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Abstract: A computationally fast and optimally smooth method for generating a probability density of y given x that 

models given data points is described and illustrated. This method interpolates in that the mean function intersects the 

points and the variance function is zero at the points. It is fast and optimal in that it is produced by the smallest number of 

maximally-smooth Gaussian radial interpolators for which the extrapolated density has the mean and variance of the 

classic linear model. 

INTRODUCTION 

 Cardinal interpolation refers to a class of recently-

introduced methods for generating probability densities of y 

given x that model given (x, y) data points [1-3]. A cardinal 

density interpolates in that it has a mean function which 

intersects the points and a variance function which is zero at 

the points. A cardinal density also extrapolates to the density 

of the classic linear model for which the mean function is the 

least squares line of the points. Cardinal densities have 

various optimality properties depending on their type, but 

typically they are non-Gaussian and thus may be regarded as 

generalizations of well-known Gaussian process densities 

[4]. 

 The generation of cardinal densities can be 

computationally intensive. This article describes and 

illustrates an interpolating cardinal density that is fast (not 

computationally intensive) and that has desirable optimality 

properties. 

MOTIVATION 

 Interpolating cardinal densities investigated to date [1-3] 

have all been generated using a weighted sum of a large 

number of basis functions. Each basis function has the form 

(although other forms could be used) of a line plus a sum of 

same-variance Gaussians, and there is one Gaussian for each 

data point with its mean at the point. The intercept and slope 

of the line differs for different basis functions, but for each 

basis function the Gaussian amplitudes are such that the 

points are interpolated (intersected) and the variance is such 

that the roughness of the basis function is minimized, where 

roughness has the classic integrated squared second 

derivative definition (although other definitions could be 

used). 

 Weights are assigned to the basis functions such that the 

cardinal density extrapolates to the density of the classic 

linear model for which the mean function is the least squares  
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line of the points and the variance function is quadratic. 

Since the basis functions are lines upon extrapolation (i.e., 

for large magnitude x), a straightforward Bayesian analysis 

yields the weights for a large number of lines with intercepts 

and slopes uniformly spaced over large domains. 

 In this analysis the classic linear model density p(y|x, D) 

of y given x and the points D is p(y|x, D) =  p(y|x, w) 

p(w|D) dw, where w is a vector of weights. Here p(y|x, w) is 

chosen to be a Gaussian proportional to exp[–(y – a – 

bx)
2
/(2

2
)], and by Baye’s rule p(w|D) is proportional to 

p(D|w) p(w), where prior density p(w) is chosen to be 

uninformative and thus constant, and as a consequence of the 

Gaussian form for p(y|x, w), p(w|D) is proportional to exp[–

(yi – a – bxi)
2
/(2

2
)]. These stipulations enable analytic 

evaluation of the above integral, with the result that the 

classic linear model density is Gaussian with a mean that is 

the least squares line of the points and a variance that is the 

quadratic function 
2
 + 

2
/n + (

2
/ x

2
) x

2
, where x

2
 is the 

variance of the point x values. 

 With the above choices for the classic linear model, the 

above integral may be expressed in a “function space” form 

[4] proportional to (y – a – bx – c) · exp{–[ (yi – a – bxi)
2 

+ c
2
]/(2

2
)} da db dc, where the integrals are over infinite 

domains. This form shows that the classic linear model 

density consists of the average of an infinite number of 

“delta density lines” (i.e., a line for all possible choices of a, 

b, and c), where each line has the weight exp{–[ (yi – a – 

bxi)
2 
+ c

2
]/(2

2
)}. 

 In previous work [1-3], an interpolating cardinal density 

was obtained as a weighted average of a large number of 

basis functions, each formed by adding Gaussians to a delta 

density line (e.g., 27,000 lines formed from 30 uniformly-

spaced values of a, b, and c). This paper describes and 

illustrates a method that generates an interpolating cardinal 

density from the minimum possible number of lines, which 

(as shown below) is four, where each line has the same 

weight. The resulting fast cardinal interpolation density is 

not the same as the density obtained using a large number of 

basis functions. However, it is readily computed and has the 

all required properties, including the property that its four 
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point-centered same-variance Gaussian basis functions have 

minimal roughness. 

