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Abstract: This paper presents a brief review of techniques used to allow evolutionary algorithms to adapt to optimization problems
in dynamic environments, through exploration of the control parameters of genetic algorithms as well as genotypic interpreters. A
description of some of the most  used evolutionary techniques is  included,  with major emphasis on genetic algorithms and their
relationship with the problem of adaptation to the environment. The article also discusses state used models to tackle these kinds of
problems, including self-adaptation and genotype- phenotype mapping.
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1. INTRODUCTION

NP-complete problems are hard enough to solve. However,  in reality many problems not only pose a structural
complexity in their underpinnings, but also present dynamism over time. The objective function is bound to change -
stochastically  or  otherwise  -  and  this  situation  lays  additional  difficulties  to  algorithms,  because  the  search  space
variations further hinder their exploration and exploitation abilities. In this context, this paper presents some alternatives
to cope with dynamic environ- ments in the setting of evolutionary computation, in particular, genetic algorithms. The
alternatives considered in this paper due to their relevance are adaptation, self-adaptation and the mapping between
individuals and their genetic information also known as genotype-phenotype mapping.

This paper presents a review of some of the most important works regarding adaptation, self-adaptation and the
concept of representation. A brief overview of evolutionary computing is presented first, then in section 3 the details of
origin,  of  adaptation,  self-adaptation  and  genotype-phenotype  mapping  are  presented,  in  section  4  it  is  presented
reflections and con- siderations regarding performance of each of previos concepts discussed. In section 5 final remarks
are presented.

2. EVOLUTIONARY ALGORITHMS

Research works from Darwin,  Mendel,  and Lamarck about  genetics  and biology are the foundation over  which
evolutionary computing has stemmed. Evolutionary computing is a group of techniques for problem solving that mimic
the mechanisms found in nature. Evolutionary algorithms are some of the newest research fields in this area. A quick
glance evolutionary algorithms (evolutionary strategies, evolutionary programming and genetic algorithms) is included
below.

Evolutionary  algorithms  are  a  group  of  stochastic  and  iterative  techniques  for  problem  resolution,  its  main
characteristic  being that  it is  based on  a population  of feasible  solutions  instead of  a single  point.  An  evolutionary
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algorithm  uses  iterative  evolutionary  mechanisms  inspired  in  biology  such  as  natural  selection,  reproduction,  and
mutation  to  generate  new  sets  of  individuals  (generations),  in  hopes  of  producing  candidates  that  converge  to  the
problem solution.

2.1. Evolutionary Strategies

These strategies were invented by the pioneer of evolutionary computation, Ingo Rechenberg. Its main distinction is
the  use  of  real  numbers  for  encoding individuals  and  the  use  of  mutation  as  its  main  evolutionary  operator.  These
techniques were mainly applied by Rechenberg himself to design aerodynamic surfaces.

2.2. Evolutionary Programming

They were invented by Lawrence J. Fogel and are based on finite state machines 1 and use the mutation operator to
evolve their structure and behavior.

2.3. Genetic Algorithms

They are the most used and studied evolutionary meta-heuristics. The idea is to represent candidate solutions as a
chromosome in which genes may have a series of expression values (alleles). The evolution is done by means of basic
operators such as selection, in which the environment selects the fittest representatives (with respect to the objective
function), crossover, in which genetic material is exchanged to form a new individual, and mutation, which changes the
allele due to external factors.

These  algorithms  were  originally  proposed  by  John  Henry  Holland  in  1975  and  refined  by  several  theorists,
including David Goldberg.

2.4. Genetic Programming

It is an adaptation of genetic algorithms running over a predefined solution space consisting of computer source
code. Programs themselves are represented using trees that can contain functions, operators and values. This technique
was proposed by John Koza in 1990.

2.5. Taxonomies of Adaptation in Evolutionary Algorithms

Adaptation within evolutionary algorithms means, in a wide sense, incorporating feedback from the performance of
the algorithm in a particular environment in order to modify parameter values or evolutionary mechanisms as a function
of time. Hence, adaptation methods produce time-varying parameters that can operate on different levels. In this area,
one of the the most known works is Hinterding et al. [1]. This paper classifies many adaptation methods using a 4 × 4
matrix, where X-Y represents the kind of adaptative method, X represents structure level and Y represents time level,
using * when represent all levels, for example *-S (static level) represents E-S, P-S, I-S and C-S.

