile to the capping
inversion. At the capping inversion, there is a sharp increase in velocity to the geostrophic wind condition. These match
the expected mean profile of the convective boundary layer as given by Moeng [4].

Fig. (7) compares the TKE, shear exponent, wind speed, and u* obtained from LES to the NREL July 12LT data.
The focus of the comparison is on the trends because the LES simulations are highly idealized. Fig. (7a) shows the
correlation between surface heat flux and TKE at 74 m for the six LES simulations and the data (with a trendline). The
LES simulations captured the TKE with an underprediction by less than 5% compared to the trendline. Fig. (7b) shows
the  correlation  between  surface  heat  flux  and  the  friction  velocity.  LES  overpredicted  the  friction  velocities  when
compared to the trendline. The overprediction ranges from 8% to 16%, but the bias is relatively constant. The might be
better estimated through a better determination of the friction length near the surface.

(a) 

(b) 

(c) 

Fig. 7 cont.....
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Fig. (7). (a) Correlation for surface heat flux and TKE for the positive heat flux NREL July data with trendline and LES at 74 m. (b)
Correlation for surface heat flux and friction velocity for the positive heat flux NREL July data with trendline and LES at 74 m. (c)
Scatter plot for surface heat flux and wind speed for the positive heat flux NREL July data and LES at 74 m. (d) Scatter for surface
heat flux and shear component for the positive heat flux NREL July data and LES at 10 and 86 m.

Fig. (7c) shows the correlation between surface heat flux and wind speed at 74 m. Although they fell within the data,
the  estimated  geostrophic  wind  tended  to  overpredict  the  wind  speed  at  74  m.  The  overprediction  comes  from the
assumption of using the same values by found experimentally by Clarke and Hess [26] for the A and B functions values
described above (more correctly would be to calculate these values for the given datasets which are outside the scope of
this work). Fig. (7d) shows the correlation between surface heat flux and wind shear. The wind shear is calculated from
the wind speeds between 10 m and 86 m. The over predicted wind speed creates a similar overprediction of wind shear.
Again, it is noted that the wind shear falls in the range of values measured, but tends toward the higher limit of those
measured values. Fig. (7) validates the methodology of using surface heat flux from experimental data for wind turbine
simulations, especially for capturing the TKE near hub height.

Further validation was performed by comparing the velocity and TKE profiles for each of the simulations generated.
The NREL NWTC data is collected into bins and averaged to create the mean velocity and TKE profiles. The bins
collect  the  meteorological  tower  data  that  is  between  12LT-13LT  of  the  corresponding  month,  ±  0.5σ  of  the
corresponding surface heat flux, and ± 0.5 m/s of the hub height wind speed for the corresponding LES. Fig. (8a) shows
the velocity profiles for the January 12LT-1 standard deviation bin averaged data compared to the LES output. The LES
output overpredicts the velocity below 50 m. Figs. (8b and 8c) shows the velocity profiles for the January mean and +1
standard deviation (respectively) bin averaged data compared to the LES output. The LES output for these two cases
better predict the velocities below 50 m. The simulations capture the near uniform profiles above 50 m height that are
typical for convective profiles.

Figs. (8d and 8e) show the velocity profiles for the July 12LT-1 standard deviation and mean (respectively) bin
averaged data compared to the LES output. The LES output for these two cases predict the velocities below 50 m but
overpredict the velocities above 50 m. Fig. (8f) shows the velocity profiles for the July 12LT +1 standard deviation bin
averaged data compared to the LES output. The LES output for this case underpredicts all velocities measured from the
field. Table 2 shows the error for the LES profiles compared to the binned average field data. In all simulations, the
LES captures  the velocity profiles  well  as  the error  falls  below 5%. The small  error  validates  the methodology for
statistically selecting the boundary conditions for LES to represent day-to-day variations.

(a) 

(b) 

(d) 
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Fig. (8). Velocity profile comparisons for LES and NREL bin averaged datasets for (a) Jan -1SD, (b) Jan Mean, (c) Jan +1SD, (d)
Jul -1SD, (e) Jul Mean, and (f) Jul +1SD.

Table 2. LES error for the velocity and TKE profiles.

