
 The Open Cybernetics & Systemics Journal, 2011, 5, 1-15 1

 1874-110X/11 2011 Bentham Open

Open Access

Virtual Systems Tracing for Performance Analysis

Parisa Heidari, Mathieu Desnoyers and Michel R. Dagenais*

Department of Computer and Software Engineering, Ecole Polytechnique de Montreal, P.O. Box 6079, Succ.

Downtown, Montreal, Quebec, H3C 3A7, Canada

Abstract: This paper describes extensions to the Linux Trace Toolkit next generation (LTTng), to trace the Xen
hypervisor for efficiently tracing complete systems. LTTng is a low impact, modular, extensible, operating system tracer,
while Xen is an hypervisor based on paravirtualization. Typically, one or several instances of Linux will run on top of the
Xen hypervisor. The extended LTTng is able to trace all Linux instances and the hypervisor layer to give a global view of
the system.

An automated benchmark was created to measure the overhead imposed by tracing and Xen paravirtualization. It
compares the performance of systems, with and without virtualization and tracing. The results obtained with different
tests, using this procedure, are presented and show a negligible impact caused by tracing and a reasonable overhead
caused by paravirtualization. Nonetheless, for some I/O intensive applications, the overhead imposed by paravirtualization
is less negligible.

Keywords: Tracing, virtualization, performance analysis, Xen, Linux.

1. INTRODUCTION

 With the proliferation of online services, server
consolidation through virtualization is increasingly popular.
Among the different virtualization solutions available, Xen is
particularly interesting being open-source and low overhead.
Xen is based on paravirtualization, where the operating
system is ported to a software interface exported by the
hypervisor. Typically, one or several instances of Linux
ported to Xen will run on top of the Xen hypervisor.

 Virtual machines have been used for more than thirty
years to consolidate server applications, share existing
resources and reduce costs [1]. In many cases, the powerful
servers now available can adequately support several
different applications, each possibly running in a different
virtual machine. Various research prototypes and
commercial products have been proposed for virtualization
[2].

 In virtualization, a software layer called 'Virtual Machine
Monitor' (VMM) manages shared resources. In Xen, the
VMM is called hypervisor as it is located under the operating
system (supervisor), and thus is more privileged [3]. Earlier
systems usually emulated in software the virtual hardware on
which to run the legacy operating systems. Emulation of
resources is usually slower and in many cases difficult to
implement. A more recent technique is paravirtualization [3].
In paravirtualization, the guest operating system is slightly
modified to send hardware requests to the VMM instead of
to emulated hardware.

*Address correspondence to this author at the Department of Computer and
Software Engineering, Ecole Polytechnique de Montreal, P.O. Box 6079,
Succ. Downtown, Montreal, Quebec, H3C 3A7, Canada; Tel: +1(514) 340-
4711, Ext. 4029; Fax: +1(514) 340 5139;
E-mail: michel.dagenais@polymtl.ca

 Xen [3] is an interesting open source product offered
under the GPL license. Although Xen supports full-
virtualization as well as paravirtualization, this paper focuses
on paravirtualization and modified Linux guest operating
systems. In a typical setup, one or more virtual machines
(DomainU) are created, depending on the needs, and a
privileged domain (Domain0) directly accesses the physical
devices. Hardware requests coming from DomainU virtual
machines are received by the VMM, called the 'hypervisor'
in Xen, and answered by Domain0. This indirection, through
the hypervisor and Domain0, adds a delay which could be
problematic in some real-time applications [4].

 The focus of the work presented here is low overhead
detailed tracing of Xen and Linux systems. If simple
profiling can efficiently provide a clear picture of the CPU
usage in a program, detailed tracing is often required in order
to really understand and characterize the performance of
complex interactions between several applications and the
operating system [5, 6]. Furthermore, when two layers are
involved underneath the applications, (the operating system
and the hypervisor), complete combined tracing in each
virtual machine and in the hypervisor becomes even more
valuable.

 The objective of this research is to extend operating
system tracing to support virtualization and then trace events
in all layers from hypervisors, such as Xen, to the Linux
operating system, running on both real and virtual systems.
The combined information of events collected at the
different levels will offer a global picture of the system
behavior. Our first contribution is to extend the Linux Trace
Toolkit Next Generation (LTTng)1 to support Xen and be a
suitable alternative to Xentrace. The second contribution is

1 http://ltt.polymtl.ca

2 The Open Cybernetics & Systemics Journal, 2011, Volume 5 Heidari et al.

the development of an automated performance benchmark
which runs various realistic tasks under different configuration
scenarios, in order to measure the tracing overhead. The
overhead of each component and each alternative is evaluated
under different configurations. The third contribution is the
performance evaluation, conducted using the extended LTTng
and the automated performance testing procedure.

2. TRACING THE OPERATING SYSTEM

 During recent years, tracing has been successfully used to
understand interactions between processes and the operating
system by instrumenting system calls. A lot of production or
execution problems have been solved using tracers. A tracing
tool adds, statically or dynamically, some trace points or
probes called 'instrumentation'. Dynamic instrumentation is
adding trace points while the operating system is running.
Static instrumentation is adding the trace points directly in the
code before execution, and requires the kernel to be
recompiled after the modification.

 Among the various tracers available, SystemTap [7],
Dynamic Tracing (DTrace) [8], and Linux Trace Toolkit
(LTT) [9] should be mentioned. Although they all offer
similar functionality, they differ in their instrumentation
mechanism and, as a consequence, in performance overhead
on the operating system.

2.1. Linux Trace Toolkit Next Generation

 Linux Trace Toolkit Next Generation (LTTng) [10] is
based on static instrumentation. Trace points and their
associated handlers are defined as a function call to the
corresponding handler inserted at suitable locations in kernel
code. The modified kernel is then recompiled. Once a trace
point is hit, a function call is executed and the CPU jumps to
the associated handler. Results have shown that the impact of
the branch mechanism is less than the impact of a software
interrupt trap used by most dynamic tracers. Tests results and
discussions could be found in the Linux Kernel Mailing List
[11].