Table 1. Adaptative methods classification.

Static Deterministic Adaptive Self-Adaptive
Environment S E-D E-A E-SA
Population S P-D P-A P-SA
Individual S I-D I-A I-SA
Component S C-D C-A C-SA

In terms of adaptation mechanics, if the parameters are static  (*-S) then its value is adjusted “manually” by the
programmer. This is a complex task as it can affect the performance in a negative way, and is time consuming and does
not guarantee good performance throughout the simulation. In deterministic adaptation (*-D), a heuristic rule is used to
produce  variation.  This  kind  of  method  does  not  incorporate  algorithm  feedback,  but  instead  relies  on  preset
deterministic  functions.  In  this  case,  the  parameter  change  is  generally  a  function  of  the  number  of  generations
executed. If the scheme is adaptive (*-A), the parameters are adjusted by incorporating feedback from the algorithm in
the  rule.  Finally,  self-adaptive  mechanics  (*-SA)  imply  that  parameters  themselves  are  encoded  as  a  part  of  the
genotype of the individuals, allowing evolutionary procedures to operate on parameter values. The hypothesis is that
better parameter values will produce fitter individuals, which will in turn help propagate  these parameter  values among

1 One can think of a finite state machine as a read-only Turing machine in which the head can traverse the tape from left to right.
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future generations.

In terms of at what level adaptation occurs, Hinterding identifies four: environment-level adaptation (E-*), in which
the fitness  function changes as  a  result  of  niching or  other  considerations;  population level  (P-*),  where parameter
variations  affect  all  individuals  equally,  or  when  several  populations  are  used  in  parallel  as  a  means  of  adapting
parameters (such as mutation rates); at the individual level (I-*), when adjustments are performed at the individual level
and resulting parameters apply only to that individual (this is the most prominent usage in self-adaptation); and finally
at the component level (C-*), where the modified parameters are specific to a given gene of a more complex individual.

3. ADAPTATION, SELF-ADAPTATION AND GENOTYPE-PHENOTYPE MAPPING

This section summarizes a sample of the papers that have been produced regarding adaptation, self-adaptation and
genotype-phenotype in the past twenty years.

3.1. Adaptation and Self-adaptation

While adaptation and self-adaptation have been explored over most of the genetic algorithm components, by far the
most studied parameter has been the mutation rate. In fact, Ingo Rechenberg proposed the first deterministic adaptation

rule for the mutation parameter, known as the rule. In essence, in each iteration of the algorithm, both the number of
successful  mutations (those which improve fitness)  and the number of  unsuccessful  mutations (those which do not
improve fitness) are counted. Rechenberg states that the optimal ratio of successful mutations must be approximately ρ

= ,  in such a way that,  if  the ratio of a particular generation is greater than ρ,  then it  is  necessary to decrease the
mutation rate µin order to allow exploitation; if, however, the ratio is below the mentioned threshold, mutation rate
should be increased to incentive exploration of the solution space. Additionally, the same work proposes the idea of
coupling the evolution of an individual with its corresponding mutation rate. This is the basic idea of self-adaptation as
currently understood and as defined in this document.

In 1992, Thomas Back questioned whether previous works, which were focused in finding an “appropriate” (fixed)

value for µ, were appropriate (such as Schaffer’s proposal of µ =  where N is the number of individuals and L the

length of the chromosome, and other authors’ proposal of µ = ).

Back states that a different mutation ratio per individual, encoded as part of the genotype, can yield better results, by
exposing  the  parameter  to  evolutionary  changes  as  a  result  of  selection  and  genetic  operators.  Back  compared  a
traditional, extinctive genetic algorithm with a self-adaptive mutation rate algorithm over different test functions and
showed substantial improvements in algorithm performance.

Potential limitations of self-adaptation are also shown in works such as Rudolph [2], which shows that an elitist
algorithm with Rechenberg’s rule has premature convergence to a local optimum with positive probability, even using a
infinite horizon of time, and proposes a modification that allows convergence to global optima.

