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Abstract: This paper describes extensions to the Linux Trace Toolkit next generation (LTTng), to trace the Xen 
hypervisor for efficiently tracing complete systems. LTTng is a low impact, modular, extensible, operating system tracer, 
while Xen is an hypervisor based on paravirtualization. Typically, one or several instances of Linux will run on top of the 
Xen hypervisor. The extended LTTng is able to trace all Linux instances and the hypervisor layer to give a global view of 
the system. 

An automated benchmark was created to measure the overhead imposed by tracing and Xen paravirtualization. It 
compares the performance of systems, with and without virtualization and tracing. The results obtained with different 
tests, using this procedure, are presented and show a negligible impact caused by tracing and a reasonable overhead 
caused by paravirtualization. Nonetheless, for some I/O intensive applications, the overhead imposed by paravirtualization 
is less negligible. 
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1. INTRODUCTION 

 With the proliferation of online services, server 
consolidation through virtualization is increasingly popular. 
Among the different virtualization solutions available, Xen is 
particularly interesting being open-source and low overhead. 
Xen is based on paravirtualization, where the operating 
system is ported to a software interface exported by the 
hypervisor. Typically, one or several instances of Linux 
ported to Xen will run on top of the Xen hypervisor. 

 Virtual machines have been used for more than thirty 
years to consolidate server applications, share existing 
resources and reduce costs [1]. In many cases, the powerful 
servers now available can adequately support several 
different applications, each possibly running in a different 
virtual machine. Various research prototypes and 
commercial products have been proposed for virtualization 
[2]. 

 In virtualization, a software layer called 'Virtual Machine 
Monitor' (VMM) manages shared resources. In Xen, the 
VMM is called hypervisor as it is located under the operating 
system (supervisor), and thus is more privileged [3]. Earlier 
systems usually emulated in software the virtual hardware on 
which to run the legacy operating systems. Emulation of 
resources is usually slower and in many cases difficult to 
implement. A more recent technique is paravirtualization [3]. 
In paravirtualization, the guest operating system is slightly 
modified to send hardware requests to the VMM instead of 
to emulated hardware. 
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 Xen [3] is an interesting open source product offered 
under the GPL license. Although Xen supports full-
virtualization as well as paravirtualization, this paper focuses 
on paravirtualization and modified Linux guest operating 
systems. In a typical setup, one or more virtual machines 
(DomainU) are created, depending on the needs, and a 
privileged domain (Domain0) directly accesses the physical 
devices. Hardware requests coming from DomainU virtual 
machines are received by the VMM, called the 'hypervisor' 
in Xen, and answered by Domain0. This indirection, through 
the hypervisor and Domain0, adds a delay which could be 
problematic in some real-time applications [4]. 

 The focus of the work presented here is low overhead 
detailed tracing of Xen and Linux systems. If simple 
profiling can efficiently provide a clear picture of the CPU 
usage in a program, detailed tracing is often required in order 
to really understand and characterize the performance of 
complex interactions between several applications and the 
operating system [5, 6]. Furthermore, when two layers are 
involved underneath the applications, (the operating system 
and the hypervisor), complete combined tracing in each 
virtual machine and in the hypervisor becomes even more 
valuable. 

 The objective of this research is to extend operating 
system tracing to support virtualization and then trace events 
in all layers from hypervisors, such as Xen, to the Linux 
operating system, running on both real and virtual systems. 
The combined information of events collected at the 
different levels will offer a global picture of the system 
behavior. Our first contribution is to extend the Linux Trace 
Toolkit Next Generation (LTTng)1 to support Xen and be a 
suitable alternative to Xentrace. The second contribution is 

                                                
1 http://ltt.polymtl.ca 
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the development of an automated performance benchmark 
which runs various realistic tasks under different configuration 
scenarios, in order to measure the tracing overhead. The 
overhead of each component and each alternative is evaluated 
under different configurations. The third contribution is the 
performance evaluation, conducted using the extended LTTng 
and the automated performance testing procedure. 

2. TRACING THE OPERATING SYSTEM 

 During recent years, tracing has been successfully used to 
understand interactions between processes and the operating 
system by instrumenting system calls. A lot of production or 
execution problems have been solved using tracers. A tracing 
tool adds, statically or dynamically, some trace points or 
probes called 'instrumentation'. Dynamic instrumentation is 
adding trace points while the operating system is running. 
Static instrumentation is adding the trace points directly in the 
code before execution, and requires the kernel to be 
recompiled after the modification. 

 Among the various tracers available, SystemTap [7], 
Dynamic Tracing (DTrace) [8], and Linux Trace Toolkit 
(LTT) [9] should be mentioned. Although they all offer 
similar functionality, they differ in their instrumentation 
mechanism and, as a consequence, in performance overhead 
on the operating system. 

2.1. Linux Trace Toolkit Next Generation 

 Linux Trace Toolkit Next Generation (LTTng) [10] is 
based on static instrumentation. Trace points and their 
associated handlers are defined as a function call to the 
corresponding handler inserted at suitable locations in kernel 
code. The modified kernel is then recompiled. Once a trace 
point is hit, a function call is executed and the CPU jumps to 
the associated handler. Results have shown that the impact of 
the branch mechanism is less than the impact of a software 
interrupt trap used by most dynamic tracers. Tests results and 
discussions could be found in the Linux Kernel Mailing List 
[11]. 

