
 The Open Cybernetics & Systemics Journal, 2012, 6, 11-25 11

 1874-110X/12 2012 Bentham Open

Open Access

Efficient Conditional Tracepoints in Kernel Space

Rafik Fahem and Michel Dagenais*

Department of Computer and Software Engineering, Ecole Polytechnique de Montreal, P.O. Box 6079, Succ.

Downtown, Montreal, Quebec, H3C 3A7, Canada

Abstract: With kernel static tracepoints, it is now possible to add instrumentation to the Linux kernel and obtain a low

overhead trace of the whole system. However, these static tracepoints may be insufficient to diagnose the source of a

functional or performance problem. Dynamic instrumentation fills the gap by enabling the insertion of additional

tracepoints in other locations at run time.

This article presents a new approach for tracing the Linux kernel with dynamic and static tracepoints. These tracepoints

will be conditional. Conditions are defined using complex expressions that employ the code variables and make use of

arithmetic and logic operations. These expressions are written using C-like syntax.

Both static and dynamic tracepoints will evaluate and collect expressions similar to those used for conditions. In addition,

static tracepoints will collect the static tracepoint data, as defined by the TRACE_EVENT macro used to define

tracepoints in the Linux kernel.

Our tool was implemented based on GDB and KGTP, which is a GDB stub in kernel-space that partially implements

dynamic tracepoints.

Keywords: Dynamic tracing, linux kernel, GDB, TRACE_EVENT, Systemtap, Ftrace, LTTng.

1. INTRODUCTION

 With kernel static tracepoints [1, 2] defined using

TRACE_EVENT [3] and user-space tracepoints provided by

the UST [4] library, it is now possible to add instrumentation

and obtain a low overhead trace of the whole system.

However, these static tracepoints may be insufficient to

diagnose the source of a problem. Dynamic instrumentation

fills the gap by enabling the insertion of additional
tracepoints in other locations at run time.

 Recently, GDB [5] was enhanced to support dynamic

tracepoints in user-space. Using this feature, tracepoints can

be defined in almost every location in a program. A set of

actions can be associated to each tracepoint. These actions

may be used to collect the values of the registers at the time

the tracepoint was hit or to evaluate user-defined

expressions. These expressions may be complex and can

reference all the program variables accessible from the
tracepoint location. GDB being able to read the program

debug information and to locate variables, we can refer to

variables in these expressions by their name without having

to care about their location. GDB static and dynamic

tracepoints may be conditional. In this case, expressions can

be used as conditions. In order to simplify evaluation, GDB

converts expressions used in conditions and actions to

bytecode [6, 7] which is interpreted each time the

*Address correspondence to this author at the Department of Computer and
Software Engineering, Ecole Polytechnique de Montreal, P.O. Box 6079,
Succ. Downtown, Montreal, Quebec, H3C 3A7, Canada;

Tel: 1 514 340 4711; E-mail: michel.dagenais@polymtl.ca

corresponding tracepoint is hit. Moreover, in some

situations, GDB converts the conditions’ bytecode into

native code in order to improve performance.

 More recently, the KGTP (Kernel GDB Tracepoints)[8]

kernel module was submitted as a contribution to the Linux

kernel. It uses kprobes [9-11] to insert GDB dynamic

tracepoints into the kernel, implements the RSP (Remote
Serial Protocol) to communicate with GDB and can interpret

the bytecode used by GDB to define conditions and actions.

However, KGTP is unable to convert this bytecode to native

code.

 The goal of this work was to extend the KGTP module

by implementing a bytecode to native code converter in

kernel space for both conditions and actions. GDB was also

integrated with TRACE_EVENT through KGTP in order to

be able to list, enable and disable the kernel static
tracepoints. Expressions may be used in conditions and

additional actions. These expressions are converted to native

code and may reference any variable accessible from the

static tracepoint location.

2. PREVIOUS WORK

 Dtrace [12, 13] is a tracing tool developed for the Solaris

kernel and ported to other platforms such as Mac OS, QNX

and FreeBSB. Static tracepoints can be inserted in the kernel

source code using a C macro which expands to a non-

existing function call. This function call is replaced by a

NOP operation at link-time. The linker saves the function
name and the call address. In order to enable the tracepoint,

DTrace uses this saved information to replace the NOP by a

probe which has the same name as the non-existing function.

12 The Open Cybernetics & Systemics Journal, 2012, Volume 6 Fahem and Dagenais

 Dynamic tracepoints [14] are used to avoid the overhead

caused by disabled static tracepoints. They can only be

inserted in the kernel functions entry and exit points. They

are implemented on the x86 architecture using a trap [15].

When the tracepoint is hit, the instruction transfers control to

DTrace.

 Static and dynamic tracepoints [16] in DTrace are
defined using D scripts. D is a language which has a C-like

syntax. Conditions can be associated to both tracepoints. D

scripts are converted to an intermediate code. The

intermediate language is a RISC instruction set. This code is

emulated each time the tracepoint is hit.

 Several efforts were made in the Linux community to

bring an answer to Dtrace. Some of them are presented in the

subsequent paragraphs.

 Systemtap [17-19] is a tracing tool similar to DTrace

which implements dynamic and static tracepoints in the

Linux kernel. Systemtap uses scripts in order to define both

tracepoints. These scripts are compiled into kernel modules

before tracing starts.

 Dynamic tracepoints are implemented in Systemtap using

kprobes. They can be conditional. Conditions are defined

using C-like complex expressions. All the variables

accessible from the dynamic tracepoint address can be used
in these expressions. Dynamic tracepoints are able to

evaluate and collect expressions that have the same

characteristics as the expressions used for conditions.

 Systemtap is also able to connect to the kernel static

tracepoints defined using TRACE_EVENT. Conditional

expressions are limited to using the variables passed to the

Systemtap registered probe, as defined in the

TRACE_EVENT macro. Static tracing capabilities are

therefore limited. In addition, Systemtap is unable to list the

probe points, which makes it require a certain level of
familiarity with the Linux kernel source code.

 Ftrace [20, 21] is another Linux kernel tracing tool that is

part of the mainline kernel. It offers both dynamic and static

tracepoints. Dynamic tracepoints [22, 23] are based on

kprobes. Because Ftrace is unable to read the kernel debug

information, we have to manually specify the exact address

location of each variable to collect.