A “canonical” version of a self-adaptive genetic algorithm is modeled and theoretically shown to converge using an
extension of the Markov chain model in the work of Agapie [3].

Different features of self-adaptation in evolutionary strategies are explored in Boumaza [4]. The author also studies
the correlation between movements  of  optima and adaptation of  the mutation step.  Also,  this  study reinforces how
having a higher mutation parameter value in the exploration phase of the algorithm is more beneficial (to incentivize
search of a wider portion of the space). In contrast, in the exploitation phase a lower mutation parameter value is desired
to allow exploitation of better search directions.

Examples  regarding  self-adaptive  genetic  algorithms,  where  the  performance  is  not  improved  (with  respect  to
canonical  genetic  algorithms)  on  dynamic  environments  are  presented  in  Rand  and  Riolo  [5].  The  changing
environment is provided by a test suite called Shaky Ladder Hyperplane-Defined Functions. Several alternatives of the
same model are explored; the first  one, a lower bound for the mutation parameter is not established, allowing self-
adaptation to gradually reduce the parameter value to zero leading to diversity loss. Even after imposing a lower bound
and tweaking the  algorithm,  the  self-adaptive  model  is  consistently  outperformed by the  traditional  fixed  mutation
genetic  algorithm.  The  reasons  cited  by  the  authors  revolve  around  the  fact  that  a  genetic  algorithm in  a  dynamic
environment should be able to select among high and low µ values along the execution; in average if µ is large, it is
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possible that the algorithm finds an individual with a low mutation rate, and if that individual has good fitness, then it
will  probably  generate  more  individuals  with  low  µ,  decreasing  the  overall  mutation  rate  average;  however,  it  is
improbable that an algorithm with low µ could generate many individuals with high probability of mutation and hence
transition from exploitation to exploration easily (such as in the case when the algorithm is atop a local optimum). A
suggestion  provided  by  the  authors  is  to  tweak  self-adaptation  in  order  to  be  able  to  produce  high  values  of  µ  at
different  stages  of  the  execution  process  (for  example,  having  a  Boolean  allele  representing  one  of  two  possible
mutation rates).

Similar results that those shown by Rand and Riolo [5] in terms of the hurdles of self adaptation to improve the
performance of the algorithms on certain environments are observed in Breukelaar [6]. Breukelaar reached the same
conclusion and indicated that mutation rate should be allowed to be increased or decreased with equal probability.

Examples of self-adaptation for crossover can be found in Kramer and Koch [7] where the authors develop versions
of  commonly  used  crossover  operators  with  self-adaptive  control  parameters.  A  propose  of  the  use  of  a  crossover
operator named simulated binary reproduction (SBX) on real genetic algorithms is presented by Deb and Beyer [8].
The purpose is to obtain similar results as evolutionary strategies, but using genetic algorithms. In this case, if parents
are away from each other (with respect to the Euclidean distance) then there is a high probability that offspring will also
be distant from each other (and vice versa). The operator is in function of a parameter η > 0. If η is big, the probability
of  generating  similar  children  is  very  high.  Using  this  self-adaptive  operator,  diversity  of  offspring  solutions  is
controlled by diversity of parents.

The distinction between adaptation and self-adaptation explained in the context of the crossover operator is studied
in Esquivel et al. [9]. The basic hypothesis of self-adaptation is that counting with fitter solutions also produces good
values in the parameters. That work uses a genetic operator known as multiple crosses per couple (MCPC) in which the
number of crossovers allowed per individual is encoded in the chromosome. As conclusion, this paper shows benefits
over several test functions in terms of performance when self-adaptive number of crossovers is used compared to a
fixed number of crossovers.

Similar results are obtained via the design of self-adaptive crossover operator, specifying rules such as preservation
of the statistical moments of the population distribution and the degree of diversity in future offspring in Kita et al. [10].
As result of this work, Uniformly unimodal distribution crossover(UNDX) is defined, exhibiting features comparable
with those of evolutionary strategies over a range of test functions.