 In comparison with the earlier LTT, LTTng brings several
technical improvements such as increasing time stamp
accuracy, high speed user space tracing, atomic operations to
have a real lock-less mechanism, tracing non-maskable
interrupts (NMI), and markers. The latter is introduced below.

 LTTng proposes kernel markers, a source code annotation
to define trace point locations and arguments (data to log or to
be accessed by probe handlers). Depending on being active or
not, markers will be replaced with a function call or a 'jump'
respectively. The idea is to have kernel markers inserted at
relevant locations in the kernel by the code authors, in many
cases instead of printk statements (the print instructions
specifically used in Linux kernel). These markers can then be
used by any tracing tool, including LTTng. This way, key
events in the kernel are identified by predefined trace points
identified by markers.

3. TRACING AND VIRTUALIZATION

 Extending from a physical machine, with one operating
system, to a virtual system, with multiple layers and different

operating systems, adds new requirements to tracers and
renders existing tracers incapable of representing time-
coherent information across layers [12]. Xen provides its
own tracer, Xentrace. It works fairly well in isolation but has
not been interfaced to a tracing system which could
simultaneously present the events from the operating
systems and the applications executing in the virtual
machines. A primitive solution is to trace virtual domains
with existing tracers prepared for ordinary operating
systems, and trace the hypervisor with Xentrace. However,
considering the close interactions between domain0 and the
hypervisors, events happening in these two layers should be
measured and recorded through the same mechanism and
time base.

 The idea is to extend a tracer which is able to give a
detailed picture of an operating system, in order to have a
detailed global picture of all layers and virtual machines.

3.1. Tracing Virtual Domains

 There is no particular difficulty in tracing a virtual
machine rather than a physical one. In each domain, LTTng
patches may be applied to the Linux kernel. Since both Xen
and LTTng are currently distributed as patches to the official
kernel, care is advised to avoid conflicts between the
modifications required for each system.

3.2. Tracing the Hypervisor

 In order to trace Xen with LTTng, some trace points are
defined, inspired from the trace points of Xentrace. Thus, the
number and location of trace points is identical, simplifying
their performance comparison. The existing Xentrace calls
were replaced with calls to macros that can be remapped to
either Xentrace or LTTng. Additional header files are
defined in which there is a conditional compilation definition
to activate or not LTTng.

 Xen supports the dynamic allocation of VCPUs and CPU
hotplug. Hot plugging provides the ability to manage devices
being attached to or removed from a running system. In a
real machine supporting hotplug, the number of CPUs may
change while the system is running. In Xen virtual systems,
the number of VCPUs, virtual CPUs assigned to a virtual
machine, may similarly vary while the virtual system is
running. Therefore, the number of CPUs in each domain
may vary during a trace. On the other hand, LTTng uses per
CPU buffers. Thus, LTTng and the underlying RelayFS had
to be extended to allocate new per CPU buffers when CPU
hotplug events are encountered. The LTTng daemon, lttd,
needs to use inotify in order to be notified of new tracing
channels. Inotify is an operating system facility which
provides a notification service whenever a given event
happens.

3.3. Global Image of Virtual Systems

 After porting LTTng to Xen-compatible operating
systems and the hypervisor, it is able to give an interesting
global view of virtual systems including all its layers and
domains. Running a compression application on domain0
and similarly on domainU, a trace was taken on domain0,
domainU and the hypervisor. Traces were visualized with

Virtual Systems Tracing for Performance Analysis The Open Cybernetics & Systemics Journal, 2011, Volume 5 3

the LTTng Visualizer, LTTV. LTTV is able to visualize
multiple traces from different domains and layers in the
same window. Figs. (1, 2) represent traces taken in domain0
and domainU, respectively. Fig. (3) represents the traces
taken in domain0 and the hypervisor concurrently. The latter
could be very useful to give an idea about the interactions of
domain0 and the hypervisor.

4. AN AUTOMATED BENCHMARK

 An automated benchmark was built. Although these
benchmarking scripts could be used for many different types
of tests, we only present here the particular setup used to test
virtual machines tracing, the focus of this paper.

 Three scenarios were studied to better characterize the
performance of virtualization and tracing. The first one looks
at the impact caused by Xen. Linux domain0, running over
Xen, but having access to real resources, is compared with a
physical machine running an unmodified Linux kernel. In
the second scenario, the performance of a virtual machine,
Linux domainU, is compared with that of a physical
machine. In the third scenario, the impact caused by LTTng
is observed on domain0, domainU and a real machine in four
possible configurations: LTTng is not compiled, compiled
with markers disabled, active in flight recorder mode (the
trace information is written into the buffers without being
recorded to disk), and finally full tracing with data recorded

to disk. As a complementary test, the impact of LTTng-Xen
(the module tracing the hypervisor) and Xentrace are also
compared.

 Besides measuring the performance for the mentioned
scenarios, each test is repeated a number of times to measure
the impact of caching, mostly having disk files resident in
the memory buffer cache and thus saving on disk accesses. A
second complementary test studies the impact of using
virtual disks (loopback files) instead of physical disk
partitions. Previous tests have shown that using loopback
files in a normal machine can lightly degrade the
performance [13]. Besides considering the four
aforementioned configurations of LTTng on a physical
machine, on a privileged guest and on a domain-U (both
running under Xen with physical partitions), all
measurements have been repeated for a virtual machine
running on a virtual disk. Tracing of the hypervisor layer by
both Xentrace and LTTng-Xen is compared. Each complete
test contains 18 reboot steps, each representing a different
kernel and machine configuration.

 An automated mechanism is implemented in order to
perform all these measurements. Measuring various
parameters on different kernels and machines is particularly
tricky and time consuming. For this purpose, an automated
benchmark was designed to be easily repeatable and self

Fig. (1). Tracing Xen-domain0.

4 The Open Cybernetics & Systemics Journal, 2011, Volume 5 Heidari et al.

contained; it comes with all the tools and kernel variants
required. It is extensible to test various performance
characteristics and different configurations of real or virtual
machines.