 Ftrace connects to the kernel static tracepoints defined

with TRACE_EVENT. These tracepoints are only able to

collect the data defined in the TRACE_EVENT declaration.

 Ftrace is unable to associate conditions to both

tracepoints. Only filters can be used. These filters have

limited capabilities compared to SystamTap and GDB

conditional expressions.

 In conclusion, we notice that each tracing tool in the
Linux kernel lacks some functionality. Some tools, such as

Ftrace or LTTng offer great performance at the expense of

flexibility. Indeed, Ftrace is unable to insert conditional

tracepoints in the kernel.

 On the other side, Systemtap offers such functionality. It

is able to insert conditional dynamic and static tracepoints

based on the kernel debugging information. However, the

integration between Systemtap and TRACE_EVENT is not

optimal and a complicated setup is required on the tracing

target with a compiler and compilation server.

 In the subsequent sections, we describe the architecture

of the proposed solution. We explain the implementation of

the bytecode to native code translator used in both dynamic
and static tracepoints. We then describe the method used to

integrate KGTP with the kernel static tracepoints and the

modifications we had to apply to the existing

TRACE_EVENT implementation in order to collect the

registers needed to evaluate expressions. Finally, we will

discuss how to integrate these tracepoints with LTTng in

order to increase performance.

3. METHODOLOGY

3.1. Bytecode to Native Code Translation

 Converting the bytecode produced by GDB to native
code has proved its efficiency in user-space especially for

conditional tracepoints. Table 1 shows the execution times

that we collected during the experiments. In order to

minimize the overhead of executing dynamic and static

tracepoint probes in kernel space, we implemented the

translator in KGTP.

Table 1. Bytecode vs Native Code in User-Space

Processing Bytecode Native

Condition 444 (ns) 115 (ns)

Data 3.075 (μs) 2.9 (μs)

 Similarly to what GDBServer does in user-space, KGTP
translates the bytecode using a one-to-one translation

scheme, meaning that for each agent expressions opcode,

there is a corresponding assembly code snippet.

 Fig. (1) shows the assembly code corresponding to the

“add” opcode.

 As Fig. (1) shows, each native code snippet is located in

a separate function and is produced using inline assembly.
The assembly code is located between two labels preceded

by a jump to the second label. The jump instruction is useful

to avoid executing that code when the function is called and

the two labels are needed to get the start and end addresses

of the native code in the program memory space. Having

these two addresses, we just have to run what is in between

to execute an “add” instruction.

 In some situations, inline assembly is not sufficient to

produce the correct native code. In fact, some opcodes have

arguments with values changing from an expression to
another. For example, the “const8” opcode pushes an eight-

bit constant on the stack. This constant is provided in the

bytecode and cannot be guessed when compiling the KGTP

module. Thus, we have to overwrite the native code

produced in order to put the right value. Fig. (2) illustrates

this case.

Efficient Conditional Tracepoints in Kernel Space The Open Cybernetics & Systemics Journal, 2012, Volume 6 13

 This is also the case for the “goto” and “if_goto”

opcodes.

 The native code translator that we implemented works in

five steps:

• It allocates a virtually contiguous, executable

memory. This buffer will contain the native code

produced. It also allocates two other tables. The first

one is a mapping table used to map the address of

each opcode in the bytecode to the address of the

corresponding native code snippet in the executable

buffer. The second one is used to store the addresses
of the “goto” and “if_goto” instructions in the

bytecode. These two tables are used to determine and

update the target addresses of the jump instructions

used in the “goto” and “if_goto” opcodes.

• It starts by copying the function prologue into the

executable buffer.

• It iterates over the bytecode and copies the
corresponding native code snippets into the buffer.

Overwrites are performed when needed (const8,

zero_ext...).

• It copies the function epilogue into the buffer.

• It updates the jump addresses using the two tables.

 Because the space allocated for the buffer is
executable, the native code that it contains can be

executed by casting the pointer to the buffer into a

function pointer and calling that function.

 Both dynamic and static tracepoints should be able to

verify conditions and collect user defined expressions.

Therefore, this translation is applied to the conditions and
actions of all the tracepoints.

3.2. Listing and Enabling Static Tracepoints

 The user is not supposed to know the exact location and

name of every static tracepoint. We then have to be able to

list the static tracepoints defined in the kernel upon request.

Besides, because this information may change at any time

and new static tracepoints can be added to the kernel, we

cannot statically store it in the KGTP module. It must be

retrieved at run time from the kernel.

 Based on what is done in Ftrace, we used a static

memory area in the kernel to store this information. By

having the start and end addresses of this memory area, we

can access it from both the kernel and the KGTP module, to

read and write the information needed. We defined a

structure that will contain all that data. For each static

tracepoint, we have a corresponding instance of that structure

that we called “kgtp_event_call” in the static memory area.

Fig. (3) shows that structure.

 The collect_regs and collect_sdata members are used to

determine whether or not we have to collect the registers and

the static tracepoint data before executing the KGTP probe.

The gentry pointer is used internally in KGTP and stores,

among other things, the pointers to the KGTP buffers. The

event_name and trace_system contain the trace event name

and system as defined in the TRACE_EVENT macro call.

#define EMIT_ASM(BUFFER,INDEX,NAME, INSNS) \
 do \
 [\
 extern unsigned char start_ ## NAME, end_ ## NAME; \
 __asm__ ("jmp end_" #NAME "\n" \
 "\t" "start_" #NAME ":" \
 "\t" INSNS "\n" \
 "\t" "end_" #NAME ":"); \
 copy_into_buffer(BUFFER,INDEX,&start_ ## NAME,&end_ ## NAME);\
 } while (0)

static void emit_add(unsigned char *dest, int *offset)
 [

 EMIT_ASM (dest,offset,add,
 "add (%rsp),%r15\n\t"
 "lea 0x8(%rsp),%rsp\n\t"
 "dec %r14");
}

Fig. (1). "Add" assembly code.

static void emit_const8(unsigned char *dest, int *offset,LONGEST arg)
 [

 EMIT_ASM (dest,offset,const8_1,
 "movabs $0xffffffffffffffff,%r15");
 ((LONGEST)(dest+*offset-8)) = arg;
}

Fig. (2). Overwriting the native code.