DESCRIPTION 

 A fast and optimal interpolating cardinal density may be 

generated as follows: 

1. Normalize the given points to have zero mean and 

unit variance in both x and y and to have the x axis as 

their least squares line. Thus, without loss of 

generality, the coordinates of the original points are 

linearly translated, rotated, and scaled so that the 

resulting points are (xi, yi), i = 1, 2, …, n, with xi = 

yi = 0, xi
2
= yi

2
 = n, and xiyi = 0. 

2. Find the minimal set of basis lines. The interpolating 

cardinal density extrapolates to the density for the 

classic linear model. For the normalized points this 

density has zero mean for all x and has the quadratic 

variance 1 +1/n + x
2
/n [4]. If this mean and variance 

are those of a set basis lines y = aj + bjx, j = 1, 2, …, 

m, then a mean of zero for all x requires aj = bj = 

0, and a variance of 1 +1/n + x
2
/n requires (1/m) aj

2
 

= 1 + 1/n, (1/m) bj
2
 = 1/n, and aj bj = 0. These 

equations require at least four basis lines, and the 

minimal set has the four basis lines given by (aj, bj) = 

(a, b), (–a, b), (a, –b), (–a, –b), where a = (1 + 1/n)
1/2 

and b = (1/n)
1/2

. 

3. Replace each of the four basis lines in the minimal set 

with the point-centered same-variance Gaussian 

radial interpolator that has least roughness. Thus y = a 

+ bx is replaced with f (x) = a + bx + Ai exp[–(x – 

xi)
2
/(2s

2
)], and similarly for the other three basis lines. 

Here the Ai are such that the points are interpolated 

and are therefore found, for a given s, by solving n 

linear equations in n unknowns, i.e., the Ai are such 

that yi = f(xi). Also, s is such that the integrated 

squared second derivative of f (x), which is a classic 

measure of roughness, is minimized, i.e., s is chosen 

to minimize - f (x)
2
dx. Thus there are m = 4 radial 

interpolators fj(x), each of which has distinct Ai and S. 

4. Find the mean, variance, and skewness of the 

interpolating cardinal density at any x as μ = 

(1/m) fj(x), 
2
 = (1/m) [fj(x) – μ]

2
, and  = 

{(1/m) [fj(x) – μ]
3
/

3
, where the minimal set m = 4 is 

used. Also, find the fast cardinal density of y given x 

as the standard skew-normal density p(y x) = (2 )
–1/2 

–1
 exp[–(x – )

2
/(2

2
)] · {1 + erf [2

–1/2
(x – )/ ]}, 

where = ( /2)
1/2

 
1/3 

[
2/3

 + (2 – /2)
2/3

] 
–1/2

, 

sign  = sign ,  =  (1 – 
2
)

 –1/2
,  = (1 – 2

2
/ )

 –1/2
, 

and  =  – (2/ )
1/2

. Note that the skew-normal 

density is a classic form that includes the Gaussian 

density as a special case but that allows asymmetry in 

the form of a smooth density “tail”. 

PROPERTIES 

 The fast cardinal density described above has the 

required properties: its mean function intersects the points,  

 

its variance function is zero at the points, and it extrapolates 

to the classic linear model density. Also, it is optimal in that 

it is generated using the smallest possible number of 

minimally rough Gaussian radial interpolators. Finally, it is 

computationally fast in that it requires only the solution of 

four sets of n linear equations in n unknowns (to determine 

the Ai for each radial interpolator) plus, using analytic 

evaluation of the roughness integral, the solution of four 

nonlinear equations, each in one variable (to determine s for 

each radial interpolator). 