 In comparison with the earlier LTT, LTTng brings several 
technical improvements such as increasing time stamp 
accuracy, high speed user space tracing, atomic operations to 
have a real lock-less mechanism, tracing non-maskable 
interrupts (NMI), and markers. The latter is introduced below. 

 LTTng proposes kernel markers, a source code annotation 
to define trace point locations and arguments (data to log or to 
be accessed by probe handlers). Depending on being active or 
not, markers will be replaced with a function call or a 'jump' 
respectively. The idea is to have kernel markers inserted at 
relevant locations in the kernel by the code authors, in many 
cases instead of printk statements (the print instructions 
specifically used in Linux kernel). These markers can then be 
used by any tracing tool, including LTTng. This way, key 
events in the kernel are identified by predefined trace points 
identified by markers. 

3. TRACING AND VIRTUALIZATION 

 Extending from a physical machine, with one operating 
system, to a virtual system, with multiple layers and different 

operating systems, adds new requirements to tracers and 
renders existing tracers incapable of representing time-
coherent information across layers [12]. Xen provides its 
own tracer, Xentrace. It works fairly well in isolation but has 
not been interfaced to a tracing system which could 
simultaneously present the events from the operating 
systems and the applications executing in the virtual 
machines. A primitive solution is to trace virtual domains 
with existing tracers prepared for ordinary operating 
systems, and trace the hypervisor with Xentrace. However, 
considering the close interactions between domain0 and the 
hypervisors, events happening in these two layers should be 
measured and recorded through the same mechanism and 
time base. 

 The idea is to extend a tracer which is able to give a 
detailed picture of an operating system, in order to have a 
detailed global picture of all layers and virtual machines. 

3.1. Tracing Virtual Domains 

 There is no particular difficulty in tracing a virtual 
machine rather than a physical one. In each domain, LTTng 
patches may be applied to the Linux kernel. Since both Xen 
and LTTng are currently distributed as patches to the official 
kernel, care is advised to avoid conflicts between the 
modifications required for each system. 

3.2. Tracing the Hypervisor 

 In order to trace Xen with LTTng, some trace points are 
defined, inspired from the trace points of Xentrace. Thus, the 
number and location of trace points is identical, simplifying 
their performance comparison. The existing Xentrace calls 
were replaced with calls to macros that can be remapped to 
either Xentrace or LTTng. Additional header files are 
defined in which there is a conditional compilation definition 
to activate or not LTTng. 

 Xen supports the dynamic allocation of VCPUs and CPU 
hotplug. Hot plugging provides the ability to manage devices 
being attached to or removed from a running system. In a 
real machine supporting hotplug, the number of CPUs may 
change while the system is running. In Xen virtual systems, 
the number of VCPUs, virtual CPUs assigned to a virtual 
machine, may similarly vary while the virtual system is 
running. Therefore, the number of CPUs in each domain 
may vary during a trace. On the other hand, LTTng uses per 
CPU buffers. Thus, LTTng and the underlying RelayFS had 
to be extended to allocate new per CPU buffers when CPU 
hotplug events are encountered. The LTTng daemon, lttd, 
needs to use inotify in order to be notified of new tracing 
channels. Inotify is an operating system facility which 
provides a notification service whenever a given event 
happens. 

3.3. Global Image of Virtual Systems 

 After porting LTTng to Xen-compatible operating 
systems and the hypervisor, it is able to give an interesting 
global view of virtual systems including all its layers and 
domains. Running a compression application on domain0 
and similarly on domainU, a trace was taken on domain0, 
domainU and the hypervisor. Traces were visualized with 
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the LTTng Visualizer, LTTV. LTTV is able to visualize 
multiple traces from different domains and layers in the 
same window. Figs. (1, 2) represent traces taken in domain0 
and domainU, respectively. Fig. (3) represents the traces 
taken in domain0 and the hypervisor concurrently. The latter 
could be very useful to give an idea about the interactions of 
domain0 and the hypervisor. 

4. AN AUTOMATED BENCHMARK 

 An automated benchmark was built. Although these 
benchmarking scripts could be used for many different types 
of tests, we only present here the particular setup used to test 
virtual machines tracing, the focus of this paper. 

 Three scenarios were studied to better characterize the 
performance of virtualization and tracing. The first one looks 
at the impact caused by Xen. Linux domain0, running over 
Xen, but having access to real resources, is compared with a 
physical machine running an unmodified Linux kernel. In 
the second scenario, the performance of a virtual machine, 
Linux domainU, is compared with that of a physical 
machine. In the third scenario, the impact caused by LTTng 
is observed on domain0, domainU and a real machine in four 
possible configurations: LTTng is not compiled, compiled 
with markers disabled, active in flight recorder mode (the 
trace information is written into the buffers without being 
recorded to disk), and finally full tracing with data recorded 

to disk. As a complementary test, the impact of LTTng-Xen 
(the module tracing the hypervisor) and Xentrace are also 
compared. 

