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Abstract: Many of the key molecules in cell cycle progression (e.g. pRB, cyclin complexes) and their basic interactions 
are oncogene or tumor suppressor genes, which are well characterized in the clinical and experimental analysis. However, 
there are still unknown mechanisms for the cell cycle regulation, which is critical step for the progression of the cancer 
development. Especially it is not fully understood how the cells move to G1 phase from quiescent G0 phase in the 
mammalian cells. To find out the new gene networks associated with the two transition of the mammalian cell cycle (G0 
to G1 and G1 to S phase), we analyzed the linkages between 39 representative oncogene or tumor suppressor genes, 
which related to the cell cycle regulation, with gene expression sets obtained from the publicly opened microarray data for 
mouse embryonic fibroblasts that synchronized by the serum starvation or hydroxyurea treatment. Analyses with a 
qualitative algorithm based on Bayesian networks that assume a log-linear relationship between genes have applied, and 
newly found networks were validated. Results highlighted the importance of two master genes, Cdk7 and Cdkna2 for the 
re-entry to G1 from G0, and suggested a new network connection from Cdk7 to downstream molecules, including the 
EGF receptor and N-myc. Introduction of a recombinant Cdk7 with retrovirus decreased endogenous EGFR and N-myc 
protein levels. The results supported the computational prediction of the Cdk7 network. Taken together, these result 
showed the existence of new regulating pathway from Cdk7 to Egfr and N-myc, suggesting this analytical approach 
provides an assessment of regulatory networks in complex mammalian cells, and the process of the carcinogenesis. 
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INTRODUCTION 

 Cell division and tissue growth represent two of the most 
fundamental biological processes and play essential roles in 
development, aging, cancer [1, 2], and many other diverse 
events. Although gene transcripts have been comprehensively 
catalogued in yeast, much work remains to be done in higher 
organisms. Especially, for tumor progression, the gene 
networks underlying the regulation of the cell cycle are not 
well understood in cancer cells or the initiated precancerous 
cells. Several groups have utilized microarrays to perform 
serial analyses of gene expression during cellular replication 
in normal or cancer human and mouse cell lines [3-6]. These 
microarray data have been analyzed using clustering 
approaches such as hierarchical clustering and k-means to 
identify stage-specific or co-regulated genes through each 
phase of the cell cycle. However, these methodologies can  
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only identify genes with expression levels that correlate over 
time, and the network dynamics of the cell cycle is not yet 
fully understood. 

 Integrated and networked functions in mammalian cells 
can be identified and quantified through the use of a 
computational model. Efforts to systematically define 
specific gene network structures to further understand the 
functions and dynamics of each gene and its protein products 
have lead to a new generation of in silico analysis tools that 
use diagrams to depict the logical relationships between 
genes [7-9]. To infer unknown gene networks from 
microarray gene expression data, the methods adopted need 
to incorporate the two different aspects of Bayesian models 
and associated validation tools. The application of these 
biostatistical methods has the potential to elucidate unknown 
mechanisms underlying the key regulatory systems of 
mammalian cells [10-12]. 

 The regulatory mechanisms for the G0 quiescent stage of 
the cell cycle remain largely unknown. For the efficient 
progression from the G0 to G1 phase, the protein level of the 
p27/kip1 is known to have a important role in T cell from in 
vitro study and a knockout mouse study [13, 14]. In the 
normal cells, the protein level of p27 is high during G0 phase 
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but decreases rapidly on the entry to G1 [14, 15]. The 
degradation of p27 is controlled by an SCF complex, which 
involves SKP2 [16, 17]. Although these findings for G0-G1 
regulation have had a significant impact, it is not clear 
whether these mechanisms can be applied to the all type of 
cells and tissues. For cancer therapeutics, the G0-G1 
transition of the cell cycle has been a strong target to prevent 
tumor growth and progression [18-20]. 

 In our current study, we employed the gene datasets from 
the publicly opened microarray data for the mouse 
fibroblasts, which synchronized with the serum starvation 
and hydroxyarea, which are the study of the transition from a 
quiescent state into the cell cycle in mouse embryonic 
fibroblast (MEF) cells reported by Ishida et al. [4]. In order 
to elucidate new gene networks related to the progression of 
the cell cycle, the gene expression datasets were analyzed 
using a series of approaches in which putative network 
structures are elucidated using Bayesian networks. These 
approaches involve a likelihood-based selection algorithm to 
qualitatively infer the identity of the network structure [21] 
and a quantitative algorithm involving a Markov chain 
Monte Carlo (MCMC) method [22, 23] is then used to 
quantify the structure. The identified interactions between 
genes that are based upon these predicted gene networks 
were then validated using a retrovirus expression system. 

MATERIALS AND METHODS 

Microarray Data Sets 

 Previously published mouse embryonic fibroblast (MEF) 
cell microarray datasets were used in our analyses [4]. 
Briefly, the cells were synchronized by either serum 
starvation or hydroxyurea treatment. We used the data sets 

obtained from the serum starved cells for the analysis of re-
entry into G1 from G0 (0, 6, 12, 15, 18, 21, 24 hours after 
serum starvation), and those from the hydroxyurea exposed 
fibroblasts for the G1-S analysis (0, 3, 6, 9, 12, 15, 18 hours 
after the treatment). The detailed methods used to obtain 
these microarray data have been previously described [4]. 

