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Abstract: Recently, a problem that the infrared decoy interferes infrared detection system, cannot be solved. With the 
gradual application and popularity of the particle swarm optimization, it is preferable to apply it to dynamic multi-
objective optimization to solve the problem of the recognition and the estimation of dynamic multi-object in infrared im-
aging. In this study, the dynamic multi-objective estimation and recognition algorithm of the infrared imaging, which is 
based on the multi-particle swarms collaboration, ultimately estimates the motion trajectory and Pareto optimal solution of 
the infrared imaging through the continuous improvement and upgradation of the particle swarms optimized algorithm, 
the continuous study and inheritance as well as the combination with the aerodynamic characteristic of the infrared decoy. 
The experiment proves that the improvement of particle swarm algorithm efficiently reduces the estimation error, which 
produces favorable optimized effects. The experiment has great engineering significance. 
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1. INTRODUCTION 

The infrared imaging technology has advantages in target 
detection, recognition and anti-interference, thus it gradually 
attracts a wider attention. As the imaging technology devel-
ops, new requirements are put forward for the test and the 
estimation of imaging system and its corresponding infrared 
detection weapon technology. As for the infrared imaging 
sensor, its main function is to trace and recognize the tail 
flame imaging of the aircraft and to eliminate the interfered 
imaging of the infrared decoy meanwhile [1-4]. Hence the 
problem about the recognition and estimation of dynamic 
multi-object can be recognized and estimated by collabora-
tive optimization algorithm. 

Dynamic Multi-Objective Problem denotes that the opti-
mization of objective function, the number of objective func-
tion and the dimension of decision space will change over 
time. It also includes the multi-objective problem of chang-
ing constraint conditions and parameters. Dynamic Multi-
Objective Problem is the combination of dynamic optimiza-
tion problem and multi-objective optimization problem, 
which attracts a wider attention of domestic and overseas 
scholars [5-8]. In fact, Dynamic Multi-Objective Problem 
has a wide application background. For example, the multi-
objective optimization of the missile’s flying trace and the 
control parameter (angle of attack, elevation angle, etc.) 
should be processed as the target of a missile is changed. 
Affected by the severe weather, aircraft faults and the acci-
dents that happen to the passengers on a flying aircraft, the 
factors such as the stranded time of the passengers and the 
cost of operation should be taken into account to get 
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the aviation dispatcher re-optimized. The Dynamic Multi-
Objective Problem that widely exists in the physical world 
desires the appropriate algorithm to improve the ability to 
solve this problem. 

There are a few research results about Dynamic Multi-
Objective Problem at present. Farina et al. create the first 
dynamic multi-objective function to put forward the algo-
rithm of dynamic multi-objective optimization; Greeff et al. 
utilize the vector to estimate the particle swarm algorithm to 
solve the Dynamic Multi-Objective Problem with each ob-
ject optimized by a particle. Enlightened by the recognition 
algorithm of the dynamic system mode, Talukder et al. put 
forward a new solution which uses a new operator to track 
the Pareto solution set of the decision space. ChiKiong et al. 
utilize the mutual collaboration of multiple populations to 
solve the Dynamic Multi-Objective Problem, which prove 
that multiple populations collaboration can fast track the 
changing Pareto optimal solution set and Pareto optimal 
front. Domestic scholars such as Liu Chunan et al. create a 
new pattern of dynamic multi-objective optimization algo-
rithm and improve its convergence. 

2. THE PERFORMANCE CHARACTERISTICS OF 
INFRARED DECOY  

Infrared imaging can be taken as the effects acted by the 
factors such as time, space, and spectrum of radiation energy 
on propagation of the infrared radiation of scene in a medi-
um. It can also be taken as a process of transferring and con-
version of energy in detection equipment. As for the infrared 
detector, the primary task is to track and recognize the target 
aircraft. But the recognition degree of the target aircraft’s tail 
flame and the infrared decoy is low for infrared detectors, 
which determines that the infrared imaging recognition and  
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estimation give rise to the great difficulty and complexity in 
calculation. Thus, it has a great significance to analyze the 
dynamic characteristics of the infrared decoy and its trace 
estimation. 