 Besides measuring the performance for the mentioned 
scenarios, each test is repeated a number of times to measure 
the impact of caching, mostly having disk files resident in 
the memory buffer cache and thus saving on disk accesses. A 
second complementary test studies the impact of using 
virtual disks (loopback files) instead of physical disk 
partitions. Previous tests have shown that using loopback 
files in a normal machine can lightly degrade the 
performance [13]. Besides considering the four 
aforementioned configurations of LTTng on a physical 
machine, on a privileged guest and on a domain-U (both 
running under Xen with physical partitions), all 
measurements have been repeated for a virtual machine 
running on a virtual disk. Tracing of the hypervisor layer by 
both Xentrace and LTTng-Xen is compared. Each complete 
test contains 18 reboot steps, each representing a different 
kernel and machine configuration. 

 An automated mechanism is implemented in order to 
perform all these measurements. Measuring various 
parameters on different kernels and machines is particularly 
tricky and time consuming. For this purpose, an automated 
benchmark was designed to be easily repeatable and self 

 

Fig. (1). Tracing Xen-domain0. 
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contained; it comes with all the tools and kernel variants 
required. It is extensible to test various performance 
characteristics and different configurations of real or virtual 
machines. 

 In this study, we have used the following setup. For each 
test (e.g. kernel compilation, directory archiving, file 
compression…) the only thing a user needs to do is choose 
the test and run the benchmark. It starts from the first 
iteration (step 0), executes the test, reboots the system with 
the next kernel, repeats the same test, continues with the next 
kernel configuration, creates a virtual domain if necessary 
and goes on until the last iteration (step 17). A result file is 
created in the result directory for each step. Each iteration 
tests a different configuration. Pseudo code of Fig. (4) 
clarifies the concept. 

 The benchmark consists of a text file describing all 
configurations, an executable script to start the test and 
define appropriate settings, an initial script located in 
'/etc/init.d', a daemon (main script) running in the 
background, a script file for each test type and a short text 
file saving the current iteration (step number) across reboots. 
Most parameters are easily modified in the configuration 
file. The starter script prepares the system for the test, 
determines the appropriate kernel for the first step and 
reboots the system. Then, the initial script in '/etc/init.d' 

executes. It has been given the lowest priority to make sure 
that all services are up and running when it starts. 

 After starting the test, an additional 2 minutes sleep is 
requested to make sure that all other services have finished 
their initialization and the system is idle. Before starting the 
test, an archiving application runs in order to fill empty 
buffers. After running this application, although cache 
buffers are not empty, no reusable content exists in the 
buffers (cache cold). Finally, it executes the test running the 
corresponding script. This procedure is easily extensible. 

 Thus, the contribution brought by this test procedure has 
been to provide a benchmark which automatically configures 
a test system, including virtual and physical machines, based 
on user's settings, before running a number of regular 
benchmarks on the specified configurations. 

5. CONFIGURATION AND APPLIED TESTS 

 The tests may be divided into two categories, real 
applications stressing particular parts of the system, 
(compilation, archiving and compression), and standard 
benchmarks simulating different types of load, (Dbench, 
SPECviewperf9.1 and LMbench). The machine performing 
the test is an Intel Pentium 4, 3GHz hyperthreaded 
processor, with 2 GB RAM, and a single 320 GB 7200 RPM 
SATA SEAGATE. 

 

Fig. (2). Tracing Xen-domainU. 
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 To keep the available memory identical for domain0, 
domainU and the physical machine, the same amount of 
memory is reserved for the unmodified kernel, the modified 
kernel of domain0, and the virtual machines, e.g. 900MB 
each, a subset of the 2GB physically installed on the 
computer. 

 Xen-unstable2, was used as hypervisor and vanilla Linux 
version 2.6.19 was used for the physical machine. Modified 
versions of Xen compatible Linux 2.6.19 provided with 
Fedora [14] were used for all virtual machines. LTTng 
patches version 0.6.77 were back-ported to Linux 2.6.19. 

 Each test has been repeated several times to assess the 
variability of the measured times. The results presented in 
the tables below are a geometric mean of at least three 
repeats. For each test, the standard deviation of ten repeats of 
step 0, Linux native, is shown to give a better idea of the 
relative impact caused by LTTng. Results are presented as 
absolute numbers as well as the percentage of performance 
loss versus the real machine. Bar charts show graphically the 
relative performance in percentage of the systems incurring 
virtualization and tracing overhead. The horizontal axis  
 

                                                
2 Change set 14206:3ac19fda0bc2 http://xenbits.xensource.com/xen-unstable.hg 

 
Fig. (4). The benchmark procedure in pseudo code. 

 
Fig. (3). Visualizing traces from domain0 and the hypervisor in the same window. 

At each iteration (reboot step): 
- Boot the selected operating system. 
- If “stepnumber.txt” exists, read STEPNUMBER and execute the main 
test script. 