Selection of the Subset Database 

 The original gene expression data, comprising about 6437 
genes, were screened for genes that showed at least a 2.0-fold 
change (up- or down-regulation) using GenMAPP [24]. The 
distribution and frequency of the fold changes (relative to the 
time 0) at each time point were analyzed by MAPFinder 1.0 
beta, an accessory tool of GenMAPP, to identify the optimal 
biological maps. From this collection of maps, we selected 
those related to cell cycle processes that had a “z” score greater 
than 1.95 (the z score represents the difference between the 
observed number of genes meeting the criteria and the expected 
number of genes meeting the criteria in each map based on gene 
ontology). As detailed in Table 1, 10 maps were selected based 
on gene ontology (denoted MAPP) and the relationship to the 
cell cycle. A subset of 39 genes was chosen from among the 
MAPP maps selected (Table 2). The abbreviated names of the 
genes that were analyzed in this report are presented according 
to the displays listed in GenMAPP. 

Mathematical Models 

 We applied the expression-associated network modeling 
method previously developed by Yamanaka et al. [21]  to  
the fold-change data from the gene-expression data sets.   This 
method  falls  under  the  general  area  of  Bayesian networks, 

 

Table 1. List of Maps with More than 1.95 Z Score Selected from Maps Analyzed by MAPFinder. Maps are the Database from 

Mouse Biological Processes that are Contain in GenMAPP 

 

MAPP Name A B C D E R z Score Time Point 

4 15 104 26.7 14.4 95 2.014 18h 
Mm_cell cycle 

4 15 104 26.7 14.4 87 2.211 21h 

2 2 11 100 18.2 92 4.175 12h 

2 2 11 100 18.2 92 4.175 15h 

2 2 11 100 18.2 109 3.795 18h 

2 2 11 100 18.2 118 3.626 21h 

Mm_cell cycle arrest 

2 2 11 100 18.2 121 4.335 24h 

15 48 124 31.2 38.7 132 3.205 12h 
Mm_cell cycle control 

9 48 124 18.8 38.7 87 2.102 21h 

Mm_cell growth and or maintenance 17 55 153 30.9 35.9 132 3.357 12h 

Mm_cell growth 3 7 16 42.9 43.8 118 2.317 21h 

Mm_cell proliferation 3 4 28 75 14.3 95 4.177 18h 

Mm_G1 S transition of mitotic cell cycle 1 1 5 100 20 101 2.771 6h 

Mm_mitosis 2 6 23 33.3 26.1 87 1.95 21h 

Mm_mitotic cell cycle 1 1 7 100 14.3 101 2.771 6h 

Mm_M phase of mitotic cell cycle 2 6 23 33.3 26.1 87 1.95 21h 

A, the number of genes meeting the criterion in this specific MAPP; B, the total number of genes measured in this specific MAPP; C, Number on MAPP; D, Percent Changed; E, 
Percent present; N, the total number of genes measured (= 894), R, the total number of distinct genes meeting the criterion. Criterions were set at > 2.0 or < 0.5 of the expression ratio. 
Each time point means a sampling time after serum starvation. Z Score= (A-B*R/N)/ (B(R/N)(1-R/N)(1-B-1/N-1)). 
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Table 2. List of Name Abbreviations and Description of the 

Genes Analyzed in this Study 

 

Gene Name Description 

Abl1 Mouse c-abl gene exon 1 of type II 

Ccna1 Mouse mRNA for cyclin A1 

Ccna2 Mouse mRNA for cyclin A2 

Ccnb2 Mouse mRNA for cyclin B2 

Ccne1 Mouse mRNA for cyclin E 

Crkol Mouse mRNA for Crkl protein 

Csf1r Mouse c-fms proto-oncogene 

E2f5 Mouse mRNA for E2F-5 protein 

Egfr 
Mouse (BALB/c) Epidermal Growth Factor Receptor  
mRNA 

Elk1 Mouse mRNA for elk1 protein 

Elk4 Mouse sap1A mRNA 

Ets1 Mouse ets-1 mRNA 

Etv6 Mouse mRNA for TEL protein 

Fgf3 Mouse int-2 gene 

Figf 
Mouse mRNA for new member of PDGF/VEGT family of  
growth factors 

Fos Mouse c-fos oncogene 

Fosb Mouse fosB mRNA 

ll1a Mouse mRNA for interleukin-1 

Lmyc1 Mouse L-myc gene 

Mybl2 Mouse B-myb mRNA 

Myc Mouse normal c-myc gene 

Nmyc1 Mouse N-myc gene 

Nras Mouse mRNA for N-ras protein (exons 1 - 6 part.) 

Pdgfb Mouse platelet-derived growth factor B chain (c-sis) gene 

Pgf Mouse mRNA for placenta growth factor 

Ptn Mouse mRNA for OSF-1 

Ret Mouse mRNA for ret proto-oncogene 

Tfdp1 Mouse mRNA for DRTF-polypeptide-1 (DP-1) 

Tgfb2 Mouse mRNA for transforming growth factor-beta2 

Thra Mouse c-erbA-alpha mRNA for thyroid hormone receptor 

Tlm Mouse tlm oncogene for tlm protein 

Cdkn2a Mouse CDK4 and CDK6 inhibitor protein (p16ink4a) 