Case Error in Velocity (%) Error in TKE
(%)

Jan -1SD 5.29 10.3
Jan Mean 4.54 3.9
Jan +1SD 3.45 7.2
Jul -1SD 3.83 4.3
Jul Mean 3.88 5.5
Jul +1SD 4.73 4.2

Similarly, the TKE profiles for the bin-averaged NREL Dataset and the LES simulations are compared in Fig. (9).
Fig. (9a) shows the TKE profiles for the January 12LT-1 standard deviation bin averaged data compared to the LES
output. The LES underpredicts the values above 100 m. Fig. (9b) shows the TKE profiles for the January 12LT mean
bin averaged data compared to the LES output. The LES underpredicts the values above 100 m and overpredicts TKE
below 50 m. Fig. (9c) shows the TKE profiles for the January 12LT +1 standard deviation bin averaged data compared
to the LES output. The LES overpredicts the values below 50 m but shows good agreement with all other points.

(e) 

 (f) 
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Fig. (9). Velocity profile comparisons for LES and NREL bin averaged datasets for (a) Jan -1SD, (b) Jan Mean, (c) Jan +1SD, (d)
Jul -1SD, (e) Jul Mean, and (f) Jul +1SD.

Fig. (9d) shows the TKE profiles for the July 12LT -1 standard deviation bin averaged data compared to the LES
output. The LES underpredicts the values above 100 m. Figs. (9e and f) show the TKE profiles for the January mean
and +1 standard deviation bin averaged data compared to the LES output. The LES captures the near surface TKE well
for both cases with less error above 100 m. The January 12 LT -1 standard deviation, January 12 LT Mean, and July 12
LT  -1  standard  deviation  show  small  errors  except  for  the  two  measurements  above  100  m  where  the  NREL  data
increases while the LES simulation continues to decay. The January 12LT +1 standard deviation shows a significant
error at the 15 m height. The errors for the profiles are in Table 2. All errors are below 10%. The average error is 5.9%
and validates that the statistically selected boundary conditions capture the TKE in the field measurements. The small
error of the profiles shows that the first and second moments are obtained by using the PDF inputs for surface heat flux
which  further  validates  the  methodology  of  creating  inputs  for  discrete  LES  simulations  that  represent  day-to-day
variations in atmospheric stability.

4. DISCUSSION

Due to the computational cost of LES, it is common for wind energy applications to simulate a quasi-steady state of
the atmospheric boundary layer with a specific atmospheric stability regime [37]. For example, the convective ABL
simulations are often conducted by selecting a surface heat flux boundary condition that characterizes a moderately
convective ABL [38 - 40]. With reducing computational cost, recent work has been conducted in simulating the ABL
for the entire diurnal cycle by using the hourly values of surface heat flux obtained from field measurements [16, 18]. It
is becoming increasingly possible to conduct LES for the entire diurnal cycle even for wind turbine applications. LES
was conducted for an idealized finite wind farm for a complete diurnal cycle [20], and the results showed that the power
deficit increased from 28% in the most convective conditions to 58% under the most stable conditions. However, it is
still not computationally feasible to perform LES to obtain a monthly energy estimate required for evaluating wind
potential of wind farm sites [41 - 43]. In particular, variations in atmospheric stability at larger timescales (i.e., across
multiple days in a month) are not always accounted for during modeling [44].

(e) 

(f) 
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The current study proposes a novel direction for accounting the day-to-day variations in the atmospheric stability
into the LES model. The variations are simulated as separate discrete LES. This methodology is similar to Monte Carlo
probability theory. Monte Carlo probability uses PDFs from data to generate inputs used for discrete simulations [45,
46]. The outputs of the discrete simulations help quantify the range of possible outcomes based on the variability of
inputs [47].  Although the current study does not generate the number of LES required for a complete Monte Carlo
simulation [48], the idea is still the same. The PDF is used to generate discrete inputs for LES (selected as the mean +1
standard deviation, and -1 standard deviation). The discrete outputs from the LES help quantify the variability in the
outputs base on the variability of the inputs. The study uses high-resolution data from the NREL NWTC database to
build a monthly averaged PDF of surface heat flux at each hour of the day for each month. The PDF is used to select the
LES inputs at each hour, particularly the mean, +1 standard deviation, and -1 standard deviation and their corresponding
initial inversion heights and geostrophic winds. The inversion height was selected based on the correlation between
surface  heat  flux  and  ABL  height  as  shown  in  Fig.  (5).  The  geostrophic  wind  was  selected  using  the  geostrophic
departure function from Clarke and Hess [26]. The PDF is also used to collect the field data into bins for validation. The
study focuses on the PDF for July 12 LT because it had the largest mean surface heat flux and standard deviation from
the mean. The study also included the January 12 LT PDF for comparisons because it had a much smaller mean surface
heat flux and standard deviation.