14 The Open Cybernetics & Systemics Journal, 2012, Volume 6 Fahem and Dagenais

The address member contains the location of the static

tracepoint in the kernel address space. Finally, the

condition_function and probe function pointers contain the

pointers to the condition function and KGTP probe

respectively.

 The structure data is written only at compile-time or by

KGTP before starting the tracing session. Therefore, there is

no data corruption risk in case we have several threads

accessing that data at the same time.

 The structure is created at the static tracepoint call site.

Fig. (4) shows the code to create that structure. First of all,

the tracepoint and the trace system names are stored in the

corresponding sections. After that, we move to the

_kgtp_event_calls section and create the kgtp_event_call

structure. At that time, we can only write the tracepoint and

trace system name, and the tracepoint address which
corresponds to the address from which the tracepoint

condition is verified.

 As shown in Fig. (4), the kgtp_event_call structures are

created in a section called _kgtp_event_calls. Knowing the

size of the structure and the start and end addresses of that

section, we can iterate to list the static tracepoints. In order to

struct kgtp_event_call

 [

 long int collect_regs;
 long int collect_sdata;
 void (*probe)(struct kgtp_event_call*, struct pt_regs, char*);
 void *gentry;
 char *event_name;
 char *trace_system;
 void *address;
 int (*condition_function)(struct kgtp_event_call*, struct pt_regs);
};

Fig. (3). Structure used to store the tracepoint information.

asm volatile(\
 ".ifndef __mstrtab_" __stringify(name) "\n\t" \
 ".section ___kgtp_event_calls_strings1,\"aw\",@progbits\n\t" \
 "__mstrtab_" __stringify(name) ":\n\t" \
 ".string \"" __stringify(name) "\"\n\t" \
 ".previous\n\t" \
 ".endif\n\t" \
); \
\
asm volatile(\
 ".ifndef __mstrtab_" __stringify(TRACE_SYSTEM) "\n\t" \
 ".section ___kgtp_event_calls_strings2,\"aw\",@progbits\n\t" \
 "__mstrtab_" __stringify(TRACE_SYSTEM) ":\n\t" \
 ".string \"" __stringify(TRACE_SYSTEM) "\"\n\t" \
 ".previous\n\t" \
 ".endif\n\t" \
); \
\
asm volatile(\
 ".section _kgtp_event_calls,\"aw\",@progbits\n\t" \
 "1:\n\t" \
 _ASM_PTR "0\n\t" \
 _ASM_PTR "0\n\t" \
 "19:\n\t" \
 _ASM_PTR "0\n\t" \
 _ASM_PTR "0\n\t" \
 _ASM_PTR "(__mstrtab_" __stringify(name) ")\n\t" \
 _ASM_PTR "(__mstrtab_" __stringify(TRACE_SYSTEM) ")\n\t" \
 _ASM_PTR "(18f)\n\t" \
 _ASM_PTR "0\n\t" \
 ".previous\n\t" \

Fig. (4). Creating the kgtp_event_call structure.

Efficient Conditional Tracepoints in Kernel Space The Open Cybernetics & Systemics Journal, 2012, Volume 6 15

do that, we had to modify the system image layout by adding

the _kgtp_event_calls section to the linker script. We are

then able to get the start and end addresses by calling the

get_start_kgtp_event_calls and get_stop_kgtp_event_calls

functions. Fig. (5) shows the modifications brought to the

include/asm-generic/vmlinux.lds.h file.

 Listing the static tracepoints is done in GDB using the
“info static-tracepoint-markers”. Because GDB has no direct

access to the tracepoint data in the static memory area, it

communicates with KGTP using the appropriate requests to

get that information. The two requests used in this case are

“qTfSTM” and “qTsSTM”. The first request asks the remote

stub, which is KGTP in our case, to return the information

about the first static tracepoint. If the response that we return

to GDB is successful, then GDB keeps sending “qTsSTM”

requests and waiting for the response in order to get the

information about the next static tracepoint. This process

stops when we get to the end of the static memory area. In

that case, we return an empty message to GDB.

3.3. Collecting the Registers

 In addition to the case where the user asks GDB to

collect the registers using the “collect $regs” command,

GDB may need the values of the registers at the moment the

tracepoint was hit, in order to evaluate a condition or to

evaluate an expression. GDB is able to find which register is

used to store the value of a certain variable at that exact

moment. Therefore, we have to collect the registers before

calling the KGTP probe.

 In order to avoid compiler inserted code which may
modify the values of general purpose registers, the tracepoint

address that is returned to GDB corresponds to the

instruction that follows the code that does the collection.

That way, we are always sure that the values recorded from

the registers correspond to what GDB is asking for. Register

collection is done using extended inline assembly. A pt_regs

structure is provided as an input operand. That structure is

created on the stack, and not in the static memory area

corresponding to that tracepoint, in order to avoid memory

corruption issues in case it is hit by multiple threads.

Because we need at least one register to store the address of

the pt_regs structure, we had to push the RAX register on the
stack. After moving the reference to the pt_regs structure to

that register, we pop the stored value directly to its

corresponding location in the structure. We then copy the

#define KGTP_EVENT_CALLS()
VMLINUX_SYMBOL(__start_kgtp_event_calls)=.;\
 *(_kgtp_event_calls) \
 VMLINUX_SYMBOL(__stop_kgtp_event_calls) = .;

#define DATA_DATA \
 *(.data) \
 *(.ref.data) \
 (.data..shared_aligned) / percpu related */ \
 DEV_KEEP(init.data) \
 DEV_KEEP(exit.data) \
 CPU_KEEP(init.data) \
 CPU_KEEP(exit.data) \
 MEM_KEEP(init.data) \
 MEM_KEEP(exit.data) \
 . = ALIGN(32); \
 VMLINUX_SYMBOL(__start___tracepoints) = .; \
 *(__tracepoints) \
 VMLINUX_SYMBOL(__stop___tracepoints) = .; \
 /* implement dynamic printk debug */ \
 . = ALIGN(8); \
 VMLINUX_SYMBOL(__start___verbose) = .; \
 *(__verbose) \
 VMLINUX_SYMBOL(__stop___verbose) = .; \
 LIKELY_PROFILE() \
 BRANCH_PROFILE() \
 TRACE_PRINTKS() \
 \
 STRUCT_ALIGN(); \
 FTRACE_EVENTS() \
 KGTP_EVENT_CALLS(); \
 \
 STRUCT_ALIGN(); \
 TRACE_SYSCALLS()

Fig. (5). Modifications brought to the linker script.

