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Abstract: Myeloid-Derived Suppressor Cells (MDSCs) are multifarious group of immature cells that arise from the myeloid and
amass in individuals with cancer, sepsis, burns, or chronic inflammation. It has been evidenced that these group of cells are efficient
in modifying adaptive and innate immune responses, coherent with their assumed key biological roles. It is evidenced that MDSCs
inter-communicate with Tumor-Associated Macrophages (TAM), Tumor-Associated Neutrophils (TAN), Dendritic Cells (DCs),
Receptor for Advanced Glycation End-products (RAGE), Toll-Like Receptors (TLRs), Matrix Metalloproteinase (MMPs) as well as
High Mobility Group Box 1 (HMGB1) during carcinogenesis. This interaction although elaborated in various studies and reviews
still does not explain in details as to how their interplay results in cancer pathogenesis. We noted that MDSC contributed to cancer
immune suppression via TLR-4 receptor and lipopolysaccharideas (LPS). Furthermore, MDSC contributed to cancer development
via MMPs (MMP-9 and MMP1-12) as well as RAGE. In the cancer microenvironment, HMGB1-driven MDSC amassment expedites
cancer  development  and  metastasis  via  PMN-MDSCs,  macrophages,  DCs  and  Immature  Myeloid  Cells  (IMC).  Also,  HMGB1
intermediation with MDSCs via RAGE and/or TLR-4 leading to cancer development. Nevertheless, MDSCs have already proven
potent in some cancers and are currently been used as treatment options although further studies are needed in some other cancers.
Our review, therefore, explores the pivotal pathogenic and therapeutic roles of MDSCs in cancer.
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1. INTRODUCTION

Myeloid-derived Suppressor Cells (MDSCs) are multifarious group of immature cells that arise from the myeloid
and amass in individuals with cancer, sepsis, burns, or chronic inflammation. It has been evidenced that these group of
cells are efficient in modifying adaptive and innate immune responses, coherent with their assumed key biological roles
[1, 2]. Their principal role is to escape or lessen tissue injury during an extreme or a tenacious immune reaction or
during  inflammation.  MDSCs  have  now  been  categorized  into  two  distinctive  subtypes.  These  are  the  monocytic
MDSCs and granulocytic MDSCs (M-MDSCs and G-MDSCs) [3].

Studies have shown that the enlargement and stimulation of MDSCs trigger several tumors- or tumor stromal cell-
derived factors [3 - 5]. One of such factors is tumor-derived Granulocyte-Colony-Stimulating Factor (G-CSF). This
factor  is  principally  required  for  the  differentiation  of  M-MDSCs.  Also,  tumor-derived  Granulocyte-Macrophage
Colony-Stimulating Factor (GM-CSF) has demonstrated to partake in M-MDSC generation [3, 6]. Nevertheless, the
proportion of G-MDSC to M-MDSC in diverse cancer models is extremely unpredictable and relies on factors that still
need further investigation into. Furthermore, in tumor environment, the proportion of G-MDSC and M-MDSC is far
lesser than in lymphoid organs. This may have a positive or negative feedback on the immune flora suppression usually
seen at the cancer environment. The means via which M-MDSC in tumor environment preferential buildup is still a
matter of debate. The potential preferential movement of M-MDSC to the cancer location is postulated to be as result of
a flora of chemokines generated by cancer cells. Furthermore, the  cancer  microenvironment , which  is  depicted  with
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hypoxia, low pH and several other factors which might not sustain subsistence of G-MDSC [1, 2].

In humans, MDSCs are typically outlined as CD33+, CD11b+, HLA-DR-/low; M-MDSCs are CD14+, CD15-/low and
G-MDSCs  CD14-CD15+  (and  CD66b+),  coherent  with  their  individual  granulocytic  and  monocytic  morphological
characters  [1,  7].  Studies  have  evidenced  that  MDSCs  involve  dual  healing  target  due  to  their  essential
immunomodulatory tasks such as elimination or suppression of hypothetically positive immune response, as seen in
tumor or cancer immunotherapy and expansion of endogenous MDSCs seen in conditions in which alteration of the
immune responses is advantageous as in the therapy of graft versus host disease or autoimmunity [1, 8]. It has also been
postulated that immature MDSCs infiltrates into a particular cancer microenvironment and can differentiate into Tumor-
Associated  Macrophages  (TAM)  [3,  9].  Therefore,  numerous  MDSCs  has  proven  to  partake  in  cancer-triggered
immunosuppressive actions. On the other hand, averting the expansion of MDSCs is being investigated as an auspicious
modality of combating various cancers [3].

It has been evidenced that Programmed cell Death protein 1 (PD-1) receptor is naturally secreted in stimulated T
cells  26  and  partakes  in  moderating  immune  responses  [1,  10].  It  is  also  proven  that  triggered  MDSCs  and  some
Antigen-Presenting Cells(APCs) release the PD-1 ligand (PD-L1), which after binding to PD-1 triggers apoptosis in T
cells  [1,  11].  Studies  have  further  evidence  that  IL-6  performances  a  downregulatory  action  of  IL-1β  during
inflammatory reactions and because MDSC secretes IL-6R but not IL-1R a direct influence of IL-1 on MDSC is also
very possible [12]. These influences which are primarily linked to IL-1 could essentially be triggered by IL-6. Also,
IL-1 triggers IL-10 generation via MDSC as well as downregulates IL-12 generation via macrophages [12].