Cdkn2d Mouse p19 protein mRNA, complete cds 

E2F1 Mouse E2F1 mRNA, complete cds 

Trp53 Mouse mRNA for cellular tumour antigen p53 

mdm2 Mouse mdm2 mRNA for mdm2 protein 

Cdk7 Mouse mRNA for protein kinase crk4 

Rbl1 Mouse p107 (p107) mRNA, complete cds 

Rbl2 Mouse retinoblastoma-related protein Rb2/p130 

 

with a likelihood-based selection algorithm used to identify 
the most promising networks. In general, if X1, X2….Xp 
represents the data obtained for p genes, N denotes a 
network, and  denotes parameters in that network, with the 
likelihood given by: 

 fX |N , (X1, X2 ,...,Xp |N , ) = fX j |N , j
(X j | pa(X j ),N , j )

j=1

p

  (1) 

A. The choice of the best network would be the one with 
the largest value of the posterior density at the chosen 
network topology; that is 

 find N̂ = argmax
N

fN |D(N |D)           (2) 

 where fN |D (N | D) fN (N ) fD|N (D | N )         (3) 

B. The Bayesian network used in this analysis had the 
following assumptions: 

 i) fN (N ) uniform distribution           (4) 

 ii) fD | ,N (D | ,N ) = fX j |N , j
(Xji | pa(Xji ),N , j )

i=1

n

j=1

p

   (5) 

 iii) f | N ( | N ) =
j=1

p

f
j |N
( j | N )           (6) 

 where pa (Xji) is the collection of genes that link to 
the jth gene in the network (a pathway). 

 with these assumptions, 

 

log fN | D (N | D)

log fX j |N , j
(X ji | pa(X ji ),N , j )

i=1

n

f ( j | N )d j

j=1

p  (7) 

 Thus, it is possible to focus on each gene rather than 
the whole network and still obtain a global optimum. 
To quantify rates in the gene-expression network, we 
used the Bayesian methods developed by Toyoshiba 
et al. [22, 23]. Supposing that Xi (i=1,2,3…p) 
represents the natural log of the relative ratio, the 
functional relationships between the genes could be 
characterized using the log-linear model below: 

 E(Xi |Pa(Xi ), i• ) = e
I ji jiX j

j=1

p

          (8) 

 where Iji is an indicator function (-1, 0, 1) 
characterizing the effect from Gj to Gi, T represents a 
matrix having Iij as the (i,j) element, and j.=[ j1, 

j2 j3 j4 ... jp] is the vector in which each ji is the 
magnitude by which one unit of gene Xj will affect 
the expression levels of gene Xi. Thus, if Iji is not 
equal to 0, Pa(Xi) contains Xj. 

 If f (Xi| T,  ) is defined as the distribution of gene 
expression in the given model, then the likelihood is 
written as 

 fX|T , (X1,X2 ,.....XP |T , ) = fX j |T ,Pa(X j ),
(

j=1

p

X j |T ,Pa(Xj ), ) , (9) 

 where  represents the parameter vector in the model. 
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 By Bayes’ theorem, the prior distribution is given by 

 f |X ,T ( | X,T ) ~ fX|T , (X1,X2 ,.....XP |T , ) f ( )    (10) 

 The posterior distributions f |X,  were evaluated using 
the MCMC method. In our analyses, fX| ,  was 
assumed to be normal, with a mean defined by 
equation (8) and a random variance whose prior 
distribution was assumed to be uniform with 0 as the 
lower bound and twice the maximum STD for each 
gene distribution. The prior distribution for  and f  
was assumed to be lognormal with a mean of 0 and a 
variance of 1.0. 

 The MCMC analysis was applied as described in [23] 
and [22]. A typical MCMC run was 100,000 samples with 
the first 20% of the samples discarded to “burn in” the 
algorithm. Some runs were much longer depending on 
convergence and stabilization of the resulting posterior 
distributions. 

 The model described in this section is an analysis tool 
and is not intended to characterize the mechanisms by which 
the different genes are linked. Instead, it is intended to find 
the most prominent linkages between cells to provide 
hypotheses that can be further explored and later modeled 
mechanistically. 

Visualization of Gene Networks and Clustering Analysis 

 We used a MATLAB script newly developed by Parham 
et al. (unpublished data) to generate transcriptional 
regulatory networks using MATLAB version 6.5 (The 
MathWorks, Inc., Natick, MA). 

Establishment of Mouse CDK7 Recombinant Retrovirus 

 A full length cDNA fragment of mouse cyclin-dependent 
kinase (Cdk)7 (NIH Mammalian Gene bank accession 
number: NM_009874) was obtained by RT-PCR from the 
total RNA extracts of 13.5 day mouse embryo using a 
previously described method [25]. A hemagglutinin (HA) 
protein tag sequence was then introduced at the carboxyl 
terminus of this mouse Cdk7 cDNA using a tailed PCR 
method. The Cdk7 cDNA was next subcloned into the 
EcoRV site of pBluescript SKII+ (Stratagene, La Jolla, CA) 
by blunt end ligation, and the resulting constructs were 
validated using a cycle sequencing reaction in an ABI 310 
genetic analyzer (Applied Biosystems, Foster City, CA). The 
subcloned Cdk7 cDNA fragment was then transferred into 
the multiple cloning site of an LXIN retrovirus vector 
(Clontech, Mountain View, CA). Both empty LXIN vector 
and LXIN vector harboring the mouse Cdk7 cDNA were 
introduced into PT67 retrovirus packaging cells (Clontech) 
using Fugene6 (Roche, Basel, Switzerland). Infected cells 
were then selected with 1mg/ml G418 (Invitrogen, Carlsbad, 
CA ) in the growth media for one week. 