 In this study, we have used the following setup. For each
test (e.g. kernel compilation, directory archiving, file
compression…) the only thing a user needs to do is choose
the test and run the benchmark. It starts from the first
iteration (step 0), executes the test, reboots the system with
the next kernel, repeats the same test, continues with the next
kernel configuration, creates a virtual domain if necessary
and goes on until the last iteration (step 17). A result file is
created in the result directory for each step. Each iteration
tests a different configuration. Pseudo code of Fig. (4)
clarifies the concept.

 The benchmark consists of a text file describing all
configurations, an executable script to start the test and
define appropriate settings, an initial script located in
'/etc/init.d', a daemon (main script) running in the
background, a script file for each test type and a short text
file saving the current iteration (step number) across reboots.
Most parameters are easily modified in the configuration
file. The starter script prepares the system for the test,
determines the appropriate kernel for the first step and
reboots the system. Then, the initial script in '/etc/init.d'

executes. It has been given the lowest priority to make sure
that all services are up and running when it starts.

 After starting the test, an additional 2 minutes sleep is
requested to make sure that all other services have finished
their initialization and the system is idle. Before starting the
test, an archiving application runs in order to fill empty
buffers. After running this application, although cache
buffers are not empty, no reusable content exists in the
buffers (cache cold). Finally, it executes the test running the
corresponding script. This procedure is easily extensible.

 Thus, the contribution brought by this test procedure has
been to provide a benchmark which automatically configures
a test system, including virtual and physical machines, based
on user's settings, before running a number of regular
benchmarks on the specified configurations.

5. CONFIGURATION AND APPLIED TESTS

 The tests may be divided into two categories, real
applications stressing particular parts of the system,
(compilation, archiving and compression), and standard
benchmarks simulating different types of load, (Dbench,
SPECviewperf9.1 and LMbench). The machine performing
the test is an Intel Pentium 4, 3GHz hyperthreaded
processor, with 2 GB RAM, and a single 320 GB 7200 RPM
SATA SEAGATE.

Fig. (2). Tracing Xen-domainU.

Virtual Systems Tracing for Performance Analysis The Open Cybernetics & Systemics Journal, 2011, Volume 5 5

 To keep the available memory identical for domain0,
domainU and the physical machine, the same amount of
memory is reserved for the unmodified kernel, the modified
kernel of domain0, and the virtual machines, e.g. 900MB
each, a subset of the 2GB physically installed on the
computer.

 Xen-unstable2, was used as hypervisor and vanilla Linux
version 2.6.19 was used for the physical machine. Modified
versions of Xen compatible Linux 2.6.19 provided with
Fedora [14] were used for all virtual machines. LTTng
patches version 0.6.77 were back-ported to Linux 2.6.19.

 Each test has been repeated several times to assess the
variability of the measured times. The results presented in
the tables below are a geometric mean of at least three
repeats. For each test, the standard deviation of ten repeats of
step 0, Linux native, is shown to give a better idea of the
relative impact caused by LTTng. Results are presented as
absolute numbers as well as the percentage of performance
loss versus the real machine. Bar charts show graphically the
relative performance in percentage of the systems incurring
virtualization and tracing overhead. The horizontal axis

2 Change set 14206:3ac19fda0bc2 http://xenbits.xensource.com/xen-unstable.hg

Fig. (4). The benchmark procedure in pseudo code.

Fig. (3). Visualizing traces from domain0 and the hypervisor in the same window.

At each iteration (reboot step):
- Boot the selected operating system.
- If “stepnumber.txt” exists, read STEPNUMBER and execute the main
test script.

 Create a virtual machine with physical disk if STEPNUMBER
is 8, 9, 10, 11.
 Create a virtual machine with virtual disk if STEPNUMBER is

12, 13, 14, 15.
 Start LTTng in flight recorder mode if STEPNUMBER is 2, 6,

10, 14.
 Start trace and write it to disk if STEPNUMBER is 3, 7, 11, 15.
 Start Xentrace if STEPNUMBER is 16.
 Start LTTng-Xen if STEPNUMBER is 17.

- Run the appropriate test file (determined in definition file).
- Save results.
- Based on STEPNUMBER select the operating system to reboot into
for the next iteration:

 Linux with LTTng.
 Linux on Xen Platform.
 Linux with LTTng on Xen platform.
 Linux original.

- Increment STEPNUMBER by one and rewrite into the file,
“stepnumber.txt”
- If STEPNUMBER > last step (17) remove “stepnumber.txt”
- Reboot the system.

6 The Open Cybernetics & Systemics Journal, 2011, Volume 5 Heidari et al.

reflects the four rows of the corresponding tables. Numbers 1
to 4 correspond to the real machine, Xen-domain0, Xen-
domainU (real disk) and Xen-domainU (virtual disk),
respectively.

5.1. Compiling

 The first test consists in compiling the Linux kernel
2.6.15.4 with optimization level 2, a mostly CPU intensive
task. It is presented in Fig. (5) and Table 1, each bar in Fig.
(5) corresponds to a cell of Table 1. Surprisingly, the last
column of Table 1 shows that tracing and recording the trace
information to disk takes less time than tracing alone in a

virtual machine with a virtual disk. To better understand this,
a simple test was run on a virtual machine (domainU with
real disk), with LTTng kernel, probes loaded, but tracing
disabled, while a short script running in the background
simulates recording a trace by simply appending periodically
1MB of data to a file. In this test, the performance is
similarly improved (Table 2). Therefore, the unexpected
speedup is not the effect of tracing, but a border effect of the
I/O scheduler and Xen.

 The cost associated with tracing is less than 3%, even
though a 500MB trace was generated in 372.89s for cache
hot (1.34MB/s). This is a very minor disturbance considering

Compile- Cache cold

1
0

0

9
0

,8
1

8
7

,2
9

8
7

,2
5

9
9

,7
3

9
0

,5
6

8
7

,1
4

8
7

,1
1

9
8

,2
8

8
8

,9
7

8
5

,2
2

8
4

,9
1

9
7

,5
9

8
9

,6
8

8
8

,0
6

8
7

,6
9

0

20

40

60

80

100

120

140

1 2 3 4

Four types of machine

R
e

la
ti

v
e

 p
e

rf
o

rm
a

n
c

e
 i

n
 p

e
rc

e
n

ta
g

e

Linux without LTTng

Probes unloaded

Flight recorder

Complete tracing

Fig. (5). Relative performance in percentage - Compile - Cache cold.