2. MDSCS IN MICE AND HUMANS

Primarily, MDSC in mice were outlined as cells of the Gr-11CD11b1 phenotype and deficient in the secretion of
markers characteristic of mature Macrophage (MF) and Dendritic Cell (DC) [13, 14]. In humans, however, MDSC were
outlined  as  cells  that  co-sanitizes  mononuclear  cells,  deficient  of  markers  of  lymphocytes,  natural  killer  cells,
monocytes, and DC as well as secreted by myeloid cell markers CD33 and CD11b and in some reports, granulocyte
markers [13, 15]. Studies have shown that in mice G-MDSC have a phenotype of CD11b1Ly6G1Ly6Clow, while M-
MDSC  has  a  phenotype  of  CD11b1Ly6GLy6Chigh  [15,  16].  The  Ly6G  molecule  is  identified  to  be  secreted
predominantly on granulocytes while Ly6C is characteristically extremely secreted on monocytes [13, 17]. It is also
apparent  that  Gr-1  antibody  (RB6-8C5)  can  be  found  on  both  Ly6G and  Ly6C epitopes.  Studies  have  proven  that
successive grouping with Ly6G, but not with Ly6C-specific antibody, is expressively diminished when Gr-1 antibody is
used  at  the  initial  phase  of  staining  for  MDSC  [13,  18].  In  humans  however,  the  phenotype  of  these  cells  is  less
distinctly outlined, though current reports have linked CD15 and CD66b as extra markers permitting the recognition of
G-MDSC and M-MDSC [13, 19]. Studies have shown that G-MDSC and M-MDSC vary not only in the morphology
and phenotype, but also in the machinery via which they subdue immune function [13, 20]. Therefore, in humans, G-
MDSC predominantly utilizes Reactive Oxygen Species (ROS) as the contrivance of immune suppression while M-
MDSC predominantly utilizes upregulation of inducible Nitric Oxide Synthase (iNOS), arginase, and a collection of
immune suppressive cytokines to subdue numerous immune functions [13].

3. MDSCS IN BONE MARROW CELLS

Studies  have  shown  that  Ly-6G  and  Ly-6C  are  both  markers  of  primary  myeloid  extraction  obligatory  in  the
downregulation and differentiated of macrophages and DC. In isolation, Ly-6G is upregulated during their advancement
into neutrophils [17, 18]. It is now clear that Ly-6C is extremely released by monocytes in the Bone Marrow (BM) and
lowest by BM granulocytes [18, 21]. The secretion of Ly-6C has also been demonstrated on memory CD81 T cells, γδ,
T cells, a subset of NK cells as well as plasmacytoid DC [18, 22]. Nevertheless, the practical responsibilities of Ly-6G
and Ly-6C molecules in the myeloid expansion is still a matter of debate. However, it evidenced that in bone marrow
cells  Gr-1-specific  antibody  trigger  signaling  pathways  through  STAT1,  STAT3,  and  STAT5,  analogous  to  the
consequence of GM-CSF. Thus, Gr-1 antibody triggers myeloid cell development and up-regulation of MF markers [18,
23].  Experimentally,  Gr-1  antibody  injection  had  suppressive  action  on  both  Gr-1high  and  Gr-1low  MDSC.  This
practically  means  that  the  Gr-1  molecule  has  some  responsibilities  in  both  MDSC  function  and  differentiation.
Nonetheless, this further implicates Gr-1 receptor as a natural ligand and a subtype of Gr-1high MDSC which might
have conspicuous immune suppressive actions [24].

Additionally, this means that the peculiarities in practical roles of MDSCs and the distinctive quantities of Gr-1
secretion might be considered as differences in the expression of this molecule by G-MDSC and M-MDSC, rather than
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a suggestion that  Gr-1 performs a  role  as  a  direct  marker  of  cells  with immune suppressive actions.  Moreover,  for
eradication of neutrophils, Gr-1 Ab injections also have been utilized in the deplete MDSCs [24].

4. MDSCS, TUMOR-ASSOCIATED MACROPHAGES AND CANCER

Macrophages are also a distinct group of myeloid cells that expedites cancer advancement through machineries such
as immunological as well as nonimmunological pathways [25, 26]. Macrophage is morphologically determined via their
parochial tissue microenvironment. In the cancer microenvironment, they piquantly differentiate towards an M2-like
morphology  so  they  are  referred  as  “Tumor  or  cancer  Associated  Macrophages”  (TAMs)  [25].  TAMs,  can  be
distinguished from M-MDSCs morphologically due to their active secretion of F4/80, minimal-to-transitional secretion
of Ly6C as well  as  minimal or  indiscernible secretion of  S100A9 protein.  Furthermore,  IRF8 a marker of  terminal
macrophage amplifies M-CSF receptor as well as CD115 aid in the expression of TAM as compared to M-MDSCs [26].

Macrophage-specific indicators CD68 and CD163 and minimal or vague secretion of S100A9 can be utilized to
distinguish  TAM  and  cancer  M-MDSCs  in  human  beings.  Studies  have  evidenced  that  TAMs  facilitate  cancer
advancement via numerous non-immune machineries such as f angiogenesis, cancer cell invasion, metastasis, as well as
safeguarding  cancer  cells  from  chemotherapy-triggered  apoptosis  [25,  27,  28].  Biologically,  macrophages  are
categorized morphologically into M1-like or classically triggered macrophages and M2-like or alternatively triggered
macrophages  [25,  29].  It  is  now  clear  that  M1-like  macrophages  are  characteristically  stimulated  via
lipopolysaccharideas (LPS) as well as IFN-γ axis and are depicted with the extraordinary secretion of IL-12 as well as
minimal secretion of IL-10. Furthermore, IL-12 facilitates the expansion type 1 T cell reaction which augments anti-
cancer immunity [25].

It  is  also  well  known  that  M1-like  macrophages  can  eliminate  cancer  cells  while  M2-like  macrophages  are
stimulated via  glucocorticoid hormones,  IL-4,  IL-13 as  well  as  IL-10 leading to excessive generation of  IL-10 and
minimal  generation  of  IL-12  resulting  in  cancer  advancement  [25].  Seven  morphologically  dissimilar  macrophage
subgroups  inside  cancers  have  been  found  which  means  that  macrophages  are  multifaceted  [25,  26].  Studies  have
shown that M1-like macrophages that have cancer elimination potentials have similar morphological appearances just
like IL- 12hiIL-10low and are triggered via LPS and IFN-γ axis. Nevertheless, culturing of LPS and IFN-γ led triggered
peritoneal macrophages and stimulation of cancer MDSC for 16 h reduced macrophage generation of IL-12 more than
80% [25, 30].