The best fit PDF for the convective portion of the ABL was the normal distribution, which matches models of the
surface heat flux for near-neutral conditions [49]. The mean of the PDF is the expected value of the function over the
entire month at each hour. The standard deviation represents the variation that occurs at each hour of the month. The
difference between the +1 standard deviation and -1 standard deviation represents 68% of the data. The field data was
collected into bins that correspond to each simulation. The bins collect the meteorological tower data that is between 12
-13LT of the corresponding month, ± 0.5 σ of the corresponding surface heat flux, and ± 0.5 m / s of the hub height
wind speed for the corresponding LES. The binned metrological data were averaged to generate vertical profiles of
velocity and TKE.

LES was  conducted  to  simulate  the  case  of  January  12LT and  July  12LT by  using  the  mean value  of  PDFs  of
surface flux as discrete boundary conditions. For all the simulations, the initial inversion height was selected using the
correlation  between  surface  heat  flux  and  boundary  height  measured  in  the  field  data.  The  geostrophic  wind  was
estimated using u* with the geostrophic departure described by Clarke and Hess [26]. The mean July simulation had a
higher  hub height  wind speed (5.0vs.  4.2  m/s),  and  TKE (1.4vs.  0.7  m2/s2)  than  the  January  mean simulation.  Two
additional LES were conducted by using -1 standard deviation, and + 1 standard deviation from mean values of PDF of
surface flux as inputs into LES. The July +1 standard deviation simulation had a hub height TKE of 1.7 m2/s2 while the
-1 standard deviation simulation was 0.9 m2/s2.  The increased surface heat flux increased the hub height TKE by 2
times. The difference in the January +1 standard deviation and -1 standard deviation was 0.35 m2/s2 and 0.95 m2/s2. The
day-to-day variations in surface heat flux had significant impacts on the outputs of LES. These wide variations in TKE
flux have considerable impacts on wind turbine performance [22, 24, 36].

The outputs of the six LES captured the same correlation of surface heat flux with TKE, wind speed, wind shear,
and friction velocity at hub height as the field measurements. The LES correlation between surface heat flux and TKE
showed that for every increase in 0.1 kms-1 the TKE increased by 0.42 m2/s2. The LES correlations showed an increase
in friction velocity and wind speed of 0.095 m/s and 0.74 m/s for every increase in 0.1 kms-1. The correlations show the
significant impact to LES outputs due to the variation in surface heat flux. Using the methodology described the discrete
LES were able to capture these variations using discrete LES.

The binned average velocity and TKE profiles validated the LES. The LES profiles matched the velocity profiles
with 4% error and the TKE profiles to 6% error on average. The results are promising and demonstrate the methodology
approach is robust enough to capture the ABL turbulence over multiple diurnal cycles. The current work is an important
direction for  futuristic  LES studies  of  wind turbines  in  ABL based on field  measurements.  The significance of  the
results is two folds (a) Day-to-day variability of surface heat flux is well-represented in TKE and ABL depth, hence
surface heat flux is a boundary condition that dictates the efficacy of LES in capturing the day-to-day variation of ABL
turbulence, and (b) The methodology allows the outputs from LES to represent mathematically significant variations
that  occur  in  the  atmosphere.  Applications  of  LES,  such  as  wind  turbine  simulations,  can  use  the  methodology  to
quantify the variability in turbine performance based on the day-to-day variations of surface heat flux. These predictions
add further fidelity to wind turbine LES. The study serves as a validation incorporate field measurements averaged over
multiple diurnal cycles into LES applications.
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CONCLUSION AND RECOMMENDATION

The  current  study  proposes  a  methodology  to  conduct  discrete  LES  that  represents  day-to-day  variations  in
atmospheric stability using realistic boundary conditions from field data. The NREL NWTC field measurements have
demonstrated surface heat flux exhibits significant day-day variations. For July 12 LT, the surface heat flux had a mean
of 0.23 kms-1 and a standard deviation of 0.124 kms-1. The wide range of surface heat flux impacts the output of LES
with significant changes in TKE. The best fit PDF for the convective surface heat flux data was the normal PDF (R2

values  above  0.93  for  all  hours).  The  methodology  used  the  January  12LT  and  July  12LT  to  select  the  mean,  +1
standard deviation, and -1 standard deviation surface heat fluxes for LES (six total simulations). These represent the
day-to-day  variations  that  occur  at  12LT.  Each  surface  heat  flux  has  a  corresponding  initial  inversion  height  and
geostrophic  wind  used  as  additional  inputs  for  the  LES.  The  LES outputs  were  validated  to  the  velocity  and  TKE
profiles. The average errors of the six simulations were 4% for velocity and 6% for TKE. The validation shows the
robustness of the methodology to capture realistic velocity and TKE over day-to-day variations of surface heat flux. The
six simulations also match similar trends in TKE, friction velocity, wind speed, and wind shear measured from the field.