16 The Open Cybernetics & Systemics Journal, 2012, Volume 6 Fahem and Dagenais

rest of the registers.

 Collecting the registers is not always necessary. In fact, if

the tracepoint is disabled or no tracepoint condition is

specified, and only the tracepoint static data is collected, the

registers collected will not be useful. We thus check if the

tracepoint is enabled and KGTP needs the registers before

collecting them. This is done using the “probe” and
“collect_regs” fields in the kgtp_event_call structure. If the

“probe” function pointer is NULL, this means that the KGTP

probe is not registered and therefore, the tracepoint is

disabled.

 Because the assembly “TEST” instruction accepts only

register operands, we used the same RAX register. After

saving its value on the stack, we load the field in the register

and call the test instruction. If saving the registers is needed,

we then execute the code described in the previous

paragraph. Otherwise, we directly call the KGTP probe

without even restoring the RAX register. In fact, this register

is listed as a clobbered register and therefore, the compiler

will consider these changed. The same technique is used to

test if the tracepoint is enabled.

3.4. Extracting the TRACE_EVENT Data

 Each TRACE_EVENT defines the parameters passed to

the registered probes. The number and the types of these

parameters vary from a tracepoint to another. Using a single

probe for all tracepoints is therefore unfeasible.

#undef __array
#define __array(type, item, len) type item[len];

#undef __field
#define __field(type, item) type item;

#undef __field_ext
#define __field_ext(type, item, filter_type) type item;

#undef __dynamic_array
#define __dynamic_array(type, item, len) \
 type* item;\
 int item##_len;

#undef __string
#define __string(item, src) char* item;

#undef TP_STRUCT__entry
#define TP_STRUCT__entry(args...) args

#undef TP_PROTO
#define TP_PROTO(args...)

#undef TP_ARGS
#define TP_ARGS(args...)

#undef TP_fast_assign
#define TP_fast_assign(args...)

#undef TP_printk
#define TP_printk(args...)

#undef TP_perf_assign
#define TP_perf_assign(args...)

#undef TRACE_EVENT
#define TRACE_EVENT(name, proto, args, tstruct, assign, print) \
 struct kgtp_event_##name##__entry [\
 tstruct \
 };

#undef DECLARE_EVENT_CLASS
#define DECLARE_EVENT_CLASS(name, proto, args, tstruct, assign, print)\
 struct kgtp_event_##name##__entry [\
 tstruct \
 };

#undef DEFINE_EVENT
#define DEFINE_EVENT(template, name, proto, args)

#include TRACE_INCLUDE(TRACE_INCLUDE_FILE)

Fig. (6). Creating the __entry structure.

Efficient Conditional Tracepoints in Kernel Space The Open Cybernetics & Systemics Journal, 2012, Volume 6 17

 Therefore, each static tracepoint needs its own function

that will accept the parameters and extract the appropriate

fields. Writing such a function for each TRACE_EVENT

manually can solve the problem but, in that case, KGTP

won't be able to connect to the new static tracepoints added

to the kernel, and we will find ourselves writing a new

function each time we define a TRACE_EVENT.

SystemTap suffers from this limitation. That function will

extract the fields defined in the TRACE_EVENT from the
parameters passed to it.

 Based on the integration between TRACE_EVENT and

Ftrace, we defined the functions to connect to the static

tracepoints and the intermediate data we need using two

stages. Figs. (6, 7) illustrate this.

 In the first stage, we define the __entry structure as

declared in the TRACE_EVENT. This structure contains all

the fields that will be extracted from the parameters passed

to the probe. As Fig. (6) shows, because we are only defining

the structure here, we had to consider only the “name” and

“tstruct” parameters of the TRACE_EVENT macro. The
other tokens are simply ignored.

 The first token is used as part of the structure name. The

second one declares the fields inside the structure. By putting

the tstruct token between the brackets([}), the preprocessor

will define the structure fields using the corresponding

macros (__array, __field, __dynamic_array... etc).

#undef __dynamic_array
#define __dynamic_array(type, item, len) \
 __entry->item##_len = len;

#undef __string
#define __string(item, src)

#undef __array
#define __array(type, item, len)

#undef __field
#define __field(type, item)

#undef __field_ext
#define __field_ext(type, item, filter_type)

#undef __assign_str
#define __assign_str(dst, src) __entry->dst = (char*)src;

#undef tp_assign
#define tp_assign(dest, src) __entry->dest = src;

#undef tp_memcpy
#define tp_memcpy(dest, src, len) memcpy(__entry->dest, src, len);

#undef tp_memcpy_dyn
#define tp_memcpy_dyn(dest, src, len) __entry->dest = src;

#undef tp_strcpy
#define tp_strcpy(dest, src) __assign_str(dest, src);

#undef TP_fast_assign
#define TP_fast_assign(args...) args

#undef TP_PROTO
#define TP_PROTO(args...) args

#undef TP_ARGS
#define TP_ARGS(args...) args

#undef TRACE_EVENT
#define TRACE_EVENT(name, proto, args, tstruct, assign, print) \
 void get_##name##_kgtp_string(char* buffer, proto) [\
 struct kgtp_event_##name##__entry global__entry_##name; \
 struct kgtp_event_##name##__entry *__entry = &global__entry_##name;\
 struct trace_seq __maybe_unused *p = &kgtp_seq_struct; \
 tstruct; \
 assign; \
 snprintf(buffer,500,print); \
 } \
 EXPORT_SYMBOL(get_##name##_kgtp_string);

Fig. (7). Function to extract the tracepoint data.

18 The Open Cybernetics & Systemics Journal, 2012, Volume 6 Fahem and Dagenais

 In the second stage, we create our function. The “name”

token is pasted to the function name. The “proto” token is

used to declare the function arguments list. The “tstruct”

token is used to save dynamic arrays lengths if any. The

“assign” token is used to generate the code to fill in the

__entry structure. All the fields in the structure are a copy of

the original parameters, except for dynamic arrays and

strings. For these two cases, we wanted to avoid dynamically

allocating memory, especially as these fields will be used
only to generate the string and will no longer be needed

afterwards. That is why we only copy the pointers to

dynamic arrays and strings and use the original data without

copying it. Finally, the “print” token is used to define the

format string and to pass the appropriate arguments to the

snprintf function that generates the function and copies it to a

buffer.