 Create a virtual machine with physical disk if STEPNUMBER 
is 8, 9, 10, 11. 
 Create a virtual machine with virtual disk if STEPNUMBER is 

12, 13, 14, 15. 
 Start LTTng in flight recorder mode if STEPNUMBER is 2, 6, 

10, 14. 
 Start trace and write it to disk if STEPNUMBER is 3, 7, 11, 15. 
 Start Xentrace if STEPNUMBER is 16. 
 Start LTTng-Xen if STEPNUMBER is 17. 

- Run the appropriate test file (determined in definition file). 
- Save results. 
- Based on STEPNUMBER select the operating system to reboot into 
for the next iteration: 

 Linux with LTTng. 
 Linux on Xen Platform. 
 Linux with LTTng on Xen platform. 
 Linux original. 

- Increment STEPNUMBER by one and rewrite into the file, 
“stepnumber.txt” 
- If STEPNUMBER > last step (17) remove “stepnumber.txt” 
- Reboot the system. 
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reflects the four rows of the corresponding tables. Numbers 1 
to 4 correspond to the real machine, Xen-domain0, Xen-
domainU (real disk) and Xen-domainU (virtual disk), 
respectively. 

5.1. Compiling 

 The first test consists in compiling the Linux kernel 
2.6.15.4 with optimization level 2, a mostly CPU intensive 
task. It is presented in Fig. (5) and Table 1, each bar in Fig. 
(5) corresponds to a cell of Table 1. Surprisingly, the last 
column of Table 1 shows that tracing and recording the trace 
information to disk takes less time than tracing alone in a 

virtual machine with a virtual disk. To better understand this, 
a simple test was run on a virtual machine (domainU with 
real disk), with LTTng kernel, probes loaded, but tracing 
disabled, while a short script running in the background 
simulates recording a trace by simply appending periodically 
1MB of data to a file. In this test, the performance is 
similarly improved (Table 2). Therefore, the unexpected 
speedup is not the effect of tracing, but a border effect of the 
I/O scheduler and Xen. 

 The cost associated with tracing is less than 3%, even 
though a 500MB trace was generated in 372.89s for cache 
hot (1.34MB/s). This is a very minor disturbance considering 
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Fig. (5). Relative performance in percentage - Compile - Cache cold. 

 

Table 1. Compilation - Tracing Domains - Cache Hot 

 

Cache Hot (Minute) LTTng is Not Compiled LTTng Compiled, Probe Not Loaded Tracing in Flight Mode Trace is Active 

Real machine (Original 

Linux) 

6:04.93 

(100%) 

(  =0.85sec) 

6:05.58 

(99.82%) 

6:11.48 

(98.20%) 

6:12.89 

(97.82%) 

Xen-dom0 
6:38.96 

(90.67%) 

6:39.04 

(90.65%) 

6:45.64 

(88.84%) 

6:42.29 

(89.76%) 

Xen-domU (real disk) 
6:54.10 

(86.52%) 

6:54.54 

(86.41%) 

7:02.41 

(84.25%) 

6:49.15 

(87.88%) 

Xen-domU (virtual disk) 
6:53.00 

(86.83%) 

6:53.82 

(86.60%) 

7:01.52 

(84.49%) 

6:51.32 

(87.29%) 

 

Table 2. Simulating the Trace Effect – Compilation 

 

Cache Cold (Minutes) LTTng is Not Compiled 
LTTng Compiled Probes Not 

Loaded 

Tracing in  

Flight Mode 
Trace is Active 

Write into a File,  

Probes Loaded 

Xen-domU 7:00.40 7:01.12 7:08.56 6:59.59 6:55.83 

not loaded 
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the accuracy and completeness of the information extracted. 
Having LTTng compiled in, but probes not loaded, causes 
very little impact. 

 In this test, tracing the hypervisor with the new proposed 
LTTng-Xen and with the existing Xentrace shows similar 
performance overhead, as shown at the end of Section 5. The 
Xentrace trace file occupies 17 MB while the LTTng-Xen 
file is smaller at 11MB. Xentrace keeps a fixed record size 
for all events. Events may have from 0 to 5 parameters. 
When an event has less than 5 parameters, Xentrace fills the 
record with 0. LTTng-Xen uses a more space efficient 
variable record size. 

 The Compile test is CPU intensive. The CPU 
virtualization by Xen, mapping virtual CPUs to physical 

CPUs, causes a measurable impact on the performance of 
9%, which is three times as much as tracing (Compare the 
second column of the third row with the third column of the 
second row in Table 1). 

5.2. Archiving (Tar Create - Tar Extract) 

 Archiving uses the file system intensively. A large 
directory of 1.2 GB, containing the OpenOffice source code, 
is used as input for 'tar create' and a large tar file with the 
same content, is extracted. Fig. (6) and Table 3 correspond to 
tar create while Fig. (7) and Table 4 correspond to tar 
extract. 