Studies  have  proven  that  MDSC-facilitated  down-regulation  of  IL-12  necessitates  MDSC–macrophage  cell
interaction just as MDSC subduction of T cell stimulation [31, 32]. Furthermore, MDSC generates extreme quantities of
IL-10  and  IL-10  which  are  strategic  cytokine  for  modifying  IL-12  transcription  [33,  34].  Nevertheless,  Amplified
MDSC generation of IL-10 and diminished macrophage generation of IL-12 may influence CD4+ T cells, Natural Killer
(NK) cells and Th2 cells [25]. Moreover, IL-10 champions the differentiation of type 2 CD4+ T (Th2) cells. On the
other hand, IL-12 triggers the differentiation of type 1 CD4+T (Th1) cells as well as NK cells. Also, Th2 cells neutralize
the expansion of cytotoxic CD8+ T cells (CTL) as well as the generation of IL-4 which partake in the progress of TAMs
[25,  35].  Studies  have  demonstrated  that  MDSC-generation  IL-10  may  accelerate  the  advancement  of  CD4+  T
regulatory cells (Tregs) since IL-10 is an effective trigger of Tregs [34, 36]. It is evidenced that MDSC and macrophage
bi-directionally communications also changes macrophage secretion of MHC class II molecules. Furthermore, MHC II
reduction necessitates MDSC-macrophage cell-to-cell communication. Trials with IL-10-deficient MDSC suggested
that the down-regulation was interceded by IL-10 generated by MDSCs [25].

Several authors have evidenced that NK cells differentiation is depicted with the secretion of CD27 on immature
NK cells as well as amplified secretion of CD11b and KLRG-1 as NK cells mature [25, 37]. Nevertheless, in the cancer
microenvironment, cancer cells and stromal cells such as MDSC and macrophages, creates a proinflammatory milieu.
Also,  diverse  cancer  cells  generate  multiplicities  of  pro-inflammatory  intermediaries  such  as  IL-6,  TNF-α,
prostaglandins and cyclooxygenases [25, 38]. Studies have shown that inflammation champions MDSC buildup as well
as  subdue  their  effectiveness  [31,  39].  Nevertheless,  via  a  feedback  mechanism,  MDSC  generation  inflammatory
intermediaries  which  also  triggers  a  downgrade  inflammation  via  the  generation  of  the  anti-inflammatory  cytokine
IL-10  [40].  Also,  MDSC  extra  reduce  inflammation  by  reducing  macrophage  generation  of  the  pro-inflammatory
cytokine IL-6 [39]. This suggests that MDSCs at the inflammatory cancer milieu may be beneficial.
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5. TUMOR-ASSOCIATED NEUTROPHILS, POLYMORPHONUCLEAR MDSCS AND CANCER

Tumor-Associated Neutrophils (TAN) are multifarious group of cells with pro-carcinogenic as well as anti-cancer
actions  [26,  41].  Classification  of  circulating  neutrophils  and  TANs  is  founded  on  features  like  gradient  density,
phenotypical roles as well as tissue type [26, 42]. Systematic substantiation on definitive maturation and differentiation
phases of the subtypes of neutrophils is still not established. Further studies are needed in this direction. Terminologies
like anti-tumorigenic N1 and pro-tumorigenic N2 mouse neutrophils were introduced to depict distinctive groups of
TAN [41]. Recently, polymorphonuclear (PMN)-MDSCs which are a subset of MDSCs have been identified. The exact
difference between TAN and PMN-MDSCs is still a matter of debate because both cells have similar morphological
appearances [26].

Most researchers used the terminology ‘granulocytic MDSC’ to depict PMN-MDSC, but it is now clear that the
latter terminology well depicts this MDSC subset, because PMN-MDSC is morphologically different from steady-state
neutrophils.  PMN-MDSC  have  fewer  granules,  distorted  buoyancy,  decreased  CD16  and  CD62L,  and  amplified
arginase  1,  peroxynitrite,  CD11b  as  well  as  CD66b)  [26].  PMN-MDSC  and  TAN  can  be  distinguished  from
mononuclear cells within the CD11b+ myeloid cell segment because of their secretion of Ly6G granulocytic cell marker
in  mice.  On  the  other  hand,  eosinophils  can  be  identified  based  on  their  secretion  of  sialic  acid-binding
immunoglobulin-like  lectin  F  [43].

Morphologically,  TAM  can  be  differentiated  from  M-MDSCs  because  of  their  amplified  secretion  of  F4/80,
minimum-to-intermediary  secretion  of  Ly6C  as  well  as  minimum  or  unnoticeable  secretion  of  S100A9  protein.
Furthermore, IRF8, an indicator of terminal macrophage differentiation amplifies M-CSF receptor and CD115 resulting
in  the  expression  of  TAM  compared  to  M-MDSCs  [26].  It  is  very  difficult  to  distinguish  neutrophils  from  PMN-
MDSCs because these cells share similar morphological features. It is, however, possible to distinguish between them
using functional tests. It is now clear that macrophage-specific indicators like CD68 and CD163, together with minimal
or  deficient  secretion  of  S100A9  can  be  utilized  in  distinguishing  TAM  from  cancer  M-MDSCs  in  humans  [43].
However, the glitches in differentiating cancer PMN-MDSCs from TAN are the same as in mice. There are currently no
clear cell-surface indicators that can directly to use to distinguishing of TAN from PMNMDSCs.

6. MDSCS, DENDRITIC CELLS AND CANCER

Dendritic Cells (DC) are cells that process and present antigen for the stimulation of CD4+ as well as CD8+ T cells
[25]. It is evidenced that the quantities of mature DC diminished equitably with rising quantities of MDSC in an in-vitro
investigation utilizing mouse MDSC differentiated from c-kit+ BM progenitor cells in the presence of IL-4, GM-CSF,
and PGE2 [44]. A study revealed that IL-10 generated by hepatocellular carcinoma-triggered MDSC resulted in reduced
DC generation  of  IL-12  [45].  The  decrease  in  mature  DC as  seen  in  cancer  individuals  is  because  of  distortion  in
MDSC/DC progenitor cells towards the preferential  differentiation of MDSC at the expense of DC. This distortion
occurs because MDSC and DC share a common progenitor cell [44].

Studies  with  MDSC  from  melanoma  individuals  revealed  that  MDSC  compromised  DC  maturation  via  the
diminishing of antigen uptake, aversion of movement of immature and mature DC, inhibiting DC triggering of IFN-γ
generation  of  T  cells  as  well  as  distortion  of  DC  cytokine  generation  towards  anti-inflammatory  kinds  [46,  47].
Furthermore, DC generation of pro-inflammatory cytokine IL-23 and its down-regulatory triggering of Th17 cells may
contribute to the consequences of MDSC on DC. Therefore, IL-23 and IL-17 facilitate cancer advancement and MDSC
may decrease cancer advancement by restraining IL-23 and IL-17 generation [47].