There are many applications where the current methodology could be applied. These include LES of wind turbine
performance,  wind  turbine  wake  decay,  plume  dispersion,  and  spreading  of  forest  fires,  all  of  which  are  highly
dependent on variations in stability. For each of the examples above, the mean, +1 standard deviation, and -1 standard
deviation cases would represent a range of probable occurrences over the monthly averaged conditions. This will help
to  better  understand  variations  of  the  outputs  of  LES  (i.e.,  wake  decay  or  plume  dispersion)  based  on  expected
variations in the field.

The current study assumed an inversion height and geostrophic wind for each surface heat flux, which allowed the
inputs to be selected from a single surface heat flux PDF. The next natural step to improve the methodology would be to
incorporate multivariate PDFs to generate the inputs into LES. For example, a bivariate PDF might include wind speed
(through the geostrophic wind) and surface heat flux. A multivariate PDF would increase the number of simulations
required, but would also include more than just the variability from surface heat flux. However, a multivariate PDF is
expected to make the methodology even more robust.
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APPENDIX A

ABL Metrics
Appendix A give the ABL metrics parameters descriped in the methodology section: The ABL parameters measured

and their respective heights for both data sets. The devices used for capturing the NREL data sets are shown in [24, 27].

The three components of the velocity (u, v and w) and temperature (T) are averaged over ten minutes. The averaged
quantities are then used to determine the velocity fluctuations (u’, v’, w’) and temperature fluctuation (T') over the ten-
minute period. Turbulence characteristics, including, turbulence kinetic energy (TKE), friction velocity, and second
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order turbulence statistics are calculated as described by Clifton [29].

The turbulent kinetic energy (TKE) is a measure of the amount of energy based on the fluctuations from eddies. It
includes production from buoyancy and shear, dissipation by viscous motions, and transport by turbulent and pressure
terms [50]. The mean TKE over the ten-minute time period is calculated in Eq. (7).

The turbulent  fluctuations are then used to determine the friction velocity,  or  velocity scale u*  [3].  The friction
velocity  (u*)  is  a  velocity  scale  derived  from  the  wall  shear-stress.  The  friction  velocity  is  calculated  using  the
covariance [51] in eq. (8)

(7)

(8)

The  convective  temperature  scale  is  also  calculated  with  the  turbulent  fluctuations.  The  calculation  uses  two
assumptions. First, the temperature fluctuation is approximately the potential temperature fluctuation near the surface
[27].  Second,  that  the sonic temperature fluctuation is  approximately the virtual  temperature fluctuation [52].  With
those assumptions, the temperature scale is

(9)

The potential temperature (θ) is the temperature of a parcel if it were adiabatically brought to a reference pressure
[3]. The reference pressure is 1000 hPa the gas constant R is given as 0.286 kJ kg-1K-1 and the specific heat Cp as 1.005
kJ kg-1K-1. In addition, the virtual temperature is also calculated in Eq. (11) to include the moisture in the air. r is the
mixing ratio of water vapor in the air and r1 is the mixing ratio of liquid water in the air.

(10)

(11)

The wind profile of the atmospheric boundary layer is generally approximated as power law with an exponent α that
represents the vertical gradient in the wind speed, which is referred to as the shear [24, 53, 54]. The values of α are
determined from two levels of wind velocity, U, at heights z and zO as follows:

(12)

The stability of the atmosphere is determined using three different methods: Method (1): The atmospheric stability
is expressed in terms of Monin-Obukhov length (L), which is a parameter that expresses the roles of buoyancy and
shear based on the gravity acceleration, friction velocity, von Karman constant k (given as 0.4), and kinematic heat flux
to create a ratio of the relative roles of shear and buoyancy [30]. The ratio is

(13)

The kinematic heat flux  is approximated as  because the turbulent fluctuations measured from a
sonic  anemometer  approximate  the  turbulent  component  of  the  virtual  potential  temperature.  The  Monin-Obukhov
Length is negative for unstable conditions and positive for stable conditions.
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In method (2): The gradient Richardson number is a measure of the atmospheric stability using temperature and
velocity gradients. It is a dimensionless value that is related to the buoyancy production and shear production [55] and
is calculated as