 Because of the huge amount of data being written in each 
step, and especially since the archive is larger than the 
available memory, it is understandable that the second repeat 
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Fig. (6). Relative performance in percentage - Tar create - Cache cold. 
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Fig. (7). Relative performance in percentage - Tar extract - Cache cold. 
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sometimes takes longer than the first. Indeed, more free 
memory pages in the kernel are available to be used as write 
buffer the first time than the second one. The effect of 
having the LTTng event probes compiled in, and even the 
writing of event data in buffers in flight recorder mode, is 
barely measurable, being much less than the variance. The 
LTTng trace files occupy 290MB each for a native Linux 
system and for a Xen domain0, while it is about 170MB for 
domainU. 

 The trace file for the hypervisor layer is about 88MB 
with Xentrace and 63MB with LTTng-Xen. In this test, a 
large number of events occur in the hypervisor layer, causing 
a more significant impact and better showing the 
performance difference between LTTng-Xen and Xentrace at 
1% and 6% overhead respectively. 

 It may be surprising to note that the tests with domainU 
show performance improvements. When a virtual machine 
needs to read from or write to the disk, its requests are 
handled by domain0. In our configuration, each of domain0 
and domainU has its own 900MB of RAM, providing much 
more total space usable for various I/O buffering tasks. 

 For tar extract as well, neither the probes nor writing the 
events to the buffers (in flight recorder mode) has a 
significant impact on performance. Writing the events to the 
trace file causes a 4% overhead for cache cold while it is 8% 
for cache hot as the disk subsystem is already fully utilized 
by the test application. It is interesting to note that adding 

LTTng without loading the probes makes the test faster. 
However, the difference is minimal and much smaller than 
the standard deviation. The trace file is about 180MB on the 
real machine and domain0, and 150MB on domainU. In the 
hypervisor layer, the trace file is about 45MB with LTTng-
Xen and 60 MB with Xentrace. The impact of tracing the 
hypervisor is small but LTTng-Xen remains more efficient 
than Xentrace. 

5.3. Compression 

 Compression of an archived file (.tar) using bzip2 is a 
mostly CPU intensive application. For this test, the Linux 
2.6.16 source code which occupies about 200 MB was 
chosen. Corresponding results are represented in Fig. (8) and 
Table 5. The Trace file for domain0, as well as for the real 
machine, is about 80 MB, and 60 MB for virtual domains. 
The hypervisor layer trace file is 9.1 MB with LTTng-Xen 
and 15MB with Xentrace. 

 The size of the file to compress is smaller than available 
memory in all cases; thus, once it is read, it should remain 
available in buffer cache for the next repeat (cache hot). It is 
interesting to see that LTTng and tracing cause more impact 
on Linux original in cache cold rather than cache hot. A 
possible explanation is the memory usage caused by the 
LTTng buffers. When the system is running a cache hot test, 
some piece of data is already in the cache. LTTng also uses 
the cache for its buffers. Thus, when tracing, less space is 

Table 3. Tar Create - Tracing Domains - Cache Hot 

 

Cache Hot (Minute) LTTng is Not Compiled LTTng Compiled, Probe Not Loaded Tracing in Flight Mode Trace is Active 

Real machine (Original Linux) 

1:49.69 

(100%) 

(  =1.56sec) 

1:50.16 

(99.57%) 

1:49.64 

(100.05%) 

1:55.15 

(95.02%) 

Xen-dom0 
1:53.25 

(96.75%) 

1:56.39 

(93.89%) 

1:58.11 

(92.32%) 

2:03.85 

(87.09%) 

Xen-domU (real disk) 
1:47.69 

(101.82%) 

1:51.37 

(98.47%) 

1:51.57 

(98.29%) 

1:55.89 

(94.35%) 

Xen-domU (virtual disk) 
1:33.18 

(115.05%) 

1:36.98 

(111.59%) 

1:37.75 

(110.89%) 

1:42.89 

(106.2%) 

 

Table 4. Tar Extract – Tracing Domains - Cache Hot 

 

Cache Hot (Minute) LTTng is Not Compiled LTTng Compiled, Probe Not Loaded Tracing in Flight Mode Trace is Active 

Real machine (Original Linux) 

1:37.07 

(100%) 

(  =2.71sec) 

1:36.95 

(100.12%) 

1:36.94 

(100.13%) 

1:45.04 

(91.79%) 

Xen-dom0 
1:57.99 

(78.45%) 

1:58.41 

(78.01%) 

2:00.47 

(75.89%) 

2:03.83 

(72.43%) 

Xen-domU (real disk) 
1:36.58 

(100.5%) 

1:38.80 

(98.22%) 

1:37.38 

(99.68%) 

1:41.49 

(95.45%) 

Xen-domU (virtual disk) 
1:37.99 

(99.05%) 

1:39.83 

(97.16%) 

1:42.57 

(94.33%) 

1:46.97 

(89.8%) 
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free in the cache and the impact of tracing in cache hot is 
more than for the case of cache cold. 

5.4. Dbench 

 Dbench [15] simulates load patterns of file systems. For 
this test, all values are throughput in MB/sec and represented 

in Fig. (9) and Table 6. The trace file is about 4.8 GB on 
physical machine and Xen-domain0 and 1.8 GB on 
domainU. It is also about 13 MB for tracing the hypervisor 
by Xentrace and 7.1 MB by LTTng-xen. 