 Previous versions of cardinal interpolation [1-3] could be 

computationally intensive because they used large numbers 

of basis lines with wide ranges of intercepts and slopes. In a 

Bayesian analysis this choice approximates uniform and thus 

uninformative prior probability densities for the intercept 

and slope parameters. For fast cardinal interpolation the prior 

density of these parameters is parsimoniously chosen so that 

only the smallest possible set, i. e., (a, b), (–a, b), (a, –b), and 

(–a, –b), that yields the required properties is employed. This 

choice differs from the uniform prior that employs an 

indefinitely large set of basis functions, and thus the fast 

cardinal interpolation density does not necessarily 

approximate cardinal interpolation densities formed by 

averaging a large number of basis functions. 

ILLUSTRATION 

 Fig. (1) shows three data points and their four radial 

interpolators. As described above, the points are normalized 

to have zero mean and unit variance in x and y and to have 

the x axis as their least squares line. Each radial interpolator 

is the sum of three Gaussians that extrapolate to one of the 

four basis lines, that have their means at the points, and that 

have the same variance, where this variance is such that each 

radial interpolator is maximally smooth, i.e., has least 

roughness. The four basis lines are such that their mean and 

variance are those of the classic linear model. 

 Fig. (2) shows the mean function and the mean function 

plus and minus the standard deviation function for the classic 

linear model and for fast cardinal interpolation. 

 Fig. (3) shows the fast cardinal interpolation density and 

the classic linear density at four values of x: 1/3, 2/3, 4/3, 

and 8/3 of the distance to the positive-point x value. Note 

that the fast cardinal interpolation density is skewed toward 

negative y up to the positive-point x, that is otherwise 

skewed toward positive y, and that the skew vanishes for 

large x. 

 Fig. (4) shows a communications signal consisting of 

thirty sample points that are normalized to have zero mean 

and unit variance in x and y and to have the x axis as their 

least squares line. As in Fig. (1), the points are interpolated 

with four (the smallest possible number) of least-rough 

Gaussian radial basis functions such that their mean and 

variance extrapolate to those of the classic linear model. The 

middle and bottom graphs show the standard deviation and 

the skewness of the basis functions. 
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Fig. (1). Three data points and four radial interpolators. The points are normalized to have zero mean and unit variance in x and y and to have 

the x axis as their least squares line. Each radial interpolator is the sum of three Gaussians that all extrapolate to one of four basis lines, that 

have their means at the points, and that have the same variance, where this variance is such that the radial interpolator has least roughness. 
The four basis lines are such that their mean and variance are those of the classic linear model. 

 

Fig. (2). The mean function and this function plus and minus the standard deviation function for the classic linear model and for fast cardinal 

interpolation. For the classic linear model the mean function is the x axis and the standard deviation is the square root of a quadratic function. 
For fast cardinal interpolation the mean function and this function plus and minus the standard deviation function all intersect the points. 
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CONCLUSION 

 Unlike previously-reported versions of cardinal 

interpolation, the method reported here is computationally 

fast in that it is generated using the smallest number (four) of 

radial interpolators needed to yield the required properties. 

These properties are that the mean function intersects the 

points, the variance function is zero at the points, and 

extrapolation is to the classic linear model density.  

 

 

 

 

 

Furthermore, fast cardinal interpolation is optimal in that 

each of the four point-centered same-variance Gaussian 

radial interpolators has least roughness. 
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Fig. (3). The fast cardinal interpolation density and the classic linear model density at four values of x, and the y values of the four radial 

interpolators at these x values. The first two x values are 1/3 and 2/3 of the positive-point x value and yield the top left and right plots; the 

other two x values are 4/3 and 8/3 of the positive-point x value and yield the bottom left and right plots. The fast cardinal interpolation 

density is skewed toward negative y in the top left and right plots (skewness of -.268 and -.430, respectively) and is skewed toward positive y 

in the bottom left and right plots (skewness of .469 and .211, respectively). The classic linear model density is Gaussian with zero mean in all 

plots. 
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Fig. (4). The top graph shows a communications signal consisting of thirty sample points that are normalized to have zero mean and unit 

variance in x and y and to have the x axis as their least squares line. As in Fig. (1), the points are interpolated with four (the smallest possible 

number) of least-rough Gaussian radial basis functions such that their mean and variance extrapolate to those of the classic linear model. The 
middle and bottom graphs show the standard deviation and the skewness of the basis functions. 
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