(14)

In method (3): The Speed Richardson Number is also used [24, 27]. The Speed Richardson Number uses the total
horizontal wind speed gradient rather than using the and components [56] and is

(15)

Sugiyama and Nasstrom [29] explained the different methods for estimating the boundary layer height (habl) based
on friction velocities. These include those developed by Blackadar and Tennekes [57] for stable conditions and slab
models such as those developed by Tennekes [58] and Carson [6]. This analysis assumes the fluxes depend only upon u*

and the Coriolis parameter fc for simplicity as

(16)

(17)

Clake and Hess [26] described a method to estimate the geostrophic wind based on departure functions A and B that
are determined empirically. There experimental values for A and B were used with equations 18 and 19 to estimate the
geostrophic wind where ug and vg are the horizontal components of geostrophic wind.

(18)

(19)

APPENDIX B

Appendix B gives the complete results for all probability density functions found during the analysis. These are
given in Tables 3-7. For each data set, the Normal Distribution is given for each hour. In addition, if there is a better fit
found, that distribution is also given with its name and parameters (given as A and B).

Table 3. Devices used at the NREL M5 Tower.

Parameters Device Height (m)
Wind Speed Met One-201 cup anemometer 3, 10, 26, 88, 134

Wind Speed (class one) Thies 4.3351.10.0000 80
Wind Direction Met One SD-201 Vane 3, 10, 26, 88, 134
Air Temperature Met One T-200A platinum RTD 3, 26, 88,

Dew Point Temperature Therm-x 9400ASTD 3, 26, 88, 134
Differential Temperature Met One T-200A 3-26, 26-88, 88-134
Wind Speed Components ATI K Type Sonic Anem. 15, 30, 50, 76, 100, 131

Sonic Temperature ATI K Type Sonic Anem. 15, 30, 50, 76, 100, 131
Boom Triaxial Acceleration Summit 34201A 15, 30, 50, 76, 100, 131

Barometric Pressure AIR AB-2AX 3
Precipitation Vaisala DRD11A 3

𝑅𝑖 =
𝑔

𝜃𝑣
̅̅ ̅

𝑑𝜃𝑣/𝑑𝑧

(𝑑𝑢𝑚̅̅ ̅̅ /𝑑𝑧)2 + (𝑑𝑣𝑚̅̅ ̅̅ /𝑑𝑧)2
 

𝑅𝑖𝑠 =
𝑔

𝜃𝑣
̅̅ ̅

𝑑𝜃𝑣/𝑑𝑧

(𝑑𝑈/𝑑𝑧)2
 

ℎ𝑎𝑏𝑙 = 0.185
𝑢∗

10−4
  

𝑧

𝐿
< 0 

                      0.2
𝑢∗

𝑓𝑐
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> 0 
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𝐴 − 𝑙 𝑛 (
𝑢∗

𝐿𝑓
) 𝑢∗

𝑘
 

𝑣𝑔 =
𝐵

−𝑘
𝑢∗ 
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Table 4. Probability Density Functions for the NREL January Data Set, given by hour.

Hour Mean σ/S Distribution R2

0 -0.0238 0.0242 Logistic 0.9294
1 -0.0235 0.0255 Logistic 0.9127
2 -0.0202 0.0230 Logistic 0.8741
3 -0.0191 0.0257 Logistic 0.8533
4 -0.0248 0.0238 Logistic 0.9461
5 -0.0190 0.0251 Logistic 0.7841
6 -0.0214 0.0208 Logistic 0.9665
7 -0.0176 0.0197 Logistic 0.8839
8 -0.0108 0.0138 Logistic 0.8692
9 0.0305 0.0400 Normal 0.9409
10 0.0544 0.0571 Normal 0.9232
11 0.0794 0.0607 Normal 0.9260
12 0.0877 0.0579 Normal 0.9791
13 0.0720 0.0538 Normal 0.9961
14 0.0516 0.0436 Normal 0.9773
15 0.0120 0.0273 Normal 0.9409
16 -0.0154 0.0319 Logistic 0.8173
17 -0.0164 0.0461 Logistic 0.8999
18 -0.024 0.0384 Logistic 0.9089
19 -0.0205 0.0551 Logistic 0.9010
20 -0.0256 0.0407 Logistic 0.9552
21 -0.0265 0.0376 Logistic 0.9310
22 -0.0225 0.0341 Logistic 0.9207
23 -0.0259 0.0437 Logistic 0.9296

Table 5. Probability Density Functions for the NREL May Data Set, given by hour.