Table 1. Compilation - Tracing Domains - Cache Hot

Cache Hot (Minute) LTTng is Not Compiled LTTng Compiled, Probe Not Loaded Tracing in Flight Mode Trace is Active

Real machine (Original

Linux)

6:04.93

(100%)

(=0.85sec)

6:05.58

(99.82%)

6:11.48

(98.20%)

6:12.89

(97.82%)

Xen-dom0
6:38.96

(90.67%)

6:39.04

(90.65%)

6:45.64

(88.84%)

6:42.29

(89.76%)

Xen-domU (real disk)
6:54.10

(86.52%)

6:54.54

(86.41%)

7:02.41

(84.25%)

6:49.15

(87.88%)

Xen-domU (virtual disk)
6:53.00

(86.83%)

6:53.82

(86.60%)

7:01.52

(84.49%)

6:51.32

(87.29%)

Table 2. Simulating the Trace Effect – Compilation

Cache Cold (Minutes) LTTng is Not Compiled
LTTng Compiled Probes Not

Loaded

Tracing in

Flight Mode
Trace is Active

Write into a File,

Probes Loaded

Xen-domU 7:00.40 7:01.12 7:08.56 6:59.59 6:55.83

not loaded

Virtual Systems Tracing for Performance Analysis The Open Cybernetics & Systemics Journal, 2011, Volume 5 7

the accuracy and completeness of the information extracted.
Having LTTng compiled in, but probes not loaded, causes
very little impact.

 In this test, tracing the hypervisor with the new proposed
LTTng-Xen and with the existing Xentrace shows similar
performance overhead, as shown at the end of Section 5. The
Xentrace trace file occupies 17 MB while the LTTng-Xen
file is smaller at 11MB. Xentrace keeps a fixed record size
for all events. Events may have from 0 to 5 parameters.
When an event has less than 5 parameters, Xentrace fills the
record with 0. LTTng-Xen uses a more space efficient
variable record size.

 The Compile test is CPU intensive. The CPU
virtualization by Xen, mapping virtual CPUs to physical

CPUs, causes a measurable impact on the performance of
9%, which is three times as much as tracing (Compare the
second column of the third row with the third column of the
second row in Table 1).

5.2. Archiving (Tar Create - Tar Extract)

 Archiving uses the file system intensively. A large
directory of 1.2 GB, containing the OpenOffice source code,
is used as input for 'tar create' and a large tar file with the
same content, is extracted. Fig. (6) and Table 3 correspond to
tar create while Fig. (7) and Table 4 correspond to tar
extract.

 Because of the huge amount of data being written in each
step, and especially since the archive is larger than the
available memory, it is understandable that the second repeat

Archiving (Tar-create)- Cache cold

1
0

0

9
5

,8
4

1
0

0
,8

1

1
1

1
,6

9

9
8

,8
7

9
1

,2
3

9
7

,4
9

1
0

9
,4

9

9
9

,6
4

9
0

,6

9
6

,4
7 1
1

0
,1

7

9
3

,5
4

8
5

,5
5

9
4

,5
3

1
0

7
,6

0

20

40

60

80

100

120

140

1 2 3 4

Four types of machine

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n

c
e
 i
n

 p
e
rc

e
n

ta
g

e

Linux without LTTng

Probes unloaded

Flight recorder

Complete tracing

Fig. (6). Relative performance in percentage - Tar create - Cache cold.

Archiving (Tar-extract)- Cache cold

1
0

0

8
1

,4
6 9

9
,8

5 1
1

8
,3

1

1
0

0
,2

7
7

,7
9 9

5
,6

8 1
1

5
,9

1

9
9

,6
7

7
6

,1
6 9

5
,5

8 1
1

5
,4

4

9
6

,2
9

7
4

,1
6 9

3
,5

5 1
1

2
,4

6

0

20

40

60

80

100

120

140

1 2 3 4

Four types of machine

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n

c
e
 i
n

 p
e
rc

e
n

ta
g

e

Linux without LTTng

Probes unloaded

Flight recorder

Complete tracing

Fig. (7). Relative performance in percentage - Tar extract - Cache cold.

not loaded

not loaded

8 The Open Cybernetics & Systemics Journal, 2011, Volume 5 Heidari et al.

sometimes takes longer than the first. Indeed, more free
memory pages in the kernel are available to be used as write
buffer the first time than the second one. The effect of
having the LTTng event probes compiled in, and even the
writing of event data in buffers in flight recorder mode, is
barely measurable, being much less than the variance. The
LTTng trace files occupy 290MB each for a native Linux
system and for a Xen domain0, while it is about 170MB for
domainU.

 The trace file for the hypervisor layer is about 88MB
with Xentrace and 63MB with LTTng-Xen. In this test, a
large number of events occur in the hypervisor layer, causing
a more significant impact and better showing the
performance difference between LTTng-Xen and Xentrace at
1% and 6% overhead respectively.

 It may be surprising to note that the tests with domainU
show performance improvements. When a virtual machine
needs to read from or write to the disk, its requests are
handled by domain0. In our configuration, each of domain0
and domainU has its own 900MB of RAM, providing much
more total space usable for various I/O buffering tasks.

 For tar extract as well, neither the probes nor writing the
events to the buffers (in flight recorder mode) has a
significant impact on performance. Writing the events to the
trace file causes a 4% overhead for cache cold while it is 8%
for cache hot as the disk subsystem is already fully utilized
by the test application. It is interesting to note that adding

LTTng without loading the probes makes the test faster.
However, the difference is minimal and much smaller than
the standard deviation. The trace file is about 180MB on the
real machine and domain0, and 150MB on domainU. In the
hypervisor layer, the trace file is about 45MB with LTTng-
Xen and 60 MB with Xentrace. The impact of tracing the
hypervisor is small but LTTng-Xen remains more efficient
than Xentrace.