 Basically, the function creates the structure

corresponding to that TRACE_EVENT, fills it using the

parameters passed, generates the string using that structure
and finally copies it to the buffer specified as a parameter to

the function.

3.5. Condition Evaluation and Data Collection

 Recall that generating the string from the tracepoint

parameters can only be done in the tracepoint site and cannot

be moved to the KGTP module. In a previous

implementation, we called the KGTP probe and passed the

string we generated to it as a parameter. Because the

condition was verified inside that probe, we found ourselves

extracting the data for nothing in the case the condition was
false. That is why we split the KGTP probe and implemented

it in two functions.

 The first function takes the pt_regs structure containing

the saved registers and verifies if the condition is true. Then,

depending on the result returned, we generate the

TRACE_EVENT data and finally call the second KGTP

function. Once again, in order to be thread safe, that data is

passed to the function on the stack and not in the static

memory area. Fig. (8) shows the stack when this function is

called.

Start of stack

…

Calling function

stack frame

Instrumented function

stack frame

TRACE_EVENT arguments

Buffer address

unused stack space

...

Fig. (8). Calling the first function.

 The second function executes the actions defined by the

user one by one, similarly to what is done with dynamic

tracepoints. In the case of the “collect $_sdata” action that

collects the TRACE_EVENT data, KGTP copies the string

collected on the tracepoint site to the buffers. First of all,

KGTP needs to insert a frame head in that space to be able to

identify that data when reading it afterwards. After that, it

copies the string collected preceded by its length. Fig. (9)

shows the stack when the KGTP probe is called.

3.6. Algorithm Description

 In the previous sub-sections, we described the different

parts of the algorithm used to collect TRACE_EVENTs data
and to evaluate expressions in KGTP. In this sub-section, we

will put these pieces together. The following pseudocode

presents the modifications we had to apply to the static

tracepoints sites in order to integrate KGTP with the Linux

kernel:

Start of stack

…

Calling function

stack frame

Instrumented function

stack frame

Buffer address

Registers

kgtp_event reference

...

Fig. (9). Calling the second function.

create the kgtp_event_call structure

 if (tracepoint_enabled)

 if (need_to_collect_the_registers)

 save the registers in the pt_regs structure

 if (no_condition OR condition_is_true)

 if (need_to_collect_TRACE_EVENT_data)

 call function to extract the data

 call the KGTP probe

call the old trace function

 Other tracing tools like Ftrace are able to connect to

static tracepoints using the functions provided by
TRACE_EVENTs. Our situation was a bit more

complicated. In fact, we needed to save the registers in order

to be able to verify conditions and to evaluate expressions.

These features are not implemented in Ftrace. We could try

to recover the registers from the call stack, but we have to

note that calling the function that extracts the data from the

tracepoint parameters cannot be called from inside the probe,

and thus we cannot avoid altering the code in the tracepoint

site.

4. RESULTS

 The following section shows the results of running

KGTP in both dynamic and static tracing modes. These

results are compared with those obtained with Systemtap.

Finally, we discuss the performance of combining KGTP

Efficient Conditional Tracepoints in Kernel Space The Open Cybernetics & Systemics Journal, 2012, Volume 6 19

and LTTng [24, 25] in static tracing mode with the

performance of Systemtap.

 In order to make sure the results are repeatable and

accurate, we inserted dynamic and static tracepoints in a

dummy function that does nothing but incrementing a

counter. The function, called kgtp_test_function, was

defined in kernel/module.c. The benchmark was executed
with KGTP and GDB running on the same machine. This

machine contains an Intel Xeon E5405 (4 cores, 4 threads) at

2GHz and 8GB of memory.

 The probes execution times were measured in cycles,

with a kernel module that calls the test function 10.000

times. Fig. (10) shows the test function and Fig. (11) shows

the loop used.

4.1. Dynamic Tracepoints with Native Code Support

 The goal of this test case is to compare the performance
increase obtained by converting the bytecode produced by

GDB into native code in dynamic tracing mode. The results

are then compared to those produced by SystemTap, where

the probes are converted to C code and compiled by GCC.

 The test probe was inserted at the address of the

instruction following the test function prologue for both

KGTP and Systemtap. We first measured the execution time

of the condition alone. In order to do that, we had to make

sure the condition was always false. The second step was to
measure the time needed to evaluate and store an expression.

The last one was a combination of a true condition and an

expression. The expressions used employ the two parameters

of the dummy function (counter1 and counter2).

 Fig. (12) shows the GDB commands used to configure

tracing and to output the trace for the third test case.

 The two tools use Kprobes to connect dynamic

tracepoints to the kernel. The tracepoint address was chosen
so that Kprobes was able to optimize the probe and use a

jump instead of the int3 interrupt. The execution times

presented in the table below were calculated from the

moment the jump instruction was met until the execution of

the original instruction. This was done by calculating the

difference between the dummy function execution time with

and without a kprobe connected. Thus, the numbers

presented below include the overhead added by kprobes.

Table 2. Execution Times for Dynamic Tracepoints

Computation KGTP with Native Code

(Cycles)

Systemtap

(Cycles)

False condition:

2xarg1+3xarg2<0

202 351

Expression only:

2xarg1+3xarg2

500 1035

Condition + expression:

2xarg1+3xarg2>0

602 1061

 Table 2 shows that KGTP is always faster than Systemtap,

whether to evaluate conditions or to store the expressions.

 Based on these results, we may think that executing the

native code produced by KGTP from the bytecode is faster

than the optimized native code produced from the Systemtap

script by the compiler. After analyzing the temporary C files

produced by Systemtap, we discovered that the tool adds

some “setup code” that is always executed at the start of the

probe.

 For KGTP, the execution time in the third test case is

nearly the sum of the execution times of the first two test

cases, if we substract the time taken to setup the kprobe(115
cycles for an optimized kprobe). That is not true in the case

of Systemtap because of the setup code that is always

executed.