7. MDSCS, TOLL-LIKE RECEPTORS AND CANCER

Toll-Like Receptors (TLRs) have a fundamental responsibility in the stimulation of innate immune responses. It is
evidenced that signaling via TLR-4 characteristically comprises of the bonding of LPS to the LPS bonding protein,
which  consequently  relocates  LPS  to  the  membrane-bound  receptor  CD14  [25].  It  is  also  now  clear  that  MDSC-
macrophage inter-communication utilizes LPS. LPS has also been confirmed as a stimulate of macrophages [48]. A
study has shown that CD14 inter-communication with TLR-4 to triggers TLR-4 signaling as well as down-regulatory
triggering of NF-κB [48] (Fig. 1). Studies have proven that CD14 concentrations are amplified on inflammatory MDSC
during  inter-communication  with  macrophages.  This  amplification  is  TLR4-dependent  since  TLR4-deficient
inflammatory  MDSC  do  not  exhibit  raised  concentrations  of  CD14  (Fig.  1)  [39,  49].
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Fig. (1). MDSC contributed to cancer immune suppression via TLR-4 receptor and lipopolysaccharideas (LPS).

Gabrilovich  and  Nagaraj  proposed  that  inflammation  probably  amplified  CD14  concentrations  thereby  making
MDSC more receptive to LPS and TLR-4 stimulating ligands. They argue that this interaction led to MDSC generation
of  IL-10  and  a  significant  suppression  of  immune  system  [50].  A  study  has  shown  that  amplification  of  MDSC
subgroups in the spleen is dependent on the TLR adaptor molecule myeloid differentiation primary-response gene 88
(MyD88) [51]. This was evidenced when polymicrobial sepsis triggered by the ligation and perforation of the caecum
led to secretion of microbial products into the peritoneum and systemic circulation. Nevertheless, study involving wild-
type  mice  and  mice  deficient  of  efficient  TLR-4  protein  revealed  an  analogous  amplification  of  MDSC  during
polymicrobial sepsis (Fig. 1). This means that signaling via TLR-4 may not be prerequisite for MDSC amplification.
This further means that MyD88-dependent signaling pathways that might have been activated by other TLRs perhaps
participated in the amplification of MDSCs in sepsis [50, 51] (Fig. 1). This also suggests that the triggering of MDSCs
is a primary consequence of the host innate immune response to pathogens that secretes TLR ligands. We proposed
further studies gear towards the functional roles of TLR and MDSCs in inflammatory cancer microenvironments.

8. MDSCS, RAGE AND CANCER

Receptor for advanced glycation end-products (RAGE) is an MHC class III encoded

protein, considered as a damage associated molecular pattern (DAMP) molecule receptor [52]. It functions as the
kindred receptor for the archetypal DAMP, HMGB1 as well as numerous S100 proteins such as S100A8 and S100A9
[53]. Several studies have shown that RAGE signaling intermediates in the pathogenesis of epithelial derived cancers.
Furthermore, RAGE also triggers fundamental survival pathways like autophagy in cancer cells and promulgating as
well as withholding pro-cancer host inflammatory reactions [54, 55].

It has been evidenced that RAGE actively participated in intratumoral MDSC amassment in triggered skin cancer
model experiment involving RAGE−/− mice [52, 56]. Several studies have also demonstrated that mice defective for the
RAGE ligand,  S100A9,  display  a  substantial  decrease  in  the  rate  and  encumbrance  of  colitis-associated  colorectal
cancers and a demonstration of reductions in intratumoral and splenic MDSC rates [40, 57]. On the other hand, RAGE
is not prerequisite for the expansion of MDSCs from myelopoietic progenitor cells or their precise blockade endeavor.
This is because MDSCs are located in both RAGE-null and KCR mice phenotypes and therefore are morphologically
and functionally stable [40].

Studies  have  indicated  that  a  larger  population  of  myeloid  cells  (CD11b+)  display  extreme  mature  phenotype
exhibited by the secretion of mature macrophage marker F4/80 and a deficiency of Gr1 secretion during pancreatic
neoplasia deficient in RAGE [40, 58]. It is also known that pro-inflammatory proteins S100A8/A9 triggers MDSCs by
interrelating with RAGE and other glycoproteins on the surface of MDSCs and facilitated their migration through NF-
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κB  determined  signaling  pathway  [40,  53]  (Fig.  2).  Furthermore,  RAGE  over-secretion  inside  cancer  and  stromal
sections  are  simultaneously  ligated  by  S100A8/A9  production  by  MDSCs  which  in  turn  triggers  a  monitoring
chemokine cancer gene silhouette and functions as a positive feed-back loop for the conscription of MDSCs [40, 52]
(Fig.  2).  Also,  DCs and macrophages have proven to express RAGE ligands like HMGB1 in reaction to numerous
maturational  stimuli.  Therefore,  HMGB1  expression  by  MDSCs  characterizes  an  extra  machinery  for  MDSC
conscription and so warrants more investigations [59]. We also propose further investigation into the paradoxical roles
of RAGE and MDSC in cancers.

Fig. (2). MDSC contributed to cancer development via MMPs (MMP-9 and MMP1-12) as well as RAGE.

9. MDSCS, MATRIX METALLOPROTEINASE AND CANCER

MMPs are an essential  group of zinc enzymes conscientious to the mortification of ECM constituents [60,  61].
Several studies have shown that pro-inflammatory factor MMP-12 or macrophage elastase, is secreted principally by
macrophages  as  well  as  a  prerequisite  for  monocyte  conscriptions  [62,  63].  It  has  been  demonstrated  that  extreme
secretion of MMP12 in myeloid cells results in anomalous expansion of hematopoietic progenitor cells [64]. Numerous
investigators have implicated macrophage-derived MMP-12 in destructive melanoma [65, 66]. Furthermore, MMP-12
polymorphism has also been implicated in breast cancer prognosis [64].