 In this case, Xen does not cause a large impact. Here 
also, the results of domainUs are better than native Linux, 

Table 5. Compression - Tracing Domains - Cache Hot 

 

Cache Hot (Minute) LTTng is Not Compiled LTTng Compiled, Probe Not Loaded Tracing in Flight Mode Trace is Active 

Real machine (Original Linux) 

1:16.55 

(100%) 

(  =0.30sec) 

1:18.55 

(97.33%) 

1:18.49 

(97.46%) 

1:19.02 

(96.77%) 

Xen-dom0 
1:21.03 

(94.15%) 

1:21.30 

(93.79%) 

1:22.22 

(92.59%) 

1:22.35 

(92.42%) 

Xen-domU (real disk) 
1:18.89 

(96.94%) 

1:19.51 

(96.13%) 

1:20.18 

(95.26%) 

1:20.28 

(95.12%) 

Xen-domU (virtual disk) 
1:18.88 

(96.96%) 

1:19.24 

(96.49%) 

1:19.91 

(95.61%) 

1:20.09 

(95.37%) 

 

Fig. (8). Relative performance in percentage - Compression - Cache cold. 

Table 6. Dbench - Tracing Domains - Cache Hot 

 

Cache Hot (Minute) LTTng is Not Compiled LTTng Compiled, Probe Not Loaded Tracing in Flight Mode Trace is Active 

Real machine (Original Linux) 

216.70 

(100%) 

(  =22.95) 

213.84 

(98.68%) 

199.60 

(92.11%) 

193.85 

(89.46%) 

Xen-dom0 
211.61 

(97.65%) 

202.16 

(93.29%) 

191.50 

(88.37%) 

182.71 

(84.31%) 

Xen-domU (real disk) 
228.32 

(105.36%) 

223.92 

(103.34%) 

226.07 

(104.32%) 

221.96 

(102.42%) 

Xen-domU (virtual disk) 
231.7 

(106.92%) 

231.67 

(106.91%) 

227.06 

(104.77%) 

226.93 

(104.73%) 
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because of the larger total amount of RAM contained in 
domain0 and domainU together. In the real machine as well 
as domain0, the effect of tracing is more than 10%. Indeed, 
Dbench is a very intense test and stresses strongly the disk 
and memory subsystems. 

5.5. SPECviewperf9.1 

 SPECviewperf9.1 [16] is chosen as a graphical 
benchmark which measures OpenGL 3D graphic 
characteristics. Considering the limitations of graphics 
acceleration in virtual domains, this test is only executed on 

Fig. (9). Relative performance in percentage - Dbench - Cache cold. 

Table 7. SPECviewperf9.1 - Tracing Domains 

 

Cache Hot (Minute) LTTng is Not Compiled LTTng compiled, Probe Not Loaded Tracing in Flight Mode Trace is Active 

Real machine (Original Linux) 
1.071 

(100%) 

1.056 

(98.60%) 
1.031 (96.26%) 1.023 (95.55%) 

Xen-dom0 
0.987 

(92.14%) 

0.963 

(89.95%) 

0.934 

(87.16%) 

0.927 

(86.58%) 

 

Fig. (10). Relative performance in percentage - SPECviewperf9.1 - Cache cold. 
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real machines and domain0. SPECviewperf9.1 calculates the 
result in frames per second and contains multiple view sets, 
among which we have chosen 'Maya'. SpecviewPerf9.1 
repeats each test a few times. The file system is not used 
much in this test and thus, cache hot/cold is not considered in 
this case. Corresponding results are represented in Fig. (10) 
and Table 7. 

 LTTng causes less than 2% loss in performance when 
probes are not loaded and less than 5% while writing the 
trace, a reasonable impact. Since domain0 normally has 
direct access to the hardware, the 8% graphics performance 
loss seems significant. It should be noted, however, that Xen 
has mostly been optimized for non graphical server 
applications. 

5.6. LMbench 

 LMbench [17] consists in a set of specialized tests, each 
measuring a specific characteristic of the system, either in 
terms of bandwidth (operations per second) or in terms of 
latency (delay between sending the request and receiving the 
answer). It covers create/delete a filesystem, signal handling, 
create/delete a process, cached read/write, memory 
operations like copy/read/write and others. LMbench 
categorizes each test into a group such as Hardware or OS 
(Operating System). Our focus here is on the OS category. 

 Some of the metrics observed by LMbench (Process 
category) show a high performance loss with both LTTng 
and Xen. Some operations like fork, exec and sh require a lot 

of page table updates to be verified by Xen, thus causing a 
large impact on performance [3]. On the other hand, several 
system calls are simple and fast, making the event recording 
overhead significant. In particular, the Select system call 
generates several events per call, making the tracing 
overhead even worse. Results presented here in Tables 8, 9, 
10 and 11 are some of the metrics chosen from the Local 
communications category. Numbers show the bandwidths in 
MB/Sec where bigger values are better. Here also, in some 
I/O applications recording a trace to the disk increases the 
performance. 