 Assuming that evaluating the conditions in the first and

third cases takes nearly the same time, we can conclude that

executing the native code produced by our implementation

takes 102 cycles for the two expressions. For Systemtap, the

second and third cases let us conclude that the native code

produced takes 26 cycles to be executed. This big difference
may be explained by two reasons.

int kgtp_counter=1;
int kgtp_test_function(int counter1, int counter2)
 [

 kgtp_counter++;
 __trace(kgtp_module_event,counter1,counter2);
}

Fig. (10). Test function.

set_current_state(TASK_INTERRUPTIBLE);

time1 = get_timestamp();
for (i = 0; i < NR_LOOPS; i++) [
 counter1++;
 kgtp_test_function(counter1, counter2);
 counter2++;
}

Fig. (11). Loop used to calculate the execution times.

20 The Open Cybernetics & Systemics Journal, 2012, Volume 6 Fahem and Dagenais

 The first one is that the native code produced by KGTP is

put in a function. Thus, we cannot neglect the execution time

of the function prologue and epilogue. In the case of

Systemtap, the condition evaluation and the data collection
are done directly in the body of the kprobe handler.

 The second one is that the native code produced by

KGTP is a strict translation of the bytecode that GDB

generated. Thus, its performance depends on how optimized

the bytecode is. For example, the condition used in the third

test (2*param1+3*param2>0) is translated by GDB into the

bytecode shown in Table 3.

 If we look at the five “ext” instructions, they all pop the

value that was pushed in the previous instruction. Thus, we

have five successive pop/push operations that could be

avoided. In addition, the three “ext” instructions that follow

the “const8” instruction are unnecessary because the

constants that we pushed are already sign-extended to zero.

We can then conclude that the bytecode produced by GDB

could be optimized, improving the native code significantly.

Intermediate code optimization is not a new concept. It is

used for example in Valgrind to make the intermediate

representation of the original binary code more efficient.

 Finally, we have to note the impact of the bad

performance of KGTP buffers. In fact, the expression

collected in the second test case is very similar to the

condition evaluated in the first case. The main difference
between their bytecodes is that the expression collected

contains additional trace opcodes. These opcodes trace the

values of the variables used in the expression. We notice that

these opcodes are the main cause of the significant difference

between these two cases. Thus, by using more efficient data

structures, like ring buffers to store the trace, the time taken

to execute the “trace” and “trace_quick” opcode can be

reduced. Moreover, by integrating KGTP with other tracing

tools like LTTng, we can make use of their fast tracing

capabilities. Storing the trace would then be performed by

LTTng.

4.2. Static Tracepoints

 The static tracepoint was created by defining a new

TRACE_EVENT, as shown in Fig. (13). The expression

defined in this static tracepoint is very similar to the one

defined in the dynamic tracepoint test. It collects the two

parameters passed to the dummy function.

 KGTP is able to connect to the static tracepoint and

collect the data as defined by the TP_printk macro

Fig. (12). GDB dynamic tracepoints.

Efficient Conditional Tracepoints in Kernel Space The Open Cybernetics & Systemics Journal, 2012, Volume 6 21

automatically. On the other side, Systemtap is only able to

trace the parameters given to the probe registered to the
tracepoint automatically. In order to get the same results with

the two tools, we have to redefine the way to extract the data

in the Systemtap script. Figs. (14, 15) show the KGTP and

Systemtap scripts used to connect to the tracepoint.

 As a first step we tried to measure the overhead of a

disabled static tracepoint in the kernel. After that, we

compared the performances of KGTP and Systemtap.

4.2.1. KGTP Kernel Overhead

 In order to avoid collecting the registers when the KGTP

tracepoint is disabled, we check if the KGTP probe was

registered in the static memory area corresponding to the

tracepoint that was hit. We wanted to measure the overhead

caused by this additional code. In order to do that, we

calculated the execution time of the dummy function before

and after the changes were applied to the kernel. Table 4

shows the results.

Table 4. KGTP Kernel Overhead

 Function Execution Time (Cycles)

Before 12

After 19

 We may conclude that a disabled static tracepoint costs
an extra 7 cycles. This can be explained by the fact that we

need at least one register to proceed with the check. This is

why we are saving the RAX register before calling the TEST

instruction.

 Saving the RAX register was unavoidable. We may want

to put it in the clobbered registers list to force the compiler to
use other registers for the kernel variables, but if we asked

GDB to collect the registers using the « collect $regs »

command in the same static tracepoint, the traced value of

RAX would be incorrect.

4.2.2. KGTP vs Systemtap

 As for dynamic tracepoints, we calculated the results for

the three test cases. Table 5 shows the results. We have to

note that our proposed extended KGTP with static

tracepoints also supports our proposed bytecode to native
code translator.

Table 5. KGTP vs Systemtap

 KGTP (Cycles) Systemtap (Cycles)

Condition 154 223

Data 1216 1252

Condition and Data 1368 1336

 Table 5 shows that KGTP is faster than Systemtap in the

cases where the condition is false or there is no condition.

We may think that the execution time for a probe with a true

condition will nearly be the sum of the two first cases. This

is only true for KGTP. Indeed, as for dynamic tracepoints,

the Systemtap probe always executes the « setup code ».

This explains the fact that Systemtap is faster than KGTP in

the third case.

Table 3. Bytecode for the Condition Expression

Instructions Description

0x22 0x02 const8: push the 8-bit integer 2 on the stack, without sign extension

0x26 0x00 0x05 reg: push the value of the register 5, without sign extension

0x16 0x20
ext: pop an unsigned value from the stack. All bits to the left of bit 31(where the least significant bit is bit 0) are set to the value of bit
31.

0x04 mul: pop two integers from the stack, multiply them, and push the product on the stack.

0x16 0x20 ext

0x22 0x03 const8

0x26 0x00 0x04 reg

0x16 0x20 ext

0x04 mul

0x16 0x20 ext

0x02 add: pop two integers from the stack, and push their sum, as an integer.

0x16 0x20 ext

0x22 0x00 const8

0x2B swap: exchange the top two items on the stack.

0x14
less_unsigned: pop two signed integers from the stack. If the next-to-top value is less than the top value, push the value one. Otherwise,
push the value zero.

0x27 end: stop executing bytecode.The result should be the top element of the stack.

22 The Open Cybernetics & Systemics Journal, 2012, Volume 6 Fahem and Dagenais

 We also notice that the two tools are slow to extract and

save the data. In the case of KGTP, this is caused by how the

data is generated and stored in the buffers. Unlike more

optimized tools like Ftrace or LTTng, KGTP fills the __entry

structure and then pretty prints it to generate a string, as

defined in the TP_printk macro.