The infrared decoy is generally divided into rising time 
period, lasting time period and falling time period from 
emission to burning-up and disappearance. When the emis-
sion starts, the radiation intensity of burning will increase 
rapidly from 0. And as the radiation intensity reaches the 
maximum extent, it begins to maintain the burning intensity 
to form the infrared image which is same as the attacking 
target aircraft tail flame. Along with the gradual exhaustion 
of the fuel, the radiation intensity decreases till it falls and 
burns up. 

Cut off the aircraft, the infrared decoy will do parabola-
kind movement under the dual action of aerodynamic 
drag and gravity of projectile bodies. Above all, the drag 
acceleration to the infrared decoy is calculated as the follow-
ing formula: 

  (1) 

In the above, is the atmospheric density; is the gravity 
acceleration; is the speed of the infrared decoy; β is the tra-
jectory coefficient; is the quality of the infrared decoy; is the 
resistance coefficient; is the referenced area of resistance 
coefficient. 

  (2) 

Therefore, the infrared testing targets such as the infrared 
decoy and the tail flame of the target aircraft can be seen as 
particle swarms in the process of recognizing the infrared 
decoy. The motion trace of the infrared decoy is estimated 
after the multi-sample analysis of particle swarms and the 
combination of its own radiation characteristics and aerody-
namic characteristics, which ultimately gives feedback to the 
detector to get a quick and exact estimation. 

3. DYNAMIC MULTI-OBJECTIVE PROBLEM AND 
ITS RELEVANT CONCEPTS 

Dynamic Multi-Objective Problem is demonstrated as the 
following formula: 

  (3) 

In the formula above, is the decision vector of the deci-
sion space , is the target function set, is the number of the 
targets, t is the function of time, g, h is the corresponding 
inequality and the equality constraint function. 

Some important definition of dynamic multi-objective 
optimization can be directly extended in the definition of the 
static multi-objective optimization. 

 

Definition 1: Pareto dominance demotes that if 

and，  

 (4) 

Thus we can get: dominates , which can be 

demonstrated as  . 
Definition 2: the optimal front of dynamic Pareto 

  (5) 

Definition 3: the optimal solution of dynamic Pareto. 

  (6) 

The common point of dynamic multi-objective optimiza-
tion and dynamic single-objective optimization is that the 
present optimal solution will change at the next moment. The 
key difference is that the former is a multi-dimensional tar-
get fitness space . But the latter is just the single-objective 
optimization. Hence, the Pareto optimal front and Pareto 
optimal non-dominated solution set of Dynamic Multi-
Objective Problem can possibly change over time. 

4. HE DYNAMIC MULTI-OBJECTIVE RECOGNI-
TION AND ESTIMATION ALGORITHM BASED ON 
PARTICLE SWARMS COLLABORATION 

At present, multiple population that utilizes various 
methods to collaborate in the framework of collaboration 
helps to improve the optimization efficiency of the algorithm. 
Potter illustrates in his doctoral dissertation in detail that the 
introduction of ecological models and the collaborative 
framework effectively improve the efficiency of classic evo-
lutionary algorithm [9-12]. Major scholars apply the strategy 
of the paralleled search of multiple populations to respond to 
the changing environment. However, the multiple population 
parallel optimizations is not equal to the multiple population 
collaborative optimization, whose key difference is that the 
collaborative evolution has unique evolutionary dynamics 
mechanics, namely, multiple sub-population has mutual ef-
fects at individual level. And the multiple sub-populations 
become the selection pressure of each one of them and drive 
each other to improve the characteristics and complexity of 
each one to achieve the coevolution. 

The multiple population collaborative optimizations is 
used to solve the complex problem, whose first step is to 
decompose the problem. Next is the collaboration of the 
population. The particle swarm collaborative model can be 
divided into two types according to the existing documents; 
one is based on space decomposing and the other is based on 
problem decomposing. As for the collaborative algorithm, it 
is not sufficient to apply the competitive mechanism and the 
collaborative mechanism. There in no competition between 
each particle swarm algorithm but the collaboration, because 
of the fact that the algorithm easily converges and gets into a 
local extremum. If the genetic algorithm has only selection 
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operator instead of mutation operator, the algorithm is easy 
to converge. Thus the search precision is greatly improved. 