Measurement of the Retrovirus Titers in the Producer 
Cells 

 Conditioned medium from the producer cells was diluted 
1:10 and 1:50 with DMEM containing 10% calf serum, and 
then used for the infection of NIH3T3 cells to measure the 
titer of the synthesized retrovirus. NIH3T3 cells were grown 
in media with diluted retroviruses for two days under the 
same conditions that are described below for mouse 

embryonic fibroblasts. The infected NIH3T3 cells were 
diluted 1:100 and 1:1000, and then selected with 1mg/ml 
G418 for one week. Retrovirus titers of the original 
conditioned medium were calculated based on the number of 
colonies demonstrating G418 resistance. 

Preparation of MEF Cells that Expresses the 
Recombinant Mouse CDK7 

 Mouse embryonic fibroblasts (MEF) were prepared using 
a previously described method [25]. Second passage primary 
fibroblasts at a 70% confluency were infected with 
conditioned medium containing PT67 producer cells at a 1:2 
dilution 1:2 with basal MEF medium for 2 days in the 
presence of 1μg/ml polybrene (Sigma-Aldrich, St. Louis, 
MO). When the infected MEF cells reached confluence, they 
were diluted 1:5 as above and selected with 200μg/ml G418 
for one week. Control experiments confirmed that non-
infected MEF cells did not survive in the presence of 
200μg/ml G418 (data not shown). Infected cells selected 
with G418 were subjected to lysis and protein extraction for 
western blot analyses. 

Western Blot Analyses of MEF Cells Exogenously 
Expressing Mouse CDK7 

 Total proteins were isolated from MEF cells infected 
with either control or Cdk7 recombinant retrovirus using a 
standard methodology [25]. Heat-denatured proteins were 
separated by 10% SDS-PAGE and the proteins in the gel 
were transferred to polyvinylidene difluoride (PVDF) 
membranes (Immobilon P, Millipore, Billerica, MA). After 
blocking with 1% non-fat dry milk-Tris buffered saline and 
0.1% Tween 20 (TBST), the membranes were probed with 
anti-HA (High affinity HA 3F10, 1:5,000 dilution, Roche), 
anti- -CDK7 (sc-723, 1:5,000 dilution, Santa Cruz, CA), 
anti-EGFR (kindly provided by Dr. DiAugustine, RP) and 
anti-N-MYC1 (sc-791, 1:1,000 dilution, Santa Cruz, CA) 
and anti-c-FOS (sc-52, 1:1,000 dilution, Santa Cruz, CA) 
antibodies. Blots were then incubated with horseradish 
peroxidase (HRP)-conjugated rabbit anti-rat IgG (A5795, 
1:5,000 dilution, Roche) or donkey anti-rabbit IgG (1:5,000 
dilution, GE Healthcare Bioscience) secondary antibodies, 
respectively. Immunoreactive proteins were detected by 
enhanced chemiluminescence (P90720, Millipore). Signal 
intensities from the western blots were detected with X-ray 
film and quantified using NIH3T3 image software. 

RESULTS 

Strategy and Analysis of Gene Network Structures 

 Our experimental strategy is illustrated in Fig. (1) and 
consists of three steps: selection of datasets, visualization 
and analysis by mathematical modeling, and prediction of 
biological function through the analysis of transcripts. 
Genome-wide expression data can provide information 
linking diverse genes and may be useful as a classification 
tool to identify alterations in biological processes linked to 
disease. In contrast, carefully designed analyses of a limited 
gene group associated with a specific biological process can 
be used to quantify the dynamics of a gene regulatory 
network. The genes associated with cell cycle regulation are 
an obvious target for this type of analysis and are the focus 
of our current study. 
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 The first step in our approach was to select a data subset 
from a pool of genes associated with various aspects of cell 
cycle-related processes. The gene choices were based on the 
gene ontology of the mouse genome using GenMAPP, a 
computer application designed for the visualization of gene 
expression data by using maps representing biological 
pathways. This technique provided a qualitative tool for 
grouping genes (see Materials and methods). To gather gene 
expression data associated with the cell cycle, mouse embryo 
fibroblasts (MEFs) [4] were serum starved or exposed to 
hydroxyurea to synchronize and control their movement 
through the cell cycle. At various time points following the 
release from G0 and cell cycle re-entry, the mRNA 
expression levels for 6437 genes was measured using a 
microarray. For 10 cell-cycle related maps (Table 1), 145 
genes were measured in the microarray assay. Of these 145 
genes, 50 genes met the criteria of at least 2-fold higher or 
lower levels as shown in Table 1. Since the number of genes 
analyzed using TAO-gen had to be reduced due to computer 
processing limitations, 39 out of these 50 genes were finally 
selected for further analysis based on tissue-specific 
expression information and their biological significance from 
published articles after removing overlapping genes. 

 Two separate maps linking our selected 39 genes to a 
network were generated using the G0 course data subset 
(serum starvation) and the G1/S course data subset 
(hydroxyurea treatment). Although the expression of these 
genes is dynamic during the cell cycle, the networks were 
modeled by assuming equilibrium between the genes and by 
evaluating those using formal statistical methods that 
quantified any linkages and assessed their significance. 
Nodal genes (genes that appeared to be linked to a large 

number of other genes) were positively identified in the 
network. In the final verification step, the promoter regions 
of the genes targeted by each nodal gene were analyzed for 
common transcriptional factor binding sites. Finally, we 
discuss the roles of the central nodes and the dynamics of the 
quantified network in relation to the murine cell cycle. 