 The comparison between the results of tracing the 
hypervisor by LTTng-Xen and Xentrace for LMbench is 
given in Table 12. More details and information are found in 
[18]. Fig. (11) and Table 13 show a comparison between the 
impact imposed by LTTng-Xen and that of Xentrace. On the 
horizontal axis of Fig. (11), numbers 1 to 6 represent the 
results of compile, tar-create, tar-extract, compression, 
Dbench, and specview9.1 respectively. 

6. VIRTUALIZATION AND LOAD DISTRIBUTION 

 Running different instances of an application in different 
virtual machines provides stronger security and possibly fair 
resource allocation through isolation. The question, however, 
is the performance overhead of running several virtual 
machines. Two different cases were tested: 

• Domain0 idle, four domainUs, each of them running a 
single task. 

Table 8. LMbench (Local Communication) - Real Machine 

 

Real Machine (MB/sec) Pipe File Reread Mmap Reread Mem Read Mem Write 

LTT is not compiled 

1668.7 

(100%) 

(  = 4.21) 

1896 

(100%) 

(  = 8.26) 

4284.3 

(100%) 

(  = 3.4) 

4288 

(100%) 

(  =2.17) 

1952 

(100%) 

(  =1.32) 

LTT compiled, probes not loaded 
1643 

(98.46%) 

1882.8 

(99.30%) 

4282 

(99.94%) 

4280 

(99.81%) 

1950 

(99.90%) 

 flight tracing 
1568 

(93.96%) 

1846.9 

(97.41%) 

4277 

(99.83%) 

4282 

(99.86%) 

1950 

(99.90%) 

 tracing 
1524 

(91.33%) 

1867.7 

(98.50%) 

4290.7 

(100.15%) 

4311 

(100.53%) 

1954 

(100.10%) 

 

Table 9. LMbench (Local Communication) – Domain0 

 

Domain0 (MB/sec) pipe File Reread Mmap Reread Mem Read Mem Write 

LTT is not compiled 
1616 

(96.84%) 

4266 

(99.57%) 

4266 

(99.57%) 

4269 

(99.56%) 

1837 

(94.10%) 

LTT compiled, probes not loaded 
1618 

(96.96%) 

4260.9 

(99.45%) 

4260.9 

(99.45%) 

4274 

(99.67%) 

1836 

(94.06%) 

 flight tracing 
1530 

(91.69%) 

4259.2 

(99.41%) 

4259.2 

(99.41%) 

4258 

(99.30%) 

1835 

(94.00%) 

 tracing 
1027 

(61.54%) 

4281.7 

(99.94%) 

4281.7 

(99.94%) 

4301 

(100.30%) 

1839 

(94.21%) 
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• Domain0 idle, one domainU (having 1 VCPU) 
running four tasks in parallel. 

 Four tasks are being executed; their sources are located 
on four different partitions close to each other. However, the 
geometry of the disk and the heads displacements cause a 
slight impact on the result. The creation time of the virtual 
machines is not taken into account in the measurements. 

 Two applications, compilation and archiving, are tested. 
The first column of Table 14 contains the results of creating 
four virtual machines concurrently and running a 
compilation task on each of them. The second column shows 
the results of creating a single virtual machine and running 
the same four tasks in parallel. In both tests, all tasks start at 
the same time. CPU usage is 24% or 25% for all, whether  
 

one or four tasks per machine. In order to simplify the 
comparison, all of four virtual machines are mono-processor 
(VCPU=1) and all of VCPUs are mapped on a unique CPU. 
Thus, this improvement is not because of having more 
available resources, rather it is solely the effect of Xen. The 
time spent to run four tasks in parallel on a single virtual 
machine is slightly more than running them individually, 
probably because of a larger scheduling granularity between 
virtual machines. 

 The second test is an I/O intensive task, tar-create, 
presented in Table 15. Available RAM and location of the 
source files are the same as 'compilation'. Here again, the 
performance is better when using four virtual machines than 
four tasks in a single virtual machine. 

 
 

Table 10. LMbench (Local Communication) – DomainU with Real Disk 

 

DomainU-Real Disk (MB/sec) Pipe File Reread Mmap Reread Mem Read Mem Write 

LTT is not compiled 
1611 

(96.54%) 

835.9 

(44.09%) 

4253.6 

(99.28%) 

4252 

(99.16%) 

1932 

(98.97%) 

LTT compiled, probes not loaded 
1613 

(96.66%) 

834.6 

(44.02%) 

4247.5 

(99.14%) 

4250 

(99.11%) 

1929.6 

(98.85%) 

 flight tracing 

1608 

(96.36%) 

 

837.9 

(44.19%) 

4249 

(99.17%) 

4252 

(99.16%) 

1932 

(98.97%) 

 tracing 
1600 

(95.88%) 

841.3 

(44.37%) 

4246.2 

(99.11%) 

4246 

(99.02%) 

1929 

(98.82%) 

 

Table 11. LMbench (Local Communication) – DomainU with Virtual Disk 

 

DomainU-Virtual Disk (MB/sec) Pipe File Reread Mmap Reread Mem Read Mem Write 

LTT is not compiled 
1605.6 

(96.22%) 

850 

(44.83%) 

4243.8 

(99.05%) 