The size of the population has been also subjected to self- adaptation. The role of population in the performance of
the algorithms: a small size does not allow enough diversity, producing premature convergence is shown in Lobo and
Lima [11]; also this study shows that a large populations hinder the computational efficiency of the algorithm without
significant gain in performance; furthermore, if the algorithm does not consider mutation, then the genetic diversity is
produced entirely by the population. The authors explore different schemes and produce a series of recommendations
regarding adaptive population adjustments.

Adaptation  schemes  have  also  been  explored  in  the  context  of  distributed  genetic  algorithms.  In  particular  in
Bemtsson and Tang [12] a model based on three genetic algorithms in parallel, one denoted DGA with n islands of size
d, another called DGA1 with 2n islands of size d and another called DGA2 with n islands of size 2d. If the algorithm
DGA converges, execution is terminated; otherwise, the parameters of DGA are tweaked based on the parameters of the
winning algorithm, and the fittest individuals are seeded into the remaining algorithms for reinitialization.

A treatise on how selection, mutation, and crossover benefit the population diversity when they become adaptive is
developed in McGinley et al.  [13]. The population diversity  measure is formally defined to be equal to the empiric
coefficient of determination of the population fitness, and weighted population diversity, which takes into account the
relative  aptitude  of  each  phenotype.  The  results  indicate  that  the  adaptive  concept  is  useful  mainly  to  improve  the
exploration phase of the search.

The issue of *-A adaptation can be reviewed in full detail in several other articles, such as Uyar and Eryigit [14],
where an adaptive evolutionary strategy (over the mutation parameter) is used in a context of constrained optimization.
The algorithm contains two parameters of mutation, one for 0-valued loci and the other for 1-valued loci, and they adapt
with respect to the number of successful individuals containing those particular features in each loci. The contribution
of  Whitacre  et  al.  [15,  16]  lies  in  the  exploration  of  different  crossover  operators  that  are  selected  by  an  adaptive
mechanism.
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Other works that can be reviewed related to these topics are Pytel et al. [17] and Tang et al. [18], Tang focus on
population  diversity  on  Island  Model  Parallel  Memetic  Algorithm,  consider  the  use  of  online  entropy  measure  to
adapting the local search frequency of parallel memetic algorithm, the dynamic local search frequency can be defined in
the online entropy ratio given by the population entropy measure by generation. Hansen [19] formulate a real code
evolutionary algorithm with truncation selection and with self-adaptive using a mutative strategy parameter control of
one global step-size to lead a point symmetrical distribution of the complete population before the selection operator.

Wickramasinghe et al. [20] worked in an autonomous selection for individuals to lead the survival and reproduction
independently, without any central control, adding adding an adaptation mechanism that allow individuals regulate their
own selection pressure. Curran [21] focuses on genomes for evolutionary algorithms, he defined three genomes: one
containing the solution to the NK landscape, one encoding imitation probability and, finally, one encoding teaching
rounds; all three genomes are allowed to undergo the processes of crossover and mutation. Rossi et al. [22] worked in
two mutation operators, the first one, Kmut-N mutation operator, sets the values of the gens ignoring their previous
values  and  the  second  one,  Kmut-P  mutation,  is  through  a  gaussian  perturbation,  this  generate  values  close  to  an
estimation, consider two terms, the fist one is the perturbation direction and the second one is the perturbation range
[23].

Wang  et  al.  [44]  used  an  improved  immune  genetic  algorithm to  optimize  the  parameters  in  a  Support  Vector
Machine to solve landscape design that refers to an independent profession and a design and art tradition combining
nature  and  culture.  Qingyang  et  al.  [24]  worked  on  an  adaptive  learning  rate  elitism  Estimation  of  Distribution
Algorithm  (EDA),  a  kind  of  Evolutionary  Algorithm,  combining  chaos  perturbation  (ALREEDA)  to  improve  the
performance of traditional EDA to solve high dimensional optimization problems. Chen-Yang et al. [25] focused on a
hybrid algorithm called Hybrid Algorithm-Ant Colony Algorithm Genetic Algorithm (HA- ACAGA) to find optimal
solutions for users on dynamic web service composition where user’s personal preference is different and web services
are massive and dynamic; they used a function to control individuals and a function to update pheromones.