Identification of a Gene Network Based on Expression 
Profiles 

 Representative maps using our 39 gene networks were 
developed separately for the G0 course (Fig. 2A) and the 
G1/S course (Fig. 3A). The number of linkages in these two 
networks is summarized in Table 3. Name abbreviations of 
the genes analyzed in this paper are shown according to their 
listing in GenMAPP. These networks were developed using 
Bayesian networks and a mathematical model allowing each 
of these mRNAs to connect to any other through direct or 
indirect transcriptional regulation leading to gene expression 
changes. 

 The network from the G0 course data subset in which the 
cells had been serum starved indicates that the cyclin-
dependent kinase inhibitor 2A (Cdkn2a) and Cdk7 are 
central nodes (Fig. 2B, C), whereas E2f1, known to regulate 
the G0-G1 transition, plays a lesser role. Although the 
Cdkn2a and Cdk7 gene products and related molecules have 
been suggested to functions in regulating G1 entry and 
progression from side supportive data [26, 27], it was not 
clear until our current findings whether these molecules  
functioned as central nodes in the gene networks. Cdkn2a 
and Cdk7 were not classified as a G0 cluster via k-means in 
the first report of these microarray data [4]. CDKs are known 
to be key components of the core cell cycle machinery and 

Fig. (1). Strategy used to identify, analyze, and validate regulatory gene networks. 

1. Select datasets using biological processes based on gene ontology

Use of expression-associated 
network modeling

2. Build and visualize transcriptional regulatory 
network

Verify quantified estimation

3. Profiling of transcription factors in upstream regions of 
interesting genes:   Prediction of biological function of the 
network dynamics
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are inhibited by cyclin-dependent protein kinase inhibitors 
(CDKNs). CDK7 and CDKN2A are members of the CDK 
and CDKN families, respectively. Cdkn2a also encodes 
p16INK4a, a protein that indirectly regulates the activities of 
both pRB and p53 through the inhibition of CDK4 and 
CDK6. The predictive pathway from Cdk7 suggests that 
CDK7 down-regulates Ccna2, Egfr, Il1a, Mybl2, Nmyc1 and 
Nras, and up-regulates Etv6, Figf, Pgf and Rbl1 (Fig. 2C). 
For the time course of the expression levels of Cdk7, Ccna2, 

Egfr, Mybl2, N-myc and Nras following the release from 
serum starvation, when the cells enter G1, the expression 
levels of Cdk7 are reduced, resulting in the elevated 
expression of Ccna2, Egfr, Mybl2, N-myc and Nras (data not 
shown). 

 In the network found for the G1/S start data subset in 
hydroxyurea treated MEFs, the structure was observed to be 
more complicated and have no obvious central nodes. In this 
network, the number of connections from Cdk7 and Cdkn2a 

 

Fig. (2). Representative maps and expression graphs of the transcriptional regulatory networks for selected genes associated with cell-cycle 
control in MEF cells. Shown are (A) the network identified for the G0 course data and also the isolated linkages associated with nodal genes 
Cdkn2a (B) and Cdk7 (C). Bold lines indicate linkages from Cdkn2a or Cdk7 as a nodal gene. Red arrows indicate linkages associated with 
upregulation and blue arrows indicate linkages associated with downregulation for any two genes within the network. 
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to other genes was greatly decreased, whereas the 
connections from Ccna2, Egfr, Fgf3, Trp53, Nmyc1, Ptn, and 
Rbl2 were increased (Fig. 3A). These changes suggested that 
growth factors, such as Egfr, Fgf3, and Ptn, and proliferation 
regulators, such as Ccna2, Trp53, and Rbl2, have more 
prominent roles during S phase progression (Fig. 3B-E).  
 

From these data, it becomes obvious that the gene networks 
which regulate the progression of the cell cycle completely 
differ between the G0-G1 and G1-S transitions. 

Verification of the Quantified Network 

 Further analyses were conducted to determine the 
statistical significance of the linkages between our  identified  

 

Fig. (3). Networks identified for the G1/S course data (A) and the isolated linkages associated with nodal genes Ccna2 (B), Egfr (C), Fgf3 
(D) and Trp53 (E). Red arrows indicate linkages associated with upregulation and blue arrows indicate linkages associated with 
downregulation for any two genes within the network. Bold lines indicate linkages with nodal genes. 
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Table 3. Number of Linkages Between the 39 Selected Genes 

Related to Cell Cycle Control in MEFs 

 