5.3. Compression

 Compression of an archived file (.tar) using bzip2 is a
mostly CPU intensive application. For this test, the Linux
2.6.16 source code which occupies about 200 MB was
chosen. Corresponding results are represented in Fig. (8) and
Table 5. The Trace file for domain0, as well as for the real
machine, is about 80 MB, and 60 MB for virtual domains.
The hypervisor layer trace file is 9.1 MB with LTTng-Xen
and 15MB with Xentrace.

 The size of the file to compress is smaller than available
memory in all cases; thus, once it is read, it should remain
available in buffer cache for the next repeat (cache hot). It is
interesting to see that LTTng and tracing cause more impact
on Linux original in cache cold rather than cache hot. A
possible explanation is the memory usage caused by the
LTTng buffers. When the system is running a cache hot test,
some piece of data is already in the cache. LTTng also uses
the cache for its buffers. Thus, when tracing, less space is

Table 3. Tar Create - Tracing Domains - Cache Hot

Cache Hot (Minute) LTTng is Not Compiled LTTng Compiled, Probe Not Loaded Tracing in Flight Mode Trace is Active

Real machine (Original Linux)

1:49.69

(100%)

(=1.56sec)

1:50.16

(99.57%)

1:49.64

(100.05%)

1:55.15

(95.02%)

Xen-dom0
1:53.25

(96.75%)

1:56.39

(93.89%)

1:58.11

(92.32%)

2:03.85

(87.09%)

Xen-domU (real disk)
1:47.69

(101.82%)

1:51.37

(98.47%)

1:51.57

(98.29%)

1:55.89

(94.35%)

Xen-domU (virtual disk)
1:33.18

(115.05%)

1:36.98

(111.59%)

1:37.75

(110.89%)

1:42.89

(106.2%)

Table 4. Tar Extract – Tracing Domains - Cache Hot

Cache Hot (Minute) LTTng is Not Compiled LTTng Compiled, Probe Not Loaded Tracing in Flight Mode Trace is Active

Real machine (Original Linux)

1:37.07

(100%)

(=2.71sec)

1:36.95

(100.12%)

1:36.94

(100.13%)

1:45.04

(91.79%)

Xen-dom0
1:57.99

(78.45%)

1:58.41

(78.01%)

2:00.47

(75.89%)

2:03.83

(72.43%)

Xen-domU (real disk)
1:36.58

(100.5%)

1:38.80

(98.22%)

1:37.38

(99.68%)

1:41.49

(95.45%)

Xen-domU (virtual disk)
1:37.99

(99.05%)

1:39.83

(97.16%)

1:42.57

(94.33%)

1:46.97

(89.8%)

Virtual Systems Tracing for Performance Analysis The Open Cybernetics & Systemics Journal, 2011, Volume 5 9

free in the cache and the impact of tracing in cache hot is
more than for the case of cache cold.

5.4. Dbench

 Dbench [15] simulates load patterns of file systems. For
this test, all values are throughput in MB/sec and represented

in Fig. (9) and Table 6. The trace file is about 4.8 GB on
physical machine and Xen-domain0 and 1.8 GB on
domainU. It is also about 13 MB for tracing the hypervisor
by Xentrace and 7.1 MB by LTTng-xen.

 In this case, Xen does not cause a large impact. Here
also, the results of domainUs are better than native Linux,

Table 5. Compression - Tracing Domains - Cache Hot

Cache Hot (Minute) LTTng is Not Compiled LTTng Compiled, Probe Not Loaded Tracing in Flight Mode Trace is Active

Real machine (Original Linux)

1:16.55

(100%)

(=0.30sec)

1:18.55

(97.33%)

1:18.49

(97.46%)

1:19.02

(96.77%)

Xen-dom0
1:21.03

(94.15%)

1:21.30

(93.79%)

1:22.22

(92.59%)

1:22.35

(92.42%)

Xen-domU (real disk)
1:18.89

(96.94%)

1:19.51

(96.13%)

1:20.18

(95.26%)

1:20.28

(95.12%)

Xen-domU (virtual disk)
1:18.88

(96.96%)

1:19.24

(96.49%)

1:19.91

(95.61%)

1:20.09

(95.37%)

Fig. (8). Relative performance in percentage - Compression - Cache cold.

Table 6. Dbench - Tracing Domains - Cache Hot

Cache Hot (Minute) LTTng is Not Compiled LTTng Compiled, Probe Not Loaded Tracing in Flight Mode Trace is Active

Real machine (Original Linux)

216.70

(100%)

(=22.95)

213.84

(98.68%)

199.60

(92.11%)

193.85

(89.46%)

Xen-dom0
211.61

(97.65%)

202.16

(93.29%)

191.50

(88.37%)

182.71

(84.31%)

Xen-domU (real disk)
228.32

(105.36%)

223.92

(103.34%)

226.07

(104.32%)

221.96

(102.42%)

Xen-domU (virtual disk)
231.7

(106.92%)

231.67

(106.91%)

227.06

(104.77%)

226.93

(104.73%)

Compression - Cache cold

1
0

0

9
5

,9
8

9
6 9
8

,3
8

9
9

,8
2

9
4

,5
8

9
5

,3

9
7

,5
5

9
8

,9
1

9
4

,5
2

9
4

,7
8

9
7

,0
2

9
8

,6
9

9
4

,1
7

9
4

,5
5

9
6

,4
8

0

20

40

60

80

100

120

140

1 2 3 4

Four types of machine

R
e

la
ti

v
e

 p
e

rf
o

rm
a

n
c

e
 in

 p
e

rc
e

n
ta

g
e

Linux without LTTng

Probes unloaded

Flight recorder

Complete tracing

10 The Open Cybernetics & Systemics Journal, 2011, Volume 5 Heidari et al.

because of the larger total amount of RAM contained in
domain0 and domainU together. In the real machine as well
as domain0, the effect of tracing is more than 10%. Indeed,
Dbench is a very intense test and stresses strongly the disk
and memory subsystems.

5.5. SPECviewperf9.1

 SPECviewperf9.1 [16] is chosen as a graphical
benchmark which measures OpenGL 3D graphic
characteristics. Considering the limitations of graphics
acceleration in virtual domains, this test is only executed on

Fig. (9). Relative performance in percentage - Dbench - Cache cold.