A study has shown that there is upsurge in number MDSCs in MMP-12-/- cancer mice and this upsurge is directly
linked to cancer development. The study further showed that macrophage-derived IL-1β stimulated extra MDSCs in
bone marrow in these MMP-12-/- mice [64]. Another study indicated that mice lacking MMP-12 spawned metastases
than  their  wild-type  in  Lewis  lung  pulmonary  carcinoma  [67].  Li  et  al.  also  proposed  that  MMP12  knockout  can
augment  cancer  development  by  triggering  the  amassment  of  MDSCs  in  the  myeloid  cells  of  mice.  Their  finding
supports an earlier report that MMP-12 absence enhanced macrophages-derived IL-1β triggering of myeloid cells into
MDSCs (Fig. 2). They therefore concluded that MMP-12 influenced myeloid cells differentiation and IL-1β played a
fundamental part in the inter-communication between macrophage and MDSCs in bone marrow milieu in MMP-12-/-

mice  [64].  Qu  et  al.  demonstrated  that  the  proportion  of  CD11b+  and  Gr-1+  inflammatory  cells  were  appreciably
amplified in the lung of 3-month doxycycline-administered bitransgenic mice utilizing a transgenic mouse extreme
secretion of MMP-12 model but had conflicting finding in the cancer milieu [68]. Also, Li et al. observe that generation
of  CD11b+/Gr1+  cells  augmented  cancer  development  because  these  cells  were  increases  in  the  myeloid  cells  of
MMP-12 knockout mice [64] (Fig. 2).

It is now evidenced that MMP-9 inhibition resulted in a cogent subduing of the immunosuppressive consequence of
M-MDSCs than that of G-MDSCs in an in-vitro study. Furthermore, M-MDSCs augmented MMP-9 generation more
than  G-MDSCs  and  circulating  MMP-9  concentrations  is  interrelated  with  early  infections  as  well  as  consequent
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prognosis [69]. Shao et al. propose that an OPN/MMP- 9 inter-communication is associated with MDSCs production in
a lung cancer model. They indicated further that a distinctive OPN- 32 kDa portion was smitten by MMP- 9 which in
turn led to modifications in the generation of MDSCs [61]. Initial studies have implicated VEGF as one of the factors
that contributes to the secretion of MMP-9 [70, 71]. It is also confirmed that soluble MMP-9 generated by cancer cells
stimulates MDSC buildup as well as cancer angiogenesis [71]. Additionally, MMP-9 is able to modify the recruitment
of hemopoietic stem cells from the bone marrow niche via the dissolution of the membrane-bound form of c-KitL [72,
73]. Therefore, MMP-9 is a prerequisite in cancer development (Fig. 2). We propose further studies into the roles of
other subgroups of MMPs and MDSCs in cancer models.

10. MDSCS, HIGH MOBILITY GROUP BOX 1 AND CANCER

High  mobility  group  box  1  (HMGB1),  an  alarming  was  initially  recognized  as  a  DNA  binding  protein  in  the
nucleus.  It  performs various roles such as altering the conformation of  DNA to permit  the binding of  modification
proteins, expediting the incorporation of transposons into DNA, as well as steadying nucleosome establishment within
the nucleus [74 - 76]. Its responsibility as an expressive protein and an immune chaperone has only been documented a
few years ago [74, 77]. HMGB1 also act as a binding protein, stimulator, and/or modulator for many pro-inflammatory
molecules [78]. Higher concentrations of HMGB1 have been implicated in various cancers. The upsurge in HMGB1
levels  has  shown to directly  stimulate  cancer  development  [79].  Furthermore,  HMGB1 partakes in  all  fundamental
hallmarks of cancer including unlimited proliferation, angiogenesis, invasion and metastasis [80, 81].

Several  studies  have  demonstrated  that  HMGB1  is  vigorously  expressed  by  activated  leukocytes  or  inactively
secreted  from stressed  and  necrotic  cells  [82,  83].  It  is  also  evidenced  that  HMGB1 is  momentously  raised  in  the
circulation of traumatic injury and peaks up within first 6 h post injury [84, 85]. Numerous studies have shown that
extracellular  HMGB1  can  attract  myeloid  derived  cells  such  as  PMN-MDSCs,  macrophages,  DCs  and  Immature
Myeloid Cells(IMC) [59, 86] (Fig. 3). These myeloid derived cells in turn negatively modulate immune reactions in the
cancer microenvironment as well as facilitates cancer development [13, 50]. HMGB1 also plays dual roles as Damage
Associated  Molecular  Pattern  Molecule  (DAMP)  and  a  pro-inflammatory  molecule  making  it  a  binding  protein,
stimulator, and/or moderator to many pro-inflammatory molecules that drive MDSC [74, 87]. In-vitro studies revealed
that  blockage  of  HMGB1  averted  the  expansion  of  MDSCs  from  bone  marrow  progenitor  cells  which  means  that
HMGB1 is prerequisite for the differentiation of MDSCs. Furthermore, In vivo knockout of HMGB1 in cancer-bearing
mice decreases MDSC quantities in cancer, spleen, and blood meaning that MGB1 as a chaperone for MDSCs [74].

Several  studies  have  shown that  the  expression  of  the  protumor  cytokines  IL-10  and  IL-1β  is  co-chaperone  by
MDSCs and high HMGB1 levels which means that HMGB1-driven MDSC amassment expedites cancer metastasis [74,
88] (Fig. 3). Numerous studies have also implicated HMGB1 as the trigger of IL-10 drives MDSC amassment as well as
T cell suppressive roles [89 - 91]. It is further proven that a combination of HMGB1 and IL-10 have augmented pro-
inflammatory action as compared to either molecule alone [74, 92]. It is also proven that MDSC-intermediate in the
reduction of T cell L-selectin (CD62L). This mediatory action relied on HMGB1 because HMGB1 amplified MDSC
extracellular  secretion  of  A  disintegrin  and  metalloproteinase  17  (ADAM17),  a  protease  that  cleaves  L-selectin.
HMGB1  also  augments  the  pro-inflammatory  action  of  IL-6,  TNF-α,  and  prostaglandin  E2,  three  other  pro-
inflammatory  intermediaries  that  drive  MDSC  [44,  90]  (Fig.  3).