In the collaborative module, multiple sub-population is 
mainly applied to do the collaborative search in search 
space. The decomposition approach of the search space 
applied is display space decomposition, which means that 
each sub-population search on one dimension or multiple 
dimensions of the solution space. After that, multiple sub-
populations collaborate to form a complete solution vector 
while calculating the individual fitness value. This kind of 
collaborative approach is proved effective in many docu-
ments, whose exact search on local area is adaptive. Based 
on the above notion, this paper introduces the multiple par-
ticle swarm collaborative optimization algorithm which 
utilizes the mixed competition and the collaborative mech-
anism of particle swarm algorithm when solving the dy-
namic multi-objective optimization problem. 

 
 

5. THE EXPERIMENTAL RESULTS 

5.1. The Generation of Spread Spectrum Watermarking 

Firstly, PSO is initialized into a group of random parti-
cles (random solution). Next is to search for the optimal so-
lution through iteration. During each times of iteration, a 
particle updates its own speed and location through individu-
al extremum value and neighborhood extremum: 

  (7) 

  (8) 

Among the above, inertia weight is used to control the ef-
fects on the present iteration speed which is acted by the 
speed of previous iteration. The global search features of the  
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Fig. (1). The comparison diagram of PSO. 

 

 

Fig. (2). The comparison diagram of PSO. 
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particle swarm optimization algorithm are realized by random 
initialization. The general inertia weight is . is the 
individual extremum and is the neighborhood extremum. is a 
random number from 0 to 1. The formulas (1) and (2) are the 
speed displacement updating formulas which are the cores of 
the traditional PSO algorithm. In the formulas, this experi-
ment sets up the learning factor:  . Suppose that 
the number of simultaneously releasing the infrared decoy is 
9. Adding up with the target aircraft tail flame, the number of 
the object which is going to be recognized by the infrared 
seeker is 10, which means that the space dimension where 
particles exist is . 

Initially, set 50 particles. Then make 10000 times iteration 
and circulate 100 times to get the optimal solution. During the 
process of 100 times search of optimization, ten of them find 
real attacking targets. The interference of infrared decoy is 
successfully excluded. To prove the effectiveness of the algo-
rithm in this paper, the improved particle swarm algorithm 
put forward here is synthetically compared with the tradition-
al particle swarm optimization algorithm. This experiment set 
three control groups which use the original particle swarm 
optimization algorithm, whose number of particles is 50, 100 
and 200 respectively. Make sampling of optimal solution as 
each group completes relevant calculating amount and record 
the results. Then draw a comparison diagram as Figs. (1-3).  

In this experiment, the changing curve of the optimiza-
tion results has obvious convergence effects. And the speed 
of convergence is not affected by the changing number of 
particles. In the meantime, the above diagram demonstrates 
that the target function is greatly affected by particles when 
applying the original PSO, which is represented as: if the 
number of particles is too few, the effects of searching opti-
mization are made poor though the speed of convergence is 
fast. It can be hardly ensured that the optimal solution can be 
found (50 particles and 100 particles); If the number of parti-
cles is high, the speed of convergence is slow though better 
solutions can be found (200 particles). But MPSO can well 
compromise the converging speed and the searching optimi-
zation to guarantee not only the converging speed but also 

better optimization results. In terms of the ultimate optimiza-
tion results, the optimization result of improved algorithm is 
slightly better than that of the particle swarm algorithm. 

CONCLUSION 

This paper utilizes the Dynamic Multi-Objective Problem 
to recognize and estimate the detection image of the infrared 
imaging and to estimate and judge the trace of aerodynam-
ic characteristics of the infrared decoy through the theory of 
multiple particle collaborative optimizations. This study de-
signs the strategy of multiple particle collaborate repair and 
overcomes the shortcomings that the optimization results is 
greatly affected by the number of particles in standard algo-
rithm. The strategy not only guarantees the optimization re-
sults but also the converging speed. This experiment demon-
strates that the approach put forward in this paper can well 
solve the problem that the infrared seeker can recognize and 
estimate the inference of infrared decoy, which has great 
engineering significance. 
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