Desirable  properties  for  selecting  different  genetic  operators  are  expained  by  Thierens  [26].  The  conditions
presented  are:

If several operators are available, they should all have a positive probability of being selected at any stage of the1.
process.
To maximize the performance of the search, one must apply the best operator possible in a given step, such that2.
the previous property still holds.
When a new operator becomes the best available one, operator selection probabilities must be updated as soon3.
as possible to reflect this.
When all operators are performing similarly, their selection probabilities should be equal.4.

Finally, two comprehensive reviews in the field of evolutionary adaptation can be found in Thierens [27] and in
Meyer-Nieberg and Beye [28], these works are compared in the Table 2 in the Appendix.

3.2. Representation and Genotype-Phenotype Mapping

The main idea around genotype-phenotype mapping revolves around the fact that the vast majority of changes at the
genotype level are phenotypically neutral, i.e., several genotypes encode the same phenotype. This observation is based
on  the  biomolecular  research  of  Mooto  Kimura  in  1968  and  later  works  by  Banzhaf  in  1994.  This  result  is  very
important  in  the  field  of  the  genetics  and  evolutionary  theory  and  it  is  known  as  the  neutral  theory  of  molecular
evolution.

The applications of non-trivial genotype-phenotype mappings in evolutionary computing were first used in genetic
programming. In Korejo and Yang [29],  where, in the context of creating valid programs as individuals,  instead of
forcing closure at the time of individual generation and evolution, the use of a genotype- phenotype mapping which
repairs genotypes containing invalid syntax with operators or functions that are nearby to that individual in order to
conform a valid program (with respect to the Hamming distance, for example), is explored with favorable results.

A discussion about the fact that evolutionary search is influenced by the environment is discussed in Keller and
Banzhaf [30]. The authors explain the existence in nature of synonym codons that produce the same phenotype, but
vary greatly in their  mutability.  Thus,  having synonyms in the genotype population (in order to be able to perform
genetic operators over them) allows for better adaptation to the environment.
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The role of  the genotype-phenotype mapping in genetic programming is  explored in the context  of  information
recovery in Vargas et al. [31]. The performance of a genetic program with a binary tree and a genetic algorithm with a
non trivial genotype-phenotype mapping is compared. In simple problems, both algorithms are comparable, but in more
complex instances the genetic algorithm outperforms the canonical genetic program; this is attributed to a better ability
to escape from local optima.

The role of the synonyms is analyzed in more detail by Martn and Shackleto [32]. This bibliographic review argues
that not all types of redundant representations are useful in the context of the performance of evolutionary algorithms. A
representation is defined like synonymously redundant if the genotypes associated to same phenotype are similar. This
concept  is  formally  defined  in  terms  of  the  sum  of  all  distances  (relative  to  a  metric  d  (x1,  x2))  between  pairs  of
genotypes  obtained  from  the  set  of  genotypes  that  codifies  a  particular  phenotype.  Also,  if  every  phenotype  is
represented by the same number of genotypes,  it  is  said that the representation is uniformly redundant.  Lastly,  two
genotypes are neighbors if their distance is the minimum possible (a small fixed number). If neighboring genotypes en-
code  neighboring  phenotypes,  it  is  said  that  the  representation  has  high  locality  (a  kind  of  “continuity”  in  the
representation function). It is shown that simple problems solved with a genetic algorithm with low locality yield bad
performance;  also,  genetic  operators  do  not  seem  to  work  appropriately  if  the  representation  is  not  synonymously
redundant. The paper comes to the conclusion that non injective genotype-phenotype mappings are useful when the
optima are over-represented in the genotype space corresponding to the initial population (and vice versa). Finally, if no
prior information about the problem is available, a uniform, synonymously redundant representation is recommended.

Another example of redundant mappings that improve performance of genetic algorithms is shown in Rothlauf and
Goldberg [33]. This paper explores three different representations for the same scheduling problem in real-time parallel
applications, which allow failing to meet certain deadlines or deliverables. A particular non injective representation
presents better performance than others. An adaptation of the genotype-phenotype mapping under the context of the
project scheduling problem with resource constrains is presented in Dandass and Bugde [34]. By using a locus  that
indicates one of two possible specific individual mapping functions within the individuals genome. As a result,  the
paper  shows  performance  improvement  on  several  other  heuristics  mentioned  in  the  literature,  such  as  simulated
annealing, traditional genetic algorithms, and tabu search.