Hour Mean σ/S Distribution R2

0 -0.0123 0.0136 Logistic -
1 -0.0094 0.0127 Logistic -
2 -0.0085 0.0122 Logistic -
3 -0.0054 0.0118 Logistic -
4 -0.0038 0.0076 Logistic -
5 -0.0035 0.0078 Logistic -
6 -0.0123 0.0136 Logistic -
7 0.0188 0.0236 Normal 0.9663
8 0.0630 0.0435 Normal 0.9753
9 0.1050 0.0591 Normal 0.9858
10 0.1320 0.0758 Normal 0.9819
11 0.1387 0.0975 Normal 0.9799
12 0.1424 0.1028 Normal 0.9723
13 0.2341 1.2536 Normal 0.7359
14 0.1222 0.0961 Normal 0.9584
15 0.0917 0.0773 Normal 0.9789
16 0.0600 0.0600 Normal 0.9539
17 0.0272 0.0356 Normal 0.9382
18 -0.0053 0.0164 Logistic 0.9487
19 -0.0061 0.0374 Logistic 0.7833
20 -0.0049 0.0224 Logistic 0.8150
21 -0.0083 0.0254 Logistic 0.6083
22 -0.0084 0.0205 Logistic 0.8979
23 -0.0117 0.0143 Logistic 0.8055
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Table 6. Probability Density Functions for the NREL July Data Set, given by hour.

Hour Mean σ/S Distribution R2

0 -0.0158 0.0323 Logistic 0.6388
1 -0.0155 0.025 Logistic 0.4352
2 -0.0243 0.0449 Logistic 0.9141
3 -0.014 0.0265 Logistic 0.8083
4 -0.0157 0.0315 Logistic 0.9059
5 -0.0186 0.0283 Logistic 0.9785
6 -0.0123 0.0249 Logistic 0.6388
7 0.0138 0.0277 Normal 0.9757
8 0.0642 0.0580 Normal 0.9271
9 0.1204 0.0575 Normal 0.9952
10 0.1928 0.0824 Normal 0.9941
11 0.2059 0.0849 Normal 0.9871
12 0.2309 0.1105 Normal 0.9884
13 0.2149 0.1248 Normal 0.9841
14 0.1812 0.1148 Normal 0.9912
15 0.1092 0.1085 Normal 0.9734
16 0.0744 0.0836 Normal 0.9570
17 0.0459 0.0584 Normal 0.9777
18 0.0121 0.0431 Normal 0.8314
19 -0.0092 0.0222 Logistic 0.9832
20 -0.0185 0.0241 Logistic 0.8976
21 -0.0197 0.0286 Logistic 0.8432
22 -0.0216 0.028 Logistic 0.9032
23 -0.023 0.0259 Logistic 0.9404

Table 7. Probability Density Functions for the NREL Oct Data Set, given by hour.

Hour Mean σ/S Distribution R2

0 -0.0077 0.0225 Logistic 0.8983
1 -0.0090 0.0208 Logistic 0.9550
2 -0.0114 0.0388 Logistic 0.9409
3 -0.0197 0.0338 Logistic 0.9441
4 -0.0269 0.0439 Logistic 0.9157
5 -0.0189 0.0366 Logistic 0.9952
6 -0.0220 0.0370 Logistic 0.9243
7 0.0054 0.0310 Normal 0.9796
8 0.0550 0.0470 Normal 0.9901
9 0.0934 0.0636 Normal 0.9782
10 0.1317 0.1257 Normal 0.8545
11 0.1618 0.0899 Normal 0.9905
12 0.1777 0.0817 Normal 0.9882
13 0.1467 0.0688 Normal 0.9858
14 0.1046 0.0521 Normal 0.9897
15 0.0405 0.0361 Normal 0.9860
16 -0.0046 0.0230 Logistic 0.9803
17 -0.0169 0.0318 Logistic 0.9280
18 -0.0193 0.0276 Logistic 0.9521
19 -0.0179 0.0224 Logistic 0.9256
20 -0.0112 0.0240 Logistic 0.9727
21 -0.0156 0.0344 Logistic 0.9180
22 -0.0083 0.0349 Logistic 0.9099
23 -0.0106 0.0293 Logistic 0.7165
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