Table 7. SPECviewperf9.1 - Tracing Domains

Cache Hot (Minute) LTTng is Not Compiled LTTng compiled, Probe Not Loaded Tracing in Flight Mode Trace is Active

Real machine (Original Linux)
1.071

(100%)

1.056

(98.60%)
1.031 (96.26%) 1.023 (95.55%)

Xen-dom0
0.987

(92.14%)

0.963

(89.95%)

0.934

(87.16%)

0.927

(86.58%)

Fig. (10). Relative performance in percentage - SPECviewperf9.1 - Cache cold.

SpecviewPerf9.1

1
0

0

9
2

,1
4

9
8

,6

8
9

,9
5

9
6

,2
6

8
7

,1
6

9
5

,5
5

8
6

,5
8

0

20

40

60

80

100

120

140

1 2

Two types of machine

R
e

la
ti

v
e

 p
e

rf
o

rm
a

n
c

e
 in

 p
e

rc
e

n
ta

g
e

Linux without LTTng

Probes unloaded

Flight recorder

Complete tracing

Dbench - Cache cold

1
0

0

9
8

,7 1
0

7
,9

1

1
0

6
,9

8

9
8

,3
6

9
3

,9 1
0

5
,8

5

1
0

5
,7

9

9
2

,4
4

8
8

,2
8 1

0
6

,4
3

1
0

5
,8

4

8
8

,7
4

8
3

,1
1

1
0

6
,0

5

1
0

7
,3

7

0

20

40

60

80

100

120

140

1 2 3 4

Four types of machine

R
e

la
ti

v
e

 p
e

rf
o

rm
a

n
c

e
 in

 p
e

rc
e

n
ta

g
e

Linux without LTTng

Probes unloaded

Flight recorder

Complete tracing

Virtual Systems Tracing for Performance Analysis The Open Cybernetics & Systemics Journal, 2011, Volume 5 11

real machines and domain0. SPECviewperf9.1 calculates the
result in frames per second and contains multiple view sets,
among which we have chosen 'Maya'. SpecviewPerf9.1
repeats each test a few times. The file system is not used
much in this test and thus, cache hot/cold is not considered in
this case. Corresponding results are represented in Fig. (10)
and Table 7.

 LTTng causes less than 2% loss in performance when
probes are not loaded and less than 5% while writing the
trace, a reasonable impact. Since domain0 normally has
direct access to the hardware, the 8% graphics performance
loss seems significant. It should be noted, however, that Xen
has mostly been optimized for non graphical server
applications.

5.6. LMbench

 LMbench [17] consists in a set of specialized tests, each
measuring a specific characteristic of the system, either in
terms of bandwidth (operations per second) or in terms of
latency (delay between sending the request and receiving the
answer). It covers create/delete a filesystem, signal handling,
create/delete a process, cached read/write, memory
operations like copy/read/write and others. LMbench
categorizes each test into a group such as Hardware or OS
(Operating System). Our focus here is on the OS category.

 Some of the metrics observed by LMbench (Process
category) show a high performance loss with both LTTng
and Xen. Some operations like fork, exec and sh require a lot

of page table updates to be verified by Xen, thus causing a
large impact on performance [3]. On the other hand, several
system calls are simple and fast, making the event recording
overhead significant. In particular, the Select system call
generates several events per call, making the tracing
overhead even worse. Results presented here in Tables 8, 9,
10 and 11 are some of the metrics chosen from the Local
communications category. Numbers show the bandwidths in
MB/Sec where bigger values are better. Here also, in some
I/O applications recording a trace to the disk increases the
performance.

 The comparison between the results of tracing the
hypervisor by LTTng-Xen and Xentrace for LMbench is
given in Table 12. More details and information are found in
[18]. Fig. (11) and Table 13 show a comparison between the
impact imposed by LTTng-Xen and that of Xentrace. On the
horizontal axis of Fig. (11), numbers 1 to 6 represent the
results of compile, tar-create, tar-extract, compression,
Dbench, and specview9.1 respectively.

6. VIRTUALIZATION AND LOAD DISTRIBUTION

 Running different instances of an application in different
virtual machines provides stronger security and possibly fair
resource allocation through isolation. The question, however,
is the performance overhead of running several virtual
machines. Two different cases were tested:

• Domain0 idle, four domainUs, each of them running a
single task.

Table 8. LMbench (Local Communication) - Real Machine

Real Machine (MB/sec) Pipe File Reread Mmap Reread Mem Read Mem Write

LTT is not compiled

1668.7

(100%)

(= 4.21)

1896

(100%)

(= 8.26)

4284.3

(100%)

(= 3.4)

4288

(100%)

(=2.17)

1952

(100%)

(=1.32)

LTT compiled, probes not loaded
1643

(98.46%)

1882.8

(99.30%)

4282

(99.94%)

4280

(99.81%)

1950

(99.90%)

 flight tracing
1568

(93.96%)

1846.9

(97.41%)

4277

(99.83%)

4282

(99.86%)

1950

(99.90%)

 tracing
1524

(91.33%)

1867.7

(98.50%)

4290.7

(100.15%)

4311

(100.53%)

1954

(100.10%)

Table 9. LMbench (Local Communication) – Domain0

Domain0 (MB/sec) pipe File Reread Mmap Reread Mem Read Mem Write

LTT is not compiled
1616

(96.84%)

4266

(99.57%)

4266

(99.57%)

4269

(99.56%)

1837

(94.10%)

LTT compiled, probes not loaded
1618

(96.96%)

4260.9

(99.45%)

4260.9

(99.45%)

4274

(99.67%)

1836

(94.06%)

 flight tracing
1530

(91.69%)

4259.2

(99.41%)

4259.2

(99.41%)

4258

(99.30%)

1835

(94.00%)

 tracing
1027

(61.54%)

4281.7

(99.94%)

4281.7

(99.94%)

4301

(100.30%)

1839

(94.21%)

12 The Open Cybernetics & Systemics Journal, 2011, Volume 5 Heidari et al.

• Domain0 idle, one domainU (having 1 VCPU)
running four tasks in parallel.