A solution to the problem of optimizing investment portfolios is exhibited using a novel representation based on
threes (inspired by concepts of genetic programming representations) instead of a classical array-based representation
which models the weights of assets in the portfolio is proposed in Hartmann et al. [35]. This work shows that using tree
representation improves the solution quality.

An adaptive mechanism of selecting a representation is explored in Aranha and Iba [36]. The concept developed is
denoted states- based evolutionary algorithm (SEA). The algorithm chooses variants of a particular representation over
time. Execution of a two-state SEA shows improvement in algorithm results for some test functions and the authors
assert that changing the representation during the search will yield better performance than fixed representations.

People who work with hybrid algorithms using phenotype mapping, Ning et al. [37] and Ning et al. [38] worked
with a hybrid algorithm called improved double chains Quantum Genetic Algorithm which realized the diversity and
parallelism of the population through replacing the chromosome coding with quantum bits probability amplitude and
searching with the quantum gates to solve problems such as Flexible Job-Shop scheduling problem and Vehicle Routing
Problem.

Finally, some other research papers of interest related to the problem of phenotype representations can be found, for
example, in Ning et al. [39] where they used three different neural network representations and are compared using a
coevolutionary  setup,  these  representations  are:  a  direct  weighted  mapping  of  input  features  to  a  heuristic  value,  a
complexifying  neural  network  using  NeuroEvolution  of  Augmenting  Topologies  (NEAT),  and  an  implicit
representation  based  on  properties  of  genetic  regulatory  networks.  Other  work  is  Reisinger  and  Miikkulainen  [40]
where they used a new class of representations for real valued parameters called Center of Mass Encoding (CoME).
CoME is based on variable length strings and it allows the choice of redundancy degree of the genotype-phenotype map
and the choice of redundancy distribution for the space of phenotypes. In the Appendix, Table 3 shows a compilation of
research about genotype-phenotype mapping and a comparison between them.

4. REFLECTIONS ABOUT PERFORMANCE IN TIME-VARYING ENVIRONMENTS

Bibliographic review of adaptation and self-adaptation seems to indicate mixed results regarding performance of
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modified evolutionary algorithms in dynamic environments. There is still doubt regarding the particular aspects and
mechanics of a self-adaptive algorithm that yield better performance than a traditional genetic algorithm, and whether
the proposed mechanism is robust enough to detect changes in the solution space.

Most likely, the prime feature to be analyzed in order to be successful using a self-adaptive algorithm is appropriate
balance  between  exploration  and  exploitation  phases  during  the  search.  During  exploration,  it  is  desirable  that  the
algorithm  generates  sufficient  diversity  in  order  to  fully  explore  search  directions;  the  initial  population  plays  an
important role as well as the mutation parameter in this stage. In general, it can be observed that a larger initial µ is
preferred. During exploitation phases, the algorithm has already found a sequence of solution candidates, and it seeks to
refine  those  candidates  to  find  the  (quasi)  optimal  solution.  In  this  phase,  the  crossover  operator  seems  to  obtain
relevance, and decreasing (but not eliminating) variability of the search by means of some mechanism is needed such as
decreasing the value of µ. As it was pointed out in Rand and Riolo [5] and Breukelaar and Back [6], it is important that
the algorithm can still generate certain number of candidates away from the currently explored peak. This reduces the
probability of being stuck in local optima.

In the context of time dynamic problems, the role of the mutation seems to take special importance. During the
search, the algorithm needs to switch between exploration and exploitation multiple times, and it must react fast enough
to avoid being stuck. The parameters that control genetic diversity (such as µ) need a lower bound that can prevent
decrease of genetic diversity that can lead to premature convergence.

The selection mechanism can affect the algorithm performance as well. Selective pressure can lead to premature
convergence. This is especially true for extinctive selection mechanism, since ergodicity of the process can be lost.

The role of the representation and genotype-phenotype mapping seems to be determinant for a good performance. It
should favor high locality and synonymic redundancy. Performance of synonymously redundant representations might
be enhanced by seeding the initial population with genotypes that represent “best estimates” or a prior guesses of the
global optimum.