 Once the string is generated, it is copied in the KGTP

buffers after the appropriate space is allocated. It is clear that

KGTP is not well suited for high performance tracing and

TRACE_EVENT(kgtp_module_event,
 TP_PROTO(int counter1, int counter2),
 TP_ARGS(counter1, counter2),
 TP_STRUCT__entry(
 __field(int, counter1)
 __field(int, counter2)
),

Fig. (13). TRACE_EVENT used for the test.

Fig. (14). GDB static tracepoints.

Efficient Conditional Tracepoints in Kernel Space The Open Cybernetics & Systemics Journal, 2012, Volume 6 23

that storing the binary __entry structure instead of the string,

and using more efficient data structures to record the trace,

will improve the performance of the tool.

 We ran a similar benchmark for Ftrace to show the

difference of performance between storing strings in simple

buffers and storing binary data in more efficient ring buffers.

We used the same test module to run three test cases on our

static tracepoint. In the first one, only the data was recorded.

In the second and third ones, we associated a filter with the
tracepoint. We could not use the same expression as with

KGTP and Systemtap, because arithmetic operators are not

suppported by Ftrace. We used a simpler expression instead.

Table 6 shows the results.

Table 6. Ftrace Execution Time

 Execution Time (Cycles)

Data only 297

False filter 360

True filter 370

 Table 6 shows that Ftrace is nearly four times faster than

KGTP when collecting and storing the trace data in the ring

buffer. This proves that the current implementation of KGTP

is not optimized.

 Moreover, static tracepoint conditions suffer from the

same optimization problems, as discussed in the dynamic
tracepoints section. By implementing the native code

optimizer, we shall have faster execution times for

expressions in static tracing mode.

 Finally, we have to note that KGTP has another

advantage compared to all the other tacing tools. In fact,

thanks to the changes we applied to the kernel in order to

collect the registers at the tracepoint site, and because GDB

is able to read the debugging information generated at

compile-time, static tracepoint conditions may use all the
global and local variables accessible from the tracepoint

address. Moreover, in addition to the static tracepoint data

defined in the TRACE_EVENT call, GDB static tracepoints

are able to execute other actions like collecting the registers

and evaluating user defined expressions, as for dynamic

tracepoints. Other tracing tools have limited capabilities

compared to KGTP. Systemtap is limited to using the

parameters passed to the registered function in the condition

and in the expressions to collect. Ftrace and LTTng do not

even implement conditions and are only able to collect the

static tracepoint string.

4.2.3. KGTP-LTTng Integration

 Currently, the time taken to have the static tracepoint

data written in the KGTP buffers, from the moment the

tracepoint is hit, can be calculated using the following

equation:

T = Treg + Tcond + Tgen+ Tbuf

 Treg is the time needed to verify whether the static

tracepoint is enabled and to collect the registers if needed.

 Tcond is the time taken to check if a condition is

associated to the tracepoint and to evaluate it.

 Tgen is the execution time of the

get_##name##_kgtp_string function. Finally, Tbuf is the

time needed to store the string in the KGTP buffers.

 Knowing that the lack of performance of our

implementation is primarily caused by how we are

generating and storing data, we thought about combining the

flexibility of GDB agent expressions and the high

performance of LTTng. Instead of generating strings, LTTng

is able to store the __entry structure into its ring buffers

directly. Similarly to the way we defined the function that

generates the string from the TRACE_EVENT, using macro

redefinitions, LTTng is able to store the __entry structure

metadata for every static tracepoint. It is thus able to extract
the appropriate data from the structure and produce the pretty

printed string when the user is reading the trace.

 For each static tracepoint, LTTng defines a function that

is used to extract and record the trace static data. These

functions can replace the get_##name##_kgtp_string probes

used in the current implementation, and also the KGTP

probe that stores the data, in case we want to collect only the

tracepoint static data. The algorithm used at the tracepoint

site becomes:

create the kgtp_event_call structure

 if (tracepoint_enabled)

 if (need_to_collect_the_registers)

 save registers in the pt_regs structure

 if (no_condition OR condition_is_true)

 call the old trace function

 In that case, KGTP is in charge of generating the

tracepoint condition native code and evaluating it using the

registers collected. By registering the LTTng function to the

tracepoint, it will be called by the old trace function. Based

on the results presented in Table 4, and assuming that
evaluating the true condition (2*counter1+3*counter2>0)

takes the same time as a false condition (2*counter1+3*

probe kernel.trace("kgtp_module_evnet")
 [
 if(2*$counter1+3*$counter2>0)
 printf ("time=%d count=%d\n",$counter1,$counter2)
}

Fig. (15). Systemtap script.

24 The Open Cybernetics & Systemics Journal, 2012, Volume 6 Fahem and Dagenais

counter2<0), we can conclude that the time needed to

evaluate the registers and to evaluate the condition at the

tracepoint site is equal to the execution time presented in

Table 4 in the case we have a false condition, which is 154

cycles. We can then extrapolate these results to measure the

new execution time. The equation above becomes:

T = Treg + Tcond + Tlttng

 Treg + Tcond is the time needed to collect the registers

and to evaluate the condition by KGTP and Tlttng is the time

taken by LTTng to collect the tracepoint data. Tlttng was

measured on a vanilla kernel where we defined the same

static tracepoint used for the other test cases. The same test

module was used to make the measurements. Table 7

presents the extrapolated results.

Table 7. KGTP-LTTng Integration

 KGTP+LTTng (Cycles) Systemtap (Cycles)

Condition 154 223

Data 333 1252

Condition and data 487 1336

 With this implementation, the call to the original trace

function is performed only if the KGTP condition is true.

Therefore, this mechanism can be used by all the tracing
tools that can register to TRACE_EVENT and is not limited

to LTTng.

 Integrating KGTP with LTTng lets us benefit from the

conditional dynamic and static tracing capabilities of KGTP

and the great performance of LTTng ring buffers. Therefore,

this solution is more flexible than Systemtap and, at the same

time, offers better performance.

5. CONCLUSION

 We have described an implementation based on the
existing KGTP kernel module and GDB that offers

conditional dynamic and static tracepoints. Conditions are

defined using complex C-like expressions that can use all the

variables accessible from the tracepoint address. All the

arithmetic and logic operations are supported by KGTP.