 Four tasks are being executed; their sources are located
on four different partitions close to each other. However, the
geometry of the disk and the heads displacements cause a
slight impact on the result. The creation time of the virtual
machines is not taken into account in the measurements.

 Two applications, compilation and archiving, are tested.
The first column of Table 14 contains the results of creating
four virtual machines concurrently and running a
compilation task on each of them. The second column shows
the results of creating a single virtual machine and running
the same four tasks in parallel. In both tests, all tasks start at
the same time. CPU usage is 24% or 25% for all, whether

one or four tasks per machine. In order to simplify the
comparison, all of four virtual machines are mono-processor
(VCPU=1) and all of VCPUs are mapped on a unique CPU.
Thus, this improvement is not because of having more
available resources, rather it is solely the effect of Xen. The
time spent to run four tasks in parallel on a single virtual
machine is slightly more than running them individually,
probably because of a larger scheduling granularity between
virtual machines.

 The second test is an I/O intensive task, tar-create,
presented in Table 15. Available RAM and location of the
source files are the same as 'compilation'. Here again, the
performance is better when using four virtual machines than
four tasks in a single virtual machine.

Table 10. LMbench (Local Communication) – DomainU with Real Disk

DomainU-Real Disk (MB/sec) Pipe File Reread Mmap Reread Mem Read Mem Write

LTT is not compiled
1611

(96.54%)

835.9

(44.09%)

4253.6

(99.28%)

4252

(99.16%)

1932

(98.97%)

LTT compiled, probes not loaded
1613

(96.66%)

834.6

(44.02%)

4247.5

(99.14%)

4250

(99.11%)

1929.6

(98.85%)

 flight tracing

1608

(96.36%)

837.9

(44.19%)

4249

(99.17%)

4252

(99.16%)

1932

(98.97%)

 tracing
1600

(95.88%)

841.3

(44.37%)

4246.2

(99.11%)

4246

(99.02%)

1929

(98.82%)

Table 11. LMbench (Local Communication) – DomainU with Virtual Disk

DomainU-Virtual Disk (MB/sec) Pipe File Reread Mmap Reread Mem Read Mem Write

LTT is not compiled
1605.6

(96.22%)

850

(44.83%)

4243.8

(99.05%)

4246

(99.02%)

1931

(98.92%)

LTT compiled, probes not loaded
1612

(96.60%)

848

(44.72%)

4246.2

(99.11%)

4243

(98.95%)

1932

(98.97%)

 flight tracing
1612

(96.60%)

878.3

(46.32%)

4249.7

(99.19%)

4231

(98.67%)

1932

(98.97%)

 Tracing
1610

(96.48%)

880.9

(46.46%)

4244.3

(99.06%)

4247

(99.04%)

1930

(98.87%)

Table 12. LMbench (Local Communication) – Hypervisor

Hypervisor (MB/sec) Pipe File Reread Mmap Reread Mem Read Mem Write

Domain0
1616

(96.84%)

1261

(66.50%)

4266

(99.57%)

4269

(99.56%)

1837

(94.11%)

LTTng-Xen
1620

(97.08%)

1236

(65.19%)

4265.7

(99.56%)

4265

(99.46%)

1837

(94.11%)

Xentrace
1619

(97.02%)

1280.8

(67.55%)

4257

(99.36%)

4265

(99.46%)

1833

(93.90%)

Virtual Systems Tracing for Performance Analysis The Open Cybernetics & Systemics Journal, 2011, Volume 5 13

Tracing the hypervisor - Cache cold

Comparison of Lttng-Xen and Xentrace

9
0

,8
1

9
5

,8
4

8
1

,4
6 9
5

,9
8

9
8

,7

9
2

,1
4

9
0

,7
5

9
4

,1
5

7
9

,5
3 9

6
,5

7

9
8

,7
3

9
2

9
0

,9
2

8
5

,9
5

8
0

,1
1 9
5

,4
5

9
8

,9
4

9
1

,7

0

20

40

60

80

100

120

140

1 2 3 4 5 6

Six tests

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n

c
e
 i
n

 p
e
rc

e
n

ta
g

e

Domain0

Domain0, Lttng-Xen active

Domain0, Xentrace active

Fig. (11). Comparison of LTTng-Xen and Xentrace.

Table 13. Comparison of LTTng-Xen and Xentrace

Cache Hot LTTng is Not Compiled Xentrace is Inactive LTTng-Xen is Active Xentrace is Active

Compilation (minute)
6:38.96

(90.67%)

6:38.25

(90.87%)

6:37.51

(91.07%)

Tar-create (minute)
1:53.25

(96.75%)

1:54.19

(95.90%)

2:00.43

(90.21%)

Tar-extract (minute)
1:57.99

(78.45%)

2:01.16

(75.18%)

2:02.57

(73.73%)

Compression (minute)
1:21.03

(94.15%)

1:21.13

(94.01%)

1:20.83

(94.41%)

Dbench (MB/sec)
211.61

(97.65%)

207.41

(95.71%)

213.73

(98.63%)

SPECviewperf9.1 (Frame/sec)
0.987

(92.14%)

0.985

(92.00%)

0.982

(91.70)

Table 14. Compiling, Four Tasks on Four Partitions - Virtual Machine

Compile (Minute) Four Tasks, One Per Machine Four Tasks on One Virtual Machine Having 1 VCPU

task 1 26:34.41 27:58.78

task 2 26:39.89 28:03.92

task 3 26:27.87 27:19.16

task 4 26:37.71 28:02.63

14 The Open Cybernetics & Systemics Journal, 2011, Volume 5 Heidari et al.

CONCLUSION

 The results obtained demonstrate that for typical server
applications, virtual machines bring a performance overhead
lower than 5% in most of the cases. In some I/O tests, like
tar archiving, their impact may exceed 10% in domain0.
However, because of different I/O scheduling and of the
combined domainU/domain0 memory available for
buffering, in some cases the same I/O tests performed even
better in domainU virtual machines than on a physical
machine.