G0 Course G1/S Course 
Gene Name 

Outward Inward Total Outward Inward Total 

Abl1 8 1 9 6 2 8 

Ccna1 1 2 3 1 4 5 

Ccna2 0 4 4 8 0 8 

Ccnb2 2 5 7 0 4 4 

Ccne1 0 2 2 3 5 8 

Crkol 0 4 4 1 4 5 

Csf1r 5 0 5 4 3 7 

E2f5 2 3 5 1 3 4 

Egfr 4 4 8 8 2 10 

Elk1 0 3 3 2 4 6 

Elk4 1 5 6 0 4 4 

Ets1 6 3 9 6 2 8 

Etv6 3 4 7 3 2 5 

Fgf3 6 0 6 8 1 9 

Figf 1 5 6 1 4 5 

Fos 1 1 2 2 5 7 

Fosb 5 4 9 3 5 8 

Il1a 2 5 7 5 4 9 

Lmyc1 3 1 4 2 3 5 

Mybl2 1 4 5 2 3 5 

Myc 3 1 4 2 5 7 

Nmyc1 1 4 5 4 4 8 

Nras 2 3 5 5 2 7 

Pdgfb 3 0 3 0 3 3 

Pgf 1 5 6 0 5 5 

Ptn 1 3 4 4 5 9 

Ret 1 4 5 0 5 5 

Tfdp1 2 5 7 4 1 5 

Tgfb2 4 3 7 5 2 7 

Thra 3 3 6 4 2 6 

Tlm 2 5 7 0 4 4 

E2f1 6 0 6 7 3 10 

Trp53 4 4 8 8 0 8 

Mdm2 4 3 7 3 5 8 

Cdkn2a 13 1 14 6 0 6 

Cdk7 10 1 11 1 5 6 

Rbl1 3 4 7 1 4 5 

Rbl2 1 4 5 5 4 9 

Cdkn2d 2 4 6 2 4 6 

Name abbreviations of the genes analyzed in this study are as listed in Table 2. 

genes. To find the most prominent linkages between genes of 
the network from Cdk7 and of the network from Trp53, the 
G0 course dataset and the G1/S course dataset obtained from 
MEFs treated with serum starvation or hydroxyurea were 
used, respectively. This analysis method can predict both the 
strength of the relationships between genes and the posterior 
distribution of parameters in the log-linear model [22, 23]. 
Of the 10 genes associated with Cdk7, 9 had some posterior 
densities that did not include 0, suggesting very significant 
associations (Table 4). Only Il1a included 0 in the posterior 
density, with 18% of the distribution above zero and 82% 
below. This finding suggested a statistically marginal down-
regulation. Fig. (4) illustrated the distribution for a strong 
down-regulation (Cdk7  Nras) and for a weak down-
regulation (Cdk7  Il1a). A negative association between 
Nras and Cdk7 has been reported previously [28], suggesting 
that the method we employed in our present analyses can 
extract negative relationships between two genes using 
simple microarray data. 

Table 4. Summary of the Results from the MCMC Analyses 

 

Parent Target Mean Std. Percent <0 

G0 Network 

Ccna2 -6.0037 0.0718 0 

Egfr -2.5725 0.0265 0 

Etv6 2.0637 0.0279 0 

Figf 1.4832 0.0022 0 

Ll1a -1.0015 1.0882 17.9 

Mybl2 -2.8674 0.0141 0 

Nmyc1 -0.712 0.0064 0 

Nras -2.8768 0.0626 0 

Rgf 6.7274 0.0059 0 

Cdk7 

Rbl1 1.9701 0.0065 0 

G1 Network 

Abl1 0.9456 0.4592 0.0225 

Cdk7 -3.7324 0.0008 0 

Elk1 6.7449 1.3828 0.004 

Ll1a -1.5102 0.0721 0 

Nmyc1 6.1901 0.0417 0 

Rbl1 -6.6934 0.3521 0 

Trp53 

Ret 1.7052 2.7057 25.7 

For G0 data, MCMC sampling was performed 140,000 times and the mean, standard 
deviation (Std.) and percentage below zero were assessed from the last 70,000 
samplings. If the number was negative, only the samples above zero were counted. For 
G1 data, MCMC sampling was performed 300,000 times and the mean, Std., and 
percentage below zero were assessed from the last 150,000 samplings. 

 

 In the G1/S network, Trp53 suppressed the expression of 
Cdk7 and Rbl2, and stimulated that of Abl1, Il1a, Nmyc, 
Elk1,  Ret  and  Thra  (Fig. 3E).  Trp53  has  previously  been 
shown to negatively regulate cyclinD/CDK4, cyclinD/ 
CDK6, cyclinB/cdk2, and cyclinA/cdk2 through the activat-
ion of p21 in normal cells. CyclinD/CDK4/6 on the other  
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Fig. (4). (A, B) Frequency histograms approximating the posterior 
distributions for linkages from Cdk7 to Nras (a statistically 
significant downregulation) and Cdk7 to Il1a (marginally 
significant downregulation). Histograms were derived by Bayesian 
analysis of the gene interaction network shown in Fig. (2C) using 
70,000 out of 140,000 Markov-Chain Monte Carlo samples and 
prior distributions as shown in Table 4. 

hand activates phosphorylated RB (pRb) which leads to the 
activation of E2F, which in turn negatively regulates p53 
through p19ARF activation and MDM2 suppression [1, 29]. 
The interaction between p53 and c-Abl is known to play a 
critical role in the cell growth and G1 arrest response to 
DNA damage under normal conditions [30]. It has been 
reported that CDK7 phosphorylates other CDKs, which is an 
essential step for their activation [31] and that a direct 
involvement of p53 in triggering growth arrest by its 
interaction with the CDK activating kinase complex [32]. 
These reports and our predictive network suggest therefore 
that CDK7 is essential for mitosis. 