4246 

(99.02%) 

1931 

(98.92%) 

LTT compiled, probes not loaded 
1612 

(96.60%) 

848 

(44.72%) 

4246.2 

(99.11%) 

4243 

(98.95%) 

1932 

(98.97%) 

 flight tracing 
1612 

(96.60%) 

878.3 

(46.32%) 

4249.7 

(99.19%) 

4231 

(98.67%) 

1932 

(98.97%) 

 Tracing 
1610 

(96.48%) 

880.9 

(46.46%) 

4244.3 

(99.06%) 

4247 

(99.04%) 

1930 

(98.87%) 

 

Table 12. LMbench (Local Communication) – Hypervisor 

 

Hypervisor (MB/sec) Pipe File Reread Mmap Reread Mem Read Mem Write 

Domain0 
1616 

(96.84%) 

1261 

(66.50%) 

4266 

(99.57%) 

4269 

(99.56%) 

1837 

(94.11%) 

LTTng-Xen 
1620 

(97.08%) 

1236 

(65.19%) 

4265.7 

(99.56%) 

4265 

(99.46%) 

1837 

(94.11%) 

Xentrace 
1619 

(97.02%) 

1280.8 

(67.55%) 

4257 

(99.36%) 

4265 

(99.46%) 

1833 

(93.90%) 
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Fig. (11). Comparison of LTTng-Xen and Xentrace. 

Table 13. Comparison of LTTng-Xen and Xentrace 

 

Cache Hot LTTng is Not Compiled Xentrace is Inactive  LTTng-Xen is Active  Xentrace is Active 

Compilation (minute) 
6:38.96 

(90.67%) 

6:38.25 

(90.87%) 

6:37.51 

(91.07%) 

Tar-create (minute) 
1:53.25 

(96.75%) 

1:54.19 

(95.90%) 

2:00.43 

(90.21%) 

Tar-extract (minute) 
1:57.99 

(78.45%) 

2:01.16 

(75.18%) 

2:02.57 

(73.73%) 

Compression (minute) 
1:21.03 

(94.15%) 

1:21.13 

(94.01%) 

1:20.83 

(94.41%) 

Dbench (MB/sec) 
211.61 

(97.65%) 

207.41 

(95.71%) 

213.73 

(98.63%) 

SPECviewperf9.1 (Frame/sec) 
0.987 

(92.14%) 

0.985 

(92.00%) 

0.982 

(91.70) 

 

Table 14. Compiling, Four Tasks on Four Partitions - Virtual Machine 

 

Compile (Minute) Four Tasks, One Per Machine Four Tasks on One Virtual Machine Having 1 VCPU 

task 1  26:34.41 27:58.78 

task 2  26:39.89 28:03.92 

task 3 26:27.87 27:19.16 

task 4 26:37.71 28:02.63 
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CONCLUSION 

 The results obtained demonstrate that for typical server 
applications, virtual machines bring a performance overhead 
lower than 5% in most of the cases. In some I/O tests, like 
tar archiving, their impact may exceed 10% in domain0. 
However, because of different I/O scheduling and of the 
combined domainU/domain0 memory available for 
buffering, in some cases the same I/O tests performed even 
better in domainU virtual machines than on a physical 
machine. 

 The performance of systems with intense interaction 
between the applications and the operating system is 
particularly difficult to analyze. Tracing is often the most 
detailed and accurate source of information for this purpose. 
The difficulty is even more acute with virtualization where 
several virtual machines interact with an hypervisor in order 
to share the resources of the physical machine. The Linux 
Trace Toolkit was ported to the domain0 and domainU 
virtual machines and extended to trace the Xen hypervisor 
(LTTng-Xen). It was then possible to obtain a complete 
picture of all the important events happening on a Xen 
system running several Linux virtual machines. This 
extension replaces the current simpler tracing system 
provided with Xen, Xentrace, and provides the complete 
information with a single tracing system, using a common 
time base. 

 The performance overhead associated with tracing, with 
and without virtual machines, was measured using the new 
proposed test program. The tracing overhead remains almost 
negligible at between 2% and 5%, with little or no impact on 
scheduling or real-time response, because of the atomic 
operations used in LTTng. The performance of Xentrace and 
LTTng-Xen was specifically compared. LTTng uses a 
variable size event format and thus produces more compact 
traces. Furthermore, the associated overhead for LTTng-Xen 
was smaller than for Xentrace in most cases. 

 In this document, we have studied virtual machines based 
on the Xen hypervisor as a solution for consolidating and 
simplifying the management of server applications, and 
measured the corresponding performance overhead. A new 
automated performance measurement procedure was 
proposed and used to evaluate various characteristics of 
system performance in different contexts. Our procedure is 
easily extensible to cover more characteristics and system 
configuration alternatives. It would be interesting in the 
future to complement the system with a graphical reporting 

system, converting the raw performance data into various 
graphs and statistics. 

 LTTng-Xen currently reuses the events defined for 
Xentrace. The events could be redefined specifically for 
LTTng-Xen to benefit from more concise event typing, and 
extended to trace more information such as virtual CPUs. 
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