On the other hand, studies have shown that HMGB1 intermediation with MDSCs could be via RAGE and/or TLR-4
[25] (Fig. 3). Several studies have confirmed that HMGB1 binds mutually to TLR-4 and RAGE, and MDSC secretes
these two receptors [40, 49, 74]. Therefore, MDSC contributes significantly to the function of HMGB1 in the cancer
milieu. Initially, studies have proven that MDSC generation of IL-10 is modulated by TLR-4 [49]. Furthermore, studies
have shown that  ethyl  pyruvate and glycyrrhizin which are HMGB1 blockers down-regulates MDSC generation of
IL-10 during MDSC-macrophage inter-communication [49, 93]. Nevertheless, the differentiation of MDSC from bone
marrow progenitor cells as well as ethyl pyruvate reinstated T cell stimulation in the attendance of MDSC. HMGB1 is,
therefore, a powerful trigger of MDSC as well as immune suppression while MDSC, macrophages, tumor-infiltrating
cells, and tumor cells contribute to the quantity of HMGB1 in the cancer microenvironment [74] (Fig. 3).
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Fig. (3). HMGB1-driven MDSC amassment expedites cancer development and metastasis via PMN-MDSCs, macrophages, DCs and
immature  myeloid  cells  (IMC).  Further  HMGB1  intermediation  with  MDSCs  via  RAGE  and/or  TLR-4  leading  to  cancer
development.

11. MDSCS IN CANCER MICROENVIRONMENT

Automatous  investigations  utilizing  cancer  or  tumor  conditioned  media  (TCM)  to  cultures  of  spleen,  BM,  or
isolated  myeloid/progenitor  cell  subsets  have  revealed  mediators  and  arouses  of  MDSC  function,  differentiation,
proliferation and survival as well as, T-cell proliferation, DC function and differentiation [24]. Cancers that triggers
MDSC proliferation has also demonstrated to release VEGF, GM-CSF, Stem Cell Factor (SCF), FMS-Like Tyrosine
kinase 3 ligand (FLT3-L), G-CSF, and/or macrophage-colony stimulating factor (M-CSF) [24]. It evident that using
transplantable cancers associated cancer GM-CSF expressed by MDSC increasement via the knock down of GM-CSF
in cancer cell lines led to distorted MDSC quantities and subset dissemination resulting in cancer development [24, 94].
In  a  study  that  utilizes  constant  haematopoiesis,  GM-CSF  and  G-CSF  not  only  control  proliferation,  but  also
unknowingly  mobilization  from  the  BM  and  spleen  [95].

Studies have shown that growth factor injection or release from cancers led to myeloid hyperplasia thus augmenting
prosteroid and neutral protease release. The process above resulted in steady mobilization, myeloid progenitor survival,
and their dissemination between peripheral and circulating pools [24, 96]. The machineries linked to their mobilization
may  be  analogous  to  those  of  haematopoietic  progenitor  cells  because  MDSCs  comprise  of  myeloid-committed
haematopoietic progenitors and are probably unchanging at the immature differentiation phase [24, 97]. It is now very
clear  that  MDSCs  stimulate  cancer  invasion  via  the  release  of  MMPs,  which  partakes  in  extracellular  matrix
degradation  [24,  98,  99].

Studies have proven that the utilization of a mammary carcinoma deficient in type II Transforming Growth Factor
beta (TGF-β) receptor led to an augmented proportion of metastasis and an amplified MDSC infiltrate which confirms
the  phenomenon  above  [24,  98].  The  augmented  invasion  above  was  MMP-dependent;  though,  it  was  not  certain
whether the MMPs were released by MDSCs or by the carcinoma cells in response to MDSC activation [24, 98]. It is
postulated that both cell groups are probably involved in MDSCs derived from cancer bearing hosts leading amplified
MMP levels as compared to “MDSCs” from non-cancer-bearing hosts [98]. This implies that the amplified invasive
capability may be from MDSC-derived MMP expression. Nevertheless, MDSCs likewise appeared at a high incidence
in lungs and livers, which are normal metastatic locations [24].

It  has  been  evidenced that  even when organ fragments  are  implanted  ectopically,  particular  organ  environment
control cancer cell arrest and growth signifying that myeloid cell development and angiogenesis, are crucial, especially
hormonal and organ-specific growth factors [24, 100]. Therefore, metastasis is both discriminatory and ineffective, and
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only  a  limited  number  of  cells  survive  to  form  a  micrometastasis,  a  route  partly  controlled  by  MDSCs  and  other
myeloid cells [24]. Studies have further demonstrated that splenic MDSCs partake in cancer vasculogenesis via directly
differentiating into EPCs [24, 99]. Nevertheless, a subset of circulating progenitor cells is CD11b−170, and as such,
Gr1+CD11b+ cells may be precursors that differentiate and partake in cancer vasculogenesis (BOX 1). The machineries
linked to MDSC suppression of T-cell roles depends largely on NOS2176, ROS, ARG1177, cyclooxygenase 2 (COX2),
and hypothetically upregulation of IL-10 as prime machineries [24].

It is now clear that the adoptive transfer of MDSCs suggestively stimulated cancer growth in animal models, and
Gr1+ cell depletion in cancer-bearing mice blocks cancer development, lessens metastasis, and lengthens survival [24,
101]. Studies have demonstrated that some chemotherapeutic agents like gemcitabine, 5-fluorouracil, and docetaxel
differently suppress MDSCs [24, 102]. Numerous studies of cancer-bearing mice, and a few clinical reports utilizing
medicines that target MDSCs or their function, have proven that in mice MDSC diminution slowdown cancer initiation,
progression, and lengthen ssurvival [24, 103].

12. MDSCS AND CANCER METASTASIS

Cancers usually invade the neighboring tissue, travers into the circulation, seed and proliferate in a distant tolerant
niche before there are able to metastasize [104]. It is becoming clearer that MDSC actively partakes in cancer metastasis
at all phases. It is evidenced that MDSC stimulates malignancy or metastasis by stimulating stemness of cancer cells or
by increasing the cancer stem cell groupings [104]. Studies have shown that MDSCs directly triggered malignant cell
proliferation and overpowered immune elimination of  malignant  metastasis  in  allogeneic mice via  alteration of  the
mTOR pathway,  which offers  an automatous foundation for  steering MDSCs to decrease the possibilities  of  tumor
malignancy  [105,  106].  Wang  et  al.  evidenced  that  cancer  metastasis  and  Gr-11  CD11b1  MDSCs  at  postoperative
period  were  augmented  in  quantity  to  the  severity  of  surgery  stress.  They  demonstrated  this  with  tentative  lung
metastasis mice models [107].

