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Abstract: Results of lossy image compression using wavelet transforms and several thresholding techniques are presented 

here. The analyzed image was divided into little sub-images and each one was decomposed in a vector following a Hilbert 

fractal curve. The wavelet transform was applied to each vector and some of the high frequency components were 

suppressed based on some threshold criteria. Different levels of wavelet decomposition and wavelet mother functions 

were assessed. The Huffman coding algorithm was then applied in order to reduce image weight. Simulation results have 

revealed that high compression ratios were obtained with the mean and the standard deviation thresholding algorithms at 

different levels of wavelet decomposition. 
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1. INTRODUCTION 

 The growth of multimedia applications has led to the 

development of new techniques for image compression and 

image de-noising. Standardized image compression formats 

as JPEG use sub-images decomposition, bi-dimensional 

discrete cosine transform (DCT) of each one, and the 

Huffman coding algorithm [1, 2]. Some of the high 

frequency components are eliminated at different ratios 

keeping only the greater energy components, and then a 

codification method based on redundancy is applied. This 

coefficient suppression generates a lossy image that is 

several times undetectable by the human visual system 

(HVS). Several spectral transforms have also been reported, 

including Fourier, Walsh, Hadamard, and Hartley transforms 

[2], and have shown that better results are obtained with 

wavelet transforms [2-4]. An image compression-based 

application using wavelet transforms has been reported 

where the authors have shown the performance of their 

approach in multimedia data exchange for mobile devices 

using Japanese kanji or Mayan glyphs images [4]. The last 

JPEG version, JPEG 2000, uses the discrete wavelet 

transform (DWT) instead of DCT, allowing higher peak 

signal-to-noise ratio (PSNR) and compression ratios (Rc). 

Recently, several approaches have been proposed for data 

compression based on wavelet decomposition [2-7]. 
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 In this paper, we propose an approach for image 

compression based on the DWT using different types of 

wavelets and thresholding techniques. The first step of the 

proposed compression algorithm is image decomposition in 

8x8 sub-images. Each one is then converted to a 64-point 

vector following a scan with a Hilbert Fractal curve. The 

wavelet transform is thus applied to each vector and some of 

the high frequency components are suppressed based on 

some threshold criteria. 

2. WAVELET TRANSFORMS AND THRESHOLDING 
TECHNIQUES 

 Wavelet transforms involve representing a general 

function in terms of simple, fixed building blocks at different 

scales and positions. These building blocks are generated 

from a single fixed function called mother wavelet by 

translation and dilation operations [8]. The mother wavelet 

function (t) , scaling a0 and translation b0 parameters are 

specifically chosen such that (t) constitutes orthonormal 

bases for L2 ( ) , where  denotes real numbers [9, 10]. To 

form orthonormal bases with good time-frequency 

localization properties, the time-scale parameters (b; a) are 

sampled on a so-called dyadic grid in the time-scale plane, 

namely, a0 = 2 and b0 = 1 [9]. A formal approach to 

constructing orthonormal bases is provided by multi-

resolution analysis (MRA). The idea of MRA is to write a 

function x(t)  as a limit of successive approximations, each 

of which is a smoother version of x(t) . The successive 

approximations thus correspond to different resolutions. This 

process is also known as sub-band coding [2]. As stated  
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previously, the wavelet transform is applied to a 64-point 

vector of each sub-image that follows a Hilbert fractal curve 

and some of the high frequency components are suppressed 

based on some threshold criteria.  Several thresholding 

techniques have been reported [11]. For high frequency 

coefficients suppression, a threshold level must be obtained 

in order to eliminate only the lower energy contents of the 

data details and consequently achieving low image 

distortion. Thresholding techniques can be classified into 

hard and soft threshold [12]. The former eliminates the 

coefficients under a given threshold and maintains the other 

at the original values, while the latter is an extension of the 

former, but has one difference, the coefficients below the 

threshold are eliminated and the other are setting to a new 

value [12]. In the work reported here, four algorithms are 

used to obtain the threshold value, namely, minimax, fixed 

form, rigorous sure, and heuristic sure [11]. All of these 

based mainly on the number of samples of the transformed 

signal. These thresholding algorithms are developed for 

image de-noising and are applied here for image 

compression. Note that for comparison purposes, two more 

thresholding algorithms are assessed, namely, the mean and 

the standard deviation leading the threshold as the mean of 

the absolute value of the wavelet coefficients in the former 

and the standard deviation of wavelet coefficients in the 

latter. 

3. PROPOSED APPROACH 

 In what follows, the approach to image compression 

based on the discrete wavelet transform is proposed. Due to 

special characteristics on the human visual system, it is 

possible to distort the image without significant degradation 

[13]. Accordingly, some of the high frequency coefficients 

can be suppressed thereby achieving good compression 

performances. The first step of the proposed compression 

algorithm is image decomposition in 8x8 sub-images. Each 

one is then converted to a 64-point vector following a scan 

with a Hilbert fractal curve as shown in Fig. (1) [2]. The 

main impetus in using this fractal curve is to follow a more 

distributed pattern. The resultant vectors are located in a new 

matrix called TE with size pxq where 

p = m n / 64   (1) 

and q = 64. The values m and n in (1) compose the original 

image dimensions. 