Some articles seem to lead to performance improvements when several variants of a particular genetic operator
(such as crossover), or a particular representation, exist, and selection of which variant to use on each generation and/or
individual is made via adaptive or self-adaptive mechanisms. For this purpose, it seems important to ensure “diversity”
of these operators or representations through positive probabilities of selection at any stage of the process, as well as
probabilities that reflect corresponding fitness gains or losses by using each variant.

FINAL REMARKS

After  reviewing  and  analyzing  the  state  of  the  art,  there  is  still  wide  room  for  research  both  theoretical  and
experimental regarding self-adaptive mechanisms and representations for genetic algorithms in order to consistently
solve hard problems, and particularly problems with time-varying fitness landscapes. Many research lines can originate
from the review of the bibliography.

The classification developed in mentioned works is too complete because it considers the characteristics of the pa-
rameters, and with the behavior of the values, and it classifies an algorithm according to adaptation type (deterministic,
static, adaptive, self-adaptive) and adaptation level(environment, population, individually or component).

Adaptation and self-adaptation have been explored over the majority of genetic algorithm components, but these
mechanisms do not have relevant improvements on all of them. The most considerable improvement is in mutation and
crossover operations, where rules or new genetic operators are specified to preserve the population distribution and a
degree of diversity in future offspring.

Adaptive and self-adaptive mechanisms have an advantage in the parameters that control diversity in individuals in
different process stages, to assure an exhaustive explorative search; and to adapt the results generated in time-dynamic
environments. Some disadvantages involve problems such as operator selection and the accurate adjustment in settings
for each operator,  because if  the value found by the mechanism is too low, such as mutation operator,  it  could not
ensure the diversity in whole process.

Genotype-phenotype  mapping  in  simple  problems  is  comparable  with  other  algorithms,  but  in  more  complex
instances is more efficient; regarding synonymous concept, not all types of redundant representations are useful. It is
necessary to have high locality to obtain good results, because in simple problems using genetic algorithm with low
locality always yield bad performance. If no prior information about the problem is available, it is recommendable to
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define  synonymously  redundant  representations;  these  representations  might  be  enhanced  by  seeding  the  initial
population  with  genotypes  that  represent  prior  guesses  of  the  global  optimum.

There  are  some  hints  to  implement  these  mechanisms  in  a  proper  manner  such  as  clearly  defining  the  balance
between  explorative  and  exploitative  searches  in  all  stages  of  the  algorithm,  to  bring  off  enough  diversity  to  fully
explore the solution space, and to decrease the probabilities of being stuck in local optima increasing the number of
individuals  far  away  from  the  neighborhood  where  the  exploitative  search  is  taking  place.  In  the  case  of  several
operators being available, it is necessary consider that all should have a positive probability of being selected at any
stage. One of them must apply the best operator possible in a given step to maximize performance. When an operator
becomes the best available, operator selection probabilities must be updated, and when all operators are performing
similarly, their selection probabilities should be equal.

Some  research  lines  can  be  the  combination  of  two  or  more  mechanisms  to  modify  several  operators  in  the
algorithm; to work in mechanisms to adapt others operators instead of mutations and crossover, combining mechanisms
working together in different adaptation levels at the same time. The genotype phenotype mapping has a favorable trend
with improvements in settings to obtain high locality in representations of genotypes and phenotypes neighbors, and to
define a synonymously redundant representation.
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APPENDIX

Table 2. Comparative table of adaptive self-adaptive strategies.

Technique Algorithm Operator Features
1/5 Rule GA Mutation -Successful mutations must be p=1/5 in a particular generation
Fixed M [41] GA Mutation -Based on 1/5 Rule
Modification Fixed M [2] GA Mutation -Based on Fixed M
Canonical version [3] GA Mutation -Using markov chain model to converge

Self-Adaptation features [4] GA Mutation
Exploration phase is more beneficial high mutation
Exploitation phase is more beneficial low mutation

Shaky ladder Hyperplane [5, 42, 43]
Defined Functions GA Mutation

Reduce value to zero of mutation parameter
Bolean allele represent one or two possible mutation rates
Produce high values of mutation at different generations

Based on Shaky ladder [6] GA Mutation Equal probability to allow mutation on different generations
Evolutionary mutation control
parameter [19] EA Mutation