Another  study  revealed  that  circulating  CD14+HLA-DRlow  M-MDSC  were  concurrent  with  extra-thoracic
metastases in non-small cell lung cancer (NSCLC) patients [108]. Furthermore, the upsurge in IDO-secretion CD45+

CD33+CD14−CD15− MDSC in breast cancer tissue was also simultaneous with augmented lymph node metastasis in
patients with breast cancer [104, 109]. Nevertheless, the evolution of metastases and poor survival was interrelated with
an upsurge in both circulating CD11b+CD14-CD15+ PMN-MDSC as well as M-MDSC in melanoma individuals [110,
111].

Several studies have shown that pro-inflammatory proteins S100A8 and S100A9 are effective chemoattractants for
MDSC. These two factors have recently been incriminated in the advancement of cancer growth and metastases via
MDSC axis [40, 57]. It is also evidenced that S100A8/A9 could directly trigger serum amyloid A (SAA) 3 which in
turn magnetizes MDSC to pre-metastatic lungs via  NF-κB signaling pathway in a TLR4-dependent manner thereby
accelerating  metastasis  [104,  112].  Therefore,  MDSC  conscription  to  cancer  locations  may  symbolize  a  rancorous
circle.  MDSC  primarily  conscripted  to  cancer  location  via  cancer-derived  chemokines  may  likewise  expedite  the
conscription of other MDSC through S100A8/A9 proteins [57].

A study revealed that amassment of PMN-MDSC is interrelated with augmented bone metastasis in 4T1 model of
breast  cancer  [98].  Also,  the  administration  of  MDSC  as  well  as  4T1  cells  together  resulted  in  augmented  lung
metastasis. This study also revealed that MDSC in 4T1 cancers augmented the secretion of numerous MMPs which
were very imperative in intermediating invasiveness of 4T1 cells in vitro and in vivo [98]. It is further evidence that
MDSC decreases protease inhibitors like neutrophilic granule protein, a blocker of cancer intrusiveness and metastasis
[113]. Nevertheless, in mammary carcinoma cells, deletion of TGF-β receptor II (Tgfbr2) led to an upsurge in MDSC
insinuation into cancers intermediated via SDF-1 as well as CXCL5. Also, in SMAD4-deficient mice colon carcinoma,
blockade of TGF-β signaling triggered MDSC conscription as well as cancer invasion via CCL9 dependent pathway
[104, 114].

Furthermore, the meticulous deletion of Tgfbr2 in myeloid cells expressively subdued cancer metastasis. Moreover,
Tgfbr2 deficiency in myeloid cells diminished arg-1 action as well as NO generation which in turn facilitated IFN-γ
generation as well as an enhanced systemic immunity [104, 115]. Nevertheless, HIF-1α-dependent kit ligand secreted
by hypoxic cancer cells in a mouse mammary cancer model activated c-Kit+  CD11b+Ly6Ghigh PMN-MDSC at the
principal  cancer  site  as  well  as  facilitated  metastasis  [116].  It  is  further  shown  that  M-MDSC  directly  triggered
expansion of aldehyde dehydrogenase-1+ (ALDH1) pancreatic cancer stem cells in mice models of pancreatic cancer as
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we as human CD14+ HLA-DR− M-MDSC [117, 118].

Moreover, the buildup of Lin− CD45+ CD33+ MDSC is interconnected to poor life expectancy in metastatic and non-
metastatic  ovarian  cancer  patients.  Also,  MDSC  directly  interrelated  with  ovarian  cancer  cells  and  triggered  their
stemness.  Additionally,  at  principal  cancer  and  metastatic  locations,  MDSC  generate  IL-6  which  in  turn  bestows
invasive abilities of breast cancer cells as well as triggers distant metastases via tenacious stimulation of STAT3 in
cancer cells [104].

13. MDSCS AND CANCER ANGIOGENESIS

Angiogenesis,  the  sprouting  of  new  blood  vessels,  happens  at  distinctive  phases  during  embryonic  formation,
physiological activities like wound healing and reproduction. Angiogenesis also occurs in several diseases condition
such as inflammation, cancer development, and metastasis [119, 120]. An earlier study indicated that neovascularization
appears around cancers. In this study it was postulated that the sprouting of new blood vessel is a prerequisite source of
nutrients and oxygen to cancer cells during exponential cancer growth [121]. A current study has shown that new blood
vessels arise from antecedent vessels via stimulation, proliferation and migration of endothelial cells [122]. It is now
clear  that  Vascular  Endothelial  Growth  Factor  (VEGF)  and  basic  fibroblast  growth  factor  (bFGF)  trigger  the
proliferation and migration of innately inactive endothelial cells leading to the development of new vessel structures
during embryonic formation and cancer development [119, 123]. Vasculogenesis is the amalgamation of new blood
vessels from specific endothelial cells or progenitor cells. Initially, vasculogenesis was assumed to be limited to the
development of the preliminary vascular tree during embryonic vascular formation [119].

Kujawski  et  al.  were  among  the  first  researchers  to  demonstrate  that  MDSCs  might  actively  partake  in  cancer
angiogenesis. They indicated that MDSCs actively triggers STAT3, which in turn increases the secretion of numerous
angiogenic genes [124]. It is now obvious that VEGF a pro-inflammatory growth factor triggers angiogenesis during
tumorigenesis. It is also now clear that VEGF contributes significantly to poor cancer prognosis. Therefore, tumors that
generate extreme levels of VEGF will  usually have a poorer prognosis.  A study showed that VEGF blocks nuclear
factor kappa light-chain-enhancer (NF-κB) stimulation which in turn inhibits DC advancements although concurrently,
they facilities MDSC buildup [125]. It has been demonstrated that MDSCs secretes VEGF receptor empowering VEGF
to serve as a chemoattractant for MDSCs. Nevertheless, Kusmartsev et al demonstrated that ROS generated by MDSCs
amplifies oxidative stress which in turn increases MDSC secretion of VEGF receptors [126]. In solid tumors, however,
so many factors actively partake in oxidative stress. The most influential among this factor is cancer microenvironment
because  it  determines  the  responsiveness  of  MDSCs  to  VEGF.  Kujawski  et  al.  further  explained  that  during
tumorigenesis besides tumor cells, MDSCs themselves generate VEGF which in turn triggers an autocrine feedback
loop that maintains MDSC amassments [124].