 The performance of systems with intense interaction
between the applications and the operating system is
particularly difficult to analyze. Tracing is often the most
detailed and accurate source of information for this purpose.
The difficulty is even more acute with virtualization where
several virtual machines interact with an hypervisor in order
to share the resources of the physical machine. The Linux
Trace Toolkit was ported to the domain0 and domainU
virtual machines and extended to trace the Xen hypervisor
(LTTng-Xen). It was then possible to obtain a complete
picture of all the important events happening on a Xen
system running several Linux virtual machines. This
extension replaces the current simpler tracing system
provided with Xen, Xentrace, and provides the complete
information with a single tracing system, using a common
time base.

 The performance overhead associated with tracing, with
and without virtual machines, was measured using the new
proposed test program. The tracing overhead remains almost
negligible at between 2% and 5%, with little or no impact on
scheduling or real-time response, because of the atomic
operations used in LTTng. The performance of Xentrace and
LTTng-Xen was specifically compared. LTTng uses a
variable size event format and thus produces more compact
traces. Furthermore, the associated overhead for LTTng-Xen
was smaller than for Xentrace in most cases.

 In this document, we have studied virtual machines based
on the Xen hypervisor as a solution for consolidating and
simplifying the management of server applications, and
measured the corresponding performance overhead. A new
automated performance measurement procedure was
proposed and used to evaluate various characteristics of
system performance in different contexts. Our procedure is
easily extensible to cover more characteristics and system
configuration alternatives. It would be interesting in the
future to complement the system with a graphical reporting

system, converting the raw performance data into various
graphs and statistics.

 LTTng-Xen currently reuses the events defined for
Xentrace. The events could be redefined specifically for
LTTng-Xen to benefit from more concise event typing, and
extended to trace more information such as virtual CPUs.

ACKNOWLEDGMENTS

 The financial support of the Natural Sciences and
Engineering Research Council of Canada is gratefully
acknowledged.

REFERENCE

[1] A. Padegs, "System/360 and beyond," IBM J. Res. Dev., vol. 25
pp. 377-390, September 1981.

[2] SWSOFT, "Top ten considerations for choosing a server
virtualization technology," 2006.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield, "Xen and the art of
virtualization," in SOSP'03: Proceedings of the 19th ACM
Symposium on Operating Systems Principles, Lake George, NY,
United States, pp. 164-177, 2003.

[4] I. Pratt, F. Keir, S. Hand, C. Limpach, A. Warfield, D.
Magenheimer, J. Nakajima, and A. Mallick, "Xen 3.0 and the art of
virtualization," in Ottawa Linux Symposium, Ottawa, Canada, pp.
65-77, 2005.

[5] M. Bligh, M. Desnoyers, and R. Schultz, "Linux kernel debugging
on Google-sized clusters," In: Ottawa Linux Symposium, Ottawa,
Canada, pp. 29-40, 2007.

[6] R. W. Wisniewski, R. Azimi, M. Desnoyers, M. M. Michael, J.
Moreira, D. Shiloach, and L. Soares, "Experiences understanding
performance in a commercial scale-out environment," In: 13th
International Euro-Par Conference on Parallel Processing, Euro-

Par, Rennes, France, pp. 139-149, 2007.
[7] V. Prasad, W. Cohen, F. Eigler, M. Hunt, J. Keniston, and B. Chen,

"Locating system problems using dynamic instrumentation," In:
Ottawa Linux Symposium, Ottawa, Canada, pp. 49-64, 2005.

[8] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal, "Dynamic
instrumentation of production systems," In: Proceedings of the

General Track 2004 USENIX Annual Technical Conference,
Boston, MA, 2004.

[9] K. Yaghmour, and M. R. Dagenais, "Measuring and characterizing
system behavior using kernel-level event logging," In: Proceedings

of the 2000 USENIX Annual Technical Conference, San Diego,
CA, pp. 13-26, 2000.

[10] M. Desnoyers and M. R. Dagenais, "The LTTng tracer: A low
impact performance and behavior monitor of GNU/Linux," In:
Ottawa Linux Symposium, Ottawa, Canada, pp. 209-223, 2006.

[11] "Linux Kernel Mailing List (LKML) ", 2006. Available:
http://lkml.org /lkml/2006/9/ 15/148.

[12] P. Heidari, M. Desnoyers, and M. dagenais, "Performance analysis
of virtual machines through tracing," In: CCECE 2008, Niagara
Falls, Canada, pp. 261-266, 2008.

[13] M. R. Dagenais, "Disks, partitions,volumes and RAID performance
with the Linux operating system," 2005, [Online] available
http://arxiv.org /ftp/cs/papers/0508/0508063.pdf , [Accessed: May
31, 2007].

Table 15. Archiving, Four Tasks on Four Partitions - Virtual Machine

Tar-Create (Minute) Each Task on a Virtual Machine Four Tasks on One Virtual Machine having 1 VCPU

task 1 10:18.05 12:13.85

task 2 10:55.29 12:48.18

task 3 11:04.55 12:44.15

task 4 11:04.48 12:51.17

Virtual Systems Tracing for Performance Analysis The Open Cybernetics & Systemics Journal, 2011, Volume 5 15

[14] "Fedora project homepage:" Available: http://download.fedora.
redhat. com/pub/fedora/linux/core/updates/5/SRPMS, [Accessed:
February 1st, 2007].

[15] A. Tridgella., "Dbench Readme" revision 2007, available at:
http://samba.org/ftp/tridge/dbench/README, [Accessed: May 31,
2007].

[16] "Standard performance evaluation corporation" Available:
www.spec.org, [Accessed: May 31, 2007].

[17] L. McVoy, and C. Staelin, "LMbench - Tools for performance
analysis."Available: http://lmbench.sourceforge.net/, [Accessed:
May 31, 2007].

[18] P. Heidari, "Hypervisors and virtual systems tracing for
performance analysis,” Masters' Thesis, École Polytechnique de
Montreal, Montreal, 2007.

Received: March 24, 2010 Revised: September 15, 2010 Accepted: December 1, 2010

© Heidari et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