Real code evolutionary algorithm with truncation selection and with self-
adaptive

Kmut-N and Kmut-P [22] EA Mutation

-Kmut-N mutation operator sets the values of the gens ignoring their
previous values
-Kmut-p mutation is a gaussian perturbation

Simulated Binary Reproduction (SBX)
[7] GA Crossover Crossover operator with self adaptive control parameters
SBX [8] GA Crossover Produce offspring between parents using euclidian distance

Multiple Crosses per Couple [9] GA Crossover
Number of crossovers allowed per individual is encoded in the
chromosome

Uniformly unimodal distribution
crossover [10] GA Crossover

Rules such as preservation of statistical moments of the population
distribution and degree of diversity in future offsprings

HA-ACAGA [25] GA Population
-Use a function to control individuals
-Extra amount of pheromones are deposited on path found

Memetic Algorithm parameter control
[18] MA Population

Define a parameter to control diversity in the population for Parallel
memetic algorithm
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Technique Algorithm Operator Features

Adaptation in population [20] EA Selection

-Regarding survival and reproduction are taken by the individuals
themselves independently, without any central control.
-Adding an adaptation mechanism allowing individuals to regulate their
own selection pressure
-Algorithm enables individuals to maintain estimates on the size and the
fitness of the population

Immune genetic algorithm [44] GA Algorithm

-Describe solutions using symbolic coding and full binary tree in the
chromosomes
-Cross point can be selected from the intermediate nodes and the root
nodes
-Mutation operator is modified

Adaptive paramters for EAs [23] EA Algorithm

-is based on micropopulation evolutionary algorithm
-main mechanims: elitism and adaptive behaviour
-mechanism mixed on mutation, crossover and replacement operators
-3 adaptive paramters: ambient pressure (related with population), step
size por mutation operator (related with the number of variables) and
crossover balance

Estimation of Distribution Algorithm
[24] EA Learning Rate

-Adaptive learning rate with different learning rule
-Chaos perturbation and elitistm strategy

Different genomes encoding by
individuals [21] EA

Imitation
probability

-Each individual carries three genomes: one containing the solution to the
NK landscape, one encoding imitation probability and, finally, one
encoding teaching rounds
-All three genomes are allowed to undergo the processes of crossover and
mutation.

Table 3. Genotype-phenotype mapping research table.

Technique Algorithm Features

Keller [29] Genetic Programming
Use of a genotype-phenotype mapping which repairs genotypes containing
invalid syntax

Fernandez-VillicanasMartin [31] Genetic Programming

Fernandez-VillicanasMartin [31] Genetic Programming Genotype-phenotype
mapping in genetic programming is explored in the context of information
recovery

CastroAranha [35] Genetic Programming
Using tree representation improves the solution quality for optimizing
investment portfolios problem

Mora [30] Genetic Algorithm

Evolutionary search is influenced by the environment
Existence in nature of synonym codons that produce the same phenotype, but
vary greatly in their mutability
Having synonyms in the genotype population allows better adaptation to the
environment

Rothlauf [32] Genetic Algorithm

Not all types of redundant representations of synonyms are useful in the context
of the performance of evolutionary algorithms
Non injective genotype-phenotype mappings are useful when the optima are
over-represented in the genotype space corresponding to the initial population

Dandass [33] Genetic Algorithm

Explores three different representations for the same scheduling problem in
real-time parallel applications
Non injective representation presents better performance than others realized

TaoNing [37] Genetic Algorithm

The diversity and parallelism of the population through replacing the
chromosome coding with quantum bits probability amplitude and searching
with the quantum gates

Hartman [34]
Genetic Algorithm,Simulated
Annealing and Tabu search

Indicates one of two possible specific individual mapping functions within the
the individuals genome

Bercachi [36]
States-Based Evolutionary
Algorithm

Chooses variants of a particular representation over time, changing the
representation during the search will yield better performance than fixed
representations

Reisinger [39] Evolutionary Algorithm Use of three different neural network representations

Mattiussi [40] Evolutionary Algorithm
A new class of representations for real valued parameters called Center of Mass
Encoding

(Table 2) contd.....
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