Mucha et al.  demonstrated that cancer cells administered with IL-28 before and during their experiment for 6 h
triggered  3D  vessel  sprouting  by  endothelial  cells  [127].  An  earlier  study  had  indicated  that  IL-28-mediated
amplification  of  VEGF-C  and  IL-18  secretion  in  cancer  cells  [128].

Mucha et al further indicated combined culturing of HUVECs with control tumor cells or with IL-28 alone for 6 h
triggered little endothelial cell bifurcations. They concluded that prolonged stimulation may trigger IL-28 cancer cells
to  secretion  of  angiogenic  factors  resulting  in  angiogenesis  [127].  Therefore,  MDSCs  release  IL-28  which  in  turn
triggered cancer angiogenesis predominantly via an upsurge in expressing angiogenic proteins in cancer cells [127].
Studies  have  shown that  MDSCs  facilities  cancer  angiogenesis  by  generating  angiogenic  factors  as  well  as  matrix
degrading enzymes like VEGF and MMP-9 [129, 130].

A Study has further indicated that unceasing upsurge of VEGF in the peripheral blood leads to an upsurge in the
generation  of  immature  Gr-11  myeloid  cells.  Furthermore,  sustained  extreme  concentration  VEGF  resulted  in
substantial blockade of DC formation [131]. Moreover, researches demonstrated that the upsurge of VEGF is linked to
the blockade of the movement of transcription factor NF-κB in bone marrow progenitor cells [107, 125]. Studies have
also shown that management of patients with metastatic renal cell cancer with a VEGF specific inhibiting antibody
avastin  led  to  a  reduction  in  the  size  of  CD11b1  VEGFR11  subgroups  of  MDSCs  in  peripheral  blood  [107,  126].
Nevertheless, blockade of the responsibilities of MMP-9 in cancer-bearing mice reduced the quantity of MDSCs in
cancer mass and spleen as well as led to a substantial deferment in the growth of extemporaneous NeuT cancers [72].
Wang et  al  also  demonstrated  that  surgery-triggered CD11b1 CD331 HLA-DR– MDSCs vigorously  accelerated  to
cancer angiogenesis as well as facilitated the generation MMP-9 and VEGF [107].
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14. THERAPEUTIC POTENTIALS OF MDSCS IN CANCER

Studies  have  shown  that  MDSC  provides  double  discrete  beneficial  curative  potentials.  In  cancer  individuals,
particularly  in  those  taking  immunotherapies,  the  outcomes  of  MDSC  are  normally  disadvantageous  therefore
intermediation  should  be  angled  at  diminishing  the  consequences  of  MDSC  [12].  This  can  be  accomplished  via
terminating their activities, via lethal stimulating myeloid differentiation, via blocking or diminishing MDSC growth, or
via blocking their function [12]. Studies have shown that MDSC differentiation to macrophages or DCs can be attained
via  clinically  accepted  medications  such  as  vitamin  D3  or  derivatives,  and  vitamin  A  or  derivatives  like  All-
Transretinoic Acid (ATRA). It is clear that the use of ATRA enriches the anti-cancer outcomes of cancer vaccines in
cancer-bearing  mice  [12,  132].  Also,  it  decreases  the  buildup  of  MDSC  and  enhances  antigen-specific  immune
responses  in  patients  with  renal-cell  carcinoma  [12].

Furthermore, inhibiting pathways that contribute to MDSC development, such as those of VEGF and SCF, may also
decrease MDSC buildup. Studies have proven that sunitinib a clinically accepted tyrosine kinase inhibitor that blocks c-
kit, VEGFR, PDGFR, Flt3, CSF-1 and RET pathways, decreases MDSC buildup and prohibited T- cell activation and
Treg expansion in cancer bearing mice, and it was linked to a diminution in the quantity of MDSC and a reversal of
CD4+CD25hiFoxp3+ Treg cell elevation in patients with renal cell carcinoma [12, 133, 134]. Also, inhibition of PGE2
generation by COX-2 inhibitors decreased the development of MDSC and blocked cancer growth in cancer-bearing
mice [12].

It  is  also  now  clear  that  MDSC  can  be  destroyed  with  radiotherapy,  monoclonal  antibodies  targeting  myeloid
markers or  chemotherapeutic medications.  Gemcitabine or  5-fluorouracil  has proven to effect  in destroying MDSC
while conserving the quantities of T or NK cells, which improves anticancer immune responses in cancer-bearing mice
[12,  103,  135].  Studies  have  shown  that  blockade  of  enzymes  such  as  nitro-aspirines  (NO-aspirines)  and
phosphodiesterase 5 inhibitors led to cancer reduction. NO-aspirin inhibited both iNOS and arginase actions in cancer-
associated MDSC. It is evidenced that aspirin blocked arginase, while iNOS was blocked by the NO expressed by the
medication  [12,  136].  It  is  also  clear  that  NO-aspirin  also  has  antioxidant  action  and  has  proven  to  decrease  the
indigenous  generation  of  peroxynitrites,  known  mediators  of  the  immune  suppressive  consequence.  Nevertheless,
blockade  of  the  generation  of  PGE2  by  celecoxib,  a  non-steroidal  anti-inflammatory  medication  that  inhibits
cyclooxygenase 2 (COX-2) action, prohibited chemical stimulation of huge abdominal cancers as well as a decrease in
arginase-1  and  iNOS  secretion  and  the  number  of  MDSC  in  the  spleen  of  cancer  bearing  mice,  together  with  a
reinstatement of CD4+ cell quantities and functionality [12, 137].

CONCLUSION

MDSC  contributed  to  cancer  immune  suppression  via  a  TLR-4  receptor  and  Lipopolysaccharideas  (LPS).
Furthermore, MDSC contributed to cancer development via MMPs (MMP-9 and MMP1-12) as well as RAGE. In the
cancer microenvironment, HMGB1-driven MDSC amassment expedites cancer development and metastasis via PMN-
MDSCs, macrophages,  DCs and Immature Myeloid Cells  (IMC).  Further HMGB1 intermediation with MDSCs via
RAGE and/or TLR-4 leads to cancer development. Also, MDSCs have already proven potent in some cancers and are
currently been used as treatment options although further studies are needed in some other cancers.
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