 

 

 

Detection of Gene Networks Using a Recombinant Mouse 
CDK7 Retrovirus System 

 Our cell cycle network data indicated that CDK7 
activation negatively regulates the expression of Egfr and 
Nmyc1 in MEFs. To validate this observation, we introduced 
mouse CDK7 into these cells using a recombinant retrovirus 
system to evaluate negative regulation of CDK7 against 
EGFR and N-MYC. The titer of the retrovirus obtained from 
PT67 producer cells was 4.0 X 109 virus copies/ml for the 
LXIN empty vector and 5.4 X 109 virus copies/ml for the 
CDK7 recombinant retrovirus. The hemagglutinin (HA) 
protein tag was added to the carboxyl terminus of 
recombinant CDK7 so that we could distinguish the 
recombinant protein from its endogenous counterpart. 

 As shown in Fig. (5), western blot detection with a HA 
antibody revealed the expression of recombinant CDK7 
protein in infected MEF cells. Increased levels of total 
CDK7 protein (endogenous plus recombinant CDK7) was 
also confirmed by immunoblotting with a CDK7 antibody 
(Fig. 5A). The EGFR, N-MYC1 and c-FOS protein levels 
detected by western blot were decreased in MEF cells 
infected with the CDK7-expressing retrovirus when 
compared with the control cells (Fig. 5A). c-FOS was used 
as control because there was no direct linkage between 
CDK7 and c-FOS (see Fig. 2A). The average levels of EGFR 
and N-MYC1 from three separate experiments are shown in 
Fig. (5B). Decreased EGFR and N-MYC1 but not c-FOS 
protein levels indicated that the exogenous introduction of 
CDK7 negatively influenced their expression. From these 
results, we concluded that one part of our newly detected cell 
cycle network had been validated. 

DISCUSSION 

 Gene set enrichment is one means of providing reliable 
information about specific basic biological processes and has 
been the most widely used gene-set analysis method to date 
[33-36]. Directed graphical models known as Bayesian 
networks, and the MCMC method of determining network 
inference, have been show to be promising approaches to 
obtaining new information about gene networks in various 
tissues and cells. 

 In our current study, we adopted an approach based on a 
systematic analysis of gene expression data to define a gene 
regulatory network and new putative CDK7 functions were 
identified by quantifying the dynamics of the gene regulatory 
networks for cell cycle control in MEF cells. A previous 
study has suggested that a TFIIH complex containing CDK7 
is responsible for the phosphorylation of CDK2 and CDK4, 
both of which are crucial contributors to the G1/S cell cycle 
transition in human and mouse cells [37]. One of the TFIIH 
components critically regulates the CAK activity of CDK7 
during mitotic progression, suggesting that mitotic silencing 
of basal transcription is important to the Drosophila cell 
cycle [38]. The previous study indicated that the 
phosphorylation of CDK7 cause the inhibition of TFIIH-
associated kinase and transcriptional activity [39]. Although 
we do not have any data about the phospholylation status of  
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introduced recombinant CDK7 protein, there is a possibility 
that the extra amount of CDK7 protein resulted in the 
reduced transcriptional activity of TFIIH. The gene networks  
found in this study have to be further evaluated in terms of 
whether they are based on direct or indirect interactions, 
however, this is to our knowledge the first report showing 
the importance of CDK7 associated networks for the 
progression from G0 to G1. 

 We also analyzed gene networks associated with S phase 
and M phase, in addition to the progression from G0 to G1, 
which focused in our current linkage analysis. Several 
central nodes were detected but their networks will need to 
be further evaluated experimentally, as shown for CDK7 in 
this study. We thus reveal that the qualitative algorithm 
based on Bayesian networks is a useful tool for detecting 
gene networks that function at specific phases of the cell 
cycle. Our results indicate that CDK7 negatively regulates 
EGFR and N-myc expression to control G1 entry. When the 
MEF cells do enter G1 from G0, the expression of Cdk7 is 
suppressed, resulting in the increased expression of the Egfr 
and N-myc genes and protein products. EGFR is known act 
as a growth factor receptor, and activated EGFR is known to 
promote cell cycle progression through the G1-related 
Cyclin complex. N-myc is also known to stimulate cell 
proliferation and CDK7 thus appears to act as a negative 
regulator of cell proliferation and cell cycle progression in 
mammalian cells. 

 Although the CAK activation at the G1/S phase transition 
promotes mitotic progression, the relationship between Cdk7 
and Egfr was observed at the G0/G1 phase but not the G1/S 
phase in our case. When we looked for the relationship 
between two genes at the database GEO (http://www.ncbi. 
nlm.nih.gov/sites/GDSbrowser) for confirming our data, the 
relationships are reversal at the early stage after several 
treatments of serum starvation, cat or Camptothecin. This 
public evidences can support our data, implicating that 

CDK7 regulates EGFR expression levels according to the 
type of cell cycle stage. 

 Our study detected the gene networks from CDK7 to the 
downstream. As the next step for the study, these inhibitory 
effects would be needed to analyze from the viewpoint of 
kinetics. The kinetics study would explore how fast the 
transcriptional inhibition reaches to the equilibrium in the 
process of the cell cycle. The time course analysis with the 
efficient inducible expression system of recombinant CDK7 
would be required to get these data. 