Both dynamic and static tracepoints are able to evaluate and

save the values of user-defined expressions similar to those

used in the conditions.

 Additionally, the tool is able to collect static tracepoints
data as defined by the TRACE_EVENT macro. Unlike

Systemtap, our implementation is able to extract the data

manually without the need to redefine that data. With the

ability of inserting dynamic tracepoints or reusing static

tracepoints, and to specify arbitrary conditions and data

collection expressions, our initial objectives have been

achieved.

 Even though we showed that our implementation is faster

than Systemtap for dynamic tracepoints and has comparable

execution times for static tracepoints, we suffered from the
low performance of KGTP buffering scheme and some

optimizations are required in order to reach the performance

of other tools such as Ftrace and LTTng.

 The bytecode produced by GDB, for the expressions used

in the conditions and actions, could easily be further

optimized by eliminating unneeded operations.

 Static data extraction can also be optimized. Instead of

generating and copying strings into the trace buffers, we can

simply save the intermediate structure used to extract the

data and use it to generate the string only when the user is

viewing the trace.

 Finally, the results also show that the data structures used

to store the trace are not optimized and can be replaced by

more efficient structures like ring buffers.

ACKNOWLEDGEMENT

 The financial support of NSERC, Defence Research and

Development Canada and Ericsson Research is gratefully

acknowledged.

CONFLICT OF INTEREST

 Declared none.

REFERENCES

[1] “Tracingbook.” 2012. [Online] Available: http://lttng.org/tracingwi
ki/index.php/TracingBook

[2] D. Toupin, "Using tracing to diagnose or Monitor Systems", Softw.
IEEE., vol. 28, pp. 87-91, 2011.

[3] S. Rostedt, “Using the TRACE_EVENT() macro,” 2010. Available
from: http://lwn.net/Articles/379903/

[4] UST Official Website. 2012. Available: http://lttng.org/ust
[5] R. Pesch, R. Stallman, and S. Shebs, Debugging with GDB: the

GNU Source-Level Debugger for GDB. Free Software Foundat-
ion:USA 2010.

[6] R. Pesch, R. Stallman,and S. Shebs, “ Bytecode Descriptions,”
Available: http://sourceware.org/gdb/current/onlinedocs/gdb/Bytec
ode-Descriptions.html#Bytecode-Descriptions [Accessed: 16th Jan.
2012]

[7] R. Pesch, R. Stallman, and S. Shebs, “General Bytecode Design,”
Available: http://sourceware.org/gdb/current/onlinedocs/gdb/Gener
al-Bytecode-Design.html#General-Bytecode-Design [Accessed:
16th Jan.2012].

[8] “KGTP Patch,” 2011. Available: http://lwn.net/Articles/430666/
[9] S. Goswami, “An introduction to Kprobes,” Linux Wkly News,

2005. Available: http://lwn.net/Articles/132196/[Accessed: 16th
Jan.2012].

[10] “Kprobes Documentation in the Kernel,” Available: http://lxr.free-
electrons.com/source/Documentation/kprobes.txt [Accessed: 16th
Jan. 2012].

[11] P. Panchamukhi, A. Mavinakayanahalli, J. Keniston, A.
Keshavamurthy, and M. Hiramatsu, “Probing the Guts of
Kprobes,” In: Ottawa Linux Symposium, Ottawa, Canada, 2006.

[12] “Dtrace page in the Tracing Wiki,” “Available: http://lttng.org/
tracingwiki/index.php/Dtrace [Accessed: 16th Jan 2012].

[13] B. M. Cantrill, M. W. Shapiro and A. H. Leventhal, "Dynamic
Instrumentation of production systems," In: USENIX Annual

Technical Conference, Boston, MA: USA, 2004.
[14] J. Corbet, “On DTrace Envy ,” 2007. Available: http://lwn.net/

Articles/244536/ [Accessed: 16th Jan.2012].
[15] “Debug Exceptions, ” Available: http://www.logix.cz/michal/doc/

i386/chp12-03.htm/[Accessed:16th Jan.2012]
[16] J. Corbet, “Tracing: no shortage of options,” 2008. Available:

http://lwn.net/Articles/291091//[Accessed:16th Jan.2012]
[17] F. Ch. Eigler, V. Prasad, W. Cohen, H. Nguyen, M. Hunt, J.

Keniston and B. Chen, "Architecture of systemtap: a Linux
trace/probe tool," 2005. [Online] Available from:
http://sourceware.org/ systemtap/archpaper.pdf

[18] F. C. Eigler, "Problem solving with systemtap," In: Red Hat

Summit 2007, San Diego, 2007.

Efficient Conditional Tracepoints in Kernel Space The Open Cybernetics & Systemics Journal, 2012, Volume 6 25

[19] “Systemtap Official Website,” Available: http://sourceware.org/
systemtap/[Accessed: 16th Jan.2012]

[20] “Ftrace documentation in the Kernel,” Available: http://lxr.free-
electrons.com/source/Documentation/trace/ftrace.txt[Accessed:16th
Jan.2012]

[21] S. Rostedt, “Ftrace: Now and Then,” 2010. Available: http://lttng.
org/tracingwiki/images/e/e6/RostedtLinuxCon2010.pdf[Accessed:1
6th Jan.2012]

[22] J. Corbet, “Dynamic probes with ftrace,” 2009. Available: http://l
wn.net/Articles/343766/[Accessed:16th Jan.2012]

[23] “Ftrace Dynamic Tracepoints Documentation,” Available:
http://lxr.free-electrons.com/source/Documentation/trace/kprobetra
ce.txt [Accessed:16th Jan.2012].

[24] R. W. Wisniewski, R. Azimi, M. Desnoyers, M. M. Michael, J.
Moreira, D. Shiloach, and L. Soares, "Experiences understanding
performance in a commercial scale-out environment," In:
International Euro-Par Conference, Rennes: France, 2007.

[25] M. Bligh, M. Desnoyers, and R. Schultz, "Linux kernel debugging
on google-sized clusters," In: Ottawa Linux Symposium, Ottawa,
Ontario: Canada, 2007.

Received: February 24, 2012 Revised: April 14, 2012 Accepted: April 16, 2012

© Fahem and Dagenais; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