 Whereas our overall approach in this study was based 
upon a specific set of tools, other tools could be used to 
obtain similar findings. Gene ontology was used to select 
specific genes to consider when defining the network. Other 
classification methods however, such as clustering, could 
have also been used to select a specific gene group. 
Sequence/structure analysis of transcription factors in order 
to verify gene nodes could be replaced by analyses of protein 
structure, protein-protein interactions, or protein-DNA 
interactions. The log-linear mathematical model used to 
quantify gene interactions could easily be replaced by 
mechanism-based dynamic models if the data could support 
more parameters. However, the simplicity of the model used 
in this analysis has the advantage of providing rapid 
identification of gene relationships that are helpful in 
elucidating the structure and dynamics of the gene network 
using only gene expression profiles. With only one 
parameter in the model for each gene-gene relationship, one 
can more easily visualize and understand complex network 
relationships. 

 We validated part of our predicted network with a 
retrovirus CDK7 expression system. The exogenous 
introduction of mouse CDK7 into MEF cells caused a 
decrease in the protein levels for EGFR and N-MYC1. These 
findings provided supporting evidence for the validity of our 
detected gene network. The molecular weight of the 

 

Fig. (5). Experimental verification of detected gene network from Cdk7 to EGFR and N-myc1 using a recombinant retrovirus expression 
system. (A) The protein levels of exogenous Cdk7 (HA), total Cdk7 (Cdk7), EGFR, and N-myc1 were detected by western blotting. 
Representative blots obtained from two independent samples are shown in the figure. (B) EGFR and N-myc1 protein levels were 
quantitatively analyzed. Data are the average plus standard deviation of 6 western blots from two independent samples for each group. *, P < 
0.05; **, P < 0.01. 
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retroviral CDK7 was slightly higher than the endogenous  
 

protein in mouse MEF cells. According to the Genbank 
database, there is an alternative splice site at the position of 
exon 6 in CDK7 (accession number: NM_009874.3). 
Although our cloned CDK7 is the most common form 
(346aa, 38.9kDa, accession number: NM_009874), and was 
mainly used in previous functional studies, there is a 
possibility that endogenous CDK7 expressed in MEF cells is 
a short form of this protein that arises through the alternative 
splicing of exon 6. We predict that there is no functional 
difference between the short form of CDK7 and our 
recombinant version, since the binding site of MAT7 and 
phosphorylation sites are present in both forms. 

 To further test the negative regulatory relationship 
between CDK7 and EGFR or N-MYC, we attempted to 
knockdown endogenous CDK7 using a siRNA approach and 
also a Cre-loxP mediated conditional expression system. 
However, neither approach was successful in the MEF cells 
due to a low transfection efficiency for siRNA and the cell 
toxicity of the adenovirus which expresses the Cre 
recombinase. 

 Another important factor to consider is the condition of 
the MEFs. We used cells that were not immortalized, which 
allowed us to investigate gene network dynamics in a normal 
cell context. However, such cells are severely limited in their 
replicative capacity, resulting in a limited number of 
applicable approaches for genetic manipulation. Since the 
inactivation of both p16 and p53 has previously been 
reported to be essential for the immortalization of MEFs, it is 
almost certain that the entire cell cycle network would be 
severely affected by the immortalization process. 

 An important objective in Bayesian network learning is 
to infer the network topology. We used 39 genes based on 
MAP criterion in this study. Even with 39 genes, the 
topology space is 2^39. However, it is difficult (virtually 
impossible) to conclude that the optimized network is the 
best one without doing all possible topologies, an 
impossibility for 239 topologies. Therefore, a search 
algorithm, described with step-by-step instructions in the 
previous work [21], was used to obtain a network topology. 
Also in the previous work [21], a series of simulation studies 
were undertaken to address the operating characteristics of 
the algorithm and to determine the conditions under which it 
would fail. The analysis used a simple log-linear model to 
infer linkages in the network. The approach used has 
advantages and disadvantages over other approaches. The 
major advantage is a compact parameter space using the 
minimum number of parameters to infer the network that 
allows us to use a single parameter to infer the strength of a 
linkage. This also reflects on the major disadvantage in that 
is not possible to use this model to describe the dynamics of 
the interactions per se as such a mechanistic model would 
require more complex biomathematical descriptions of each 
linkage and considerably more data. That said simple linear 
models have been a mainstay of descriptive statistical 
evaluations of biological data for decades. In this case, they 
allow us to test the hypothesis of no linkage between genes 
against the alternative of a proportionate change on a log-
scale and infer linkage. 

 The analysis tool used here is able to find genes that 
appear to be positively or negatively correlated as the gene 
expression patterns change over time. If a gene is only 
changed at one time, say 6 hours, and its target genes are 
only altered at a different time, say 12 hours, this algorithm 
would be unlikely to identify the linkage. A dynamic model, 
describing the patterns over time in a more mechanistic 
fashion, might locate such a linkage, although it might still 
be very difficult. For the data being examined here, it is 
more likely that the dynamic changes in gene expression 
occur gradually throughout the course of the experiment (18-
24 hours) resulting in correlations through time that can be 
observed in our simple linear model. 

 In summary, the results of our network analyses have 
raised a number of new possibilities concerning the roles of 
numerous genes in the regulation of the murine cell cycle. 
The limitations of these analyses (use of only microarray 
data, a simple log-linear model, and promoter region 
sequences) preclude a stronger interpretation of the results. 
However, as additional data are obtained in future studies 
that address the hypothetical linkages identified by our 
findings, it should be possible to bring them formally into an 
improved analysis and critically evaluate each linkage in 
greater detail. This is the overall goal of cancer systems 
biology and the general approach presented here should form 
the basis for future attempts at system-wide analyses of 
biological function. 
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