 

Fig. (1). Standard scan sub-image. 

 A 1-D Discrete Wavelet Transform is realized to each 

row of the TE matrix (TEi=c
i
j-1,m), and the resulting scaling 

and wavelet coefficients (c
i
j,n and d

i
j,n, respectively) form the 

correspondent of the i-th row-vector TFi of the new 

transformed matrix TF: 

cj ,n
i

= glcj 1,2n l
i

l Z

  (2a) 

dj ,n
i

= hlcj 1,2n l
i

l Z

 (2b) 

i = 1,2,...,m n / 64 ; j = 1,2,..., J  

where J corresponds to the sub-band coding level of the 

DWT, c
i
j-1,2n-l is the i-th row of the TE matrix, and gl and hl 

are the low-pass and high-pass filters, respectively used for 

the DWT. High frequency coefficients are suppressed based 

on each thresholding criteria mentioned previously following 

the hard-threshold or soft-threshold scheme. An example of 

a vector thresholding is shown in Fig. (2). It is proposed here 

that at this step, the Huffman coding algorithm is 

implemented. Huffman coding is an entropy coding 

algorithm used for lossless data compression [1]. This 

symbol probability-based method forms new code-words in 

order to remove data redundancy whereby the zero columns 

of the TF matrix allows greater compressed data due to the 0 

symbol repetition. 

 When encoding the symbols, Huffman coding yields the 

smallest possible number of code symbols per source 

symbol. The first step in Huffman coding is to create a series 

of source reduction by ordering the probabilities of the 

symbols under consideration [1]. The greatest probability 

symbol is replaced by a single symbol code. The largest 

coding symbol corresponds to the lowest probability source 

symbol. Then a “dictionary” is created from the source data. 

Each generated code must start with “1” and ends with “0”, 

except for the greatest probability symbol, which is only 

represented by a “0”. Using this dictionary, a coding vector 

is created from the original data. An example of Huffman 

coding dictionary is shown in Table 1. If it was assumed a 

data vector A={000, 000, 001, 101}={A2 A1 A2 A6}, then the 

corresponding encoding vector is H=[0110010]. In this case, 

An is composed by three bits, which clearly shows that the 

new vector is lower than the source vector. Using high 

dimension data this encoding algorithm yields great 

compression values. The decoding process is the inverse 

codification and is obtained directly, based on the dictionary 

codes. 

 To reconstruct the image, the inverse process of decoding 

data from the Huffman algorithm forms again the TF matrix. 

The Inverse Discrete Wavelet Transform (IDWT) is applied 

to each row TFi of the transformed matrix. The IDWT 

process is then obtained in the same way as the DWT using 

the scaling and wavelet coefficients, the same filters, and the 

same mother wavelet function utilized for the direct 

transformation: 

TEi
s
= cj 1,n

i
= glcj ,2n l

i

l Z

+ hld j ,2n l
i

l Z

 (3) 

i = 1,2,...,m n / 64 , j = 1,2,..., J  
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a) Transformed vector. 

 

b) Vector with suppressed coefficients. 

 

Fig. (2). An Example of thresholding. 

Table 1. Huffman Coding Dictionary 

 

Symbol Prob Code 

A2 0.4 0 

A6 0.3 10 

A1 0.1 110 

A4 0.06 1110 

A3 0.05 11110 

A5 0.05 111110 

A8 0.02 1111110 

A7 0.02 1111111 

 

 The matrix TEs
is reconstructed from the IDWT of each 

of the row-vectors of TF. Then the 64-point rows of TEi
s
 

reconstruct the correspondent sub-images following the same 

Hilbert fractal curve and thus generating the new image. 

4. SIMULATION RESULTS 

 Here, we report simulation results of the proposed 

approach using several wavelets and different thresholding 

techniques. A 256 256 pixels image of Lena is decomposed 

into 8 8 sub-images and each one is translated to a TEi 

vector following the mentioned Hilbert fractal curve. In this 

case, i=1, 2,…,1024 and therefore a 1024 64 TE matrix is 

then generated. A 5-level DWT is applied to each of the TE 

rows, forming the TF matrix, which for some cases (depends 

on the wavelet mother function used) is the same size as the 

TE matrix. High frequency coefficients are suppressed based 

on one of the thresholding criteria: high frequency mean, 

high frequency standard deviation, minimax, fixed form, 

rigorous sure, and heuristic sure and results are shown for 

comparison. A noise standard deviation of 1 is assumed. The 

Huffman coding algorithm is then applied to the TE matrix 

in order to achieve data compression. The peak signal-to-

noise ratio (PSNR) is used to assess the performance of the 

proposed approach. The PSNR is calculated according to 

PSNR(dB) = 10 log10
2552

MSE
 (4) 

where MSE is the mean square error defined by 

MSE =

f̂ (x, y) f (x, y)
2

y=0

n 1

x=0

m 1

m n
  (5) 

where f (x, y) and f̂ (x, y)  correspond to the original image 

and resulting image values respectively, x and y are the 

spatial coordinates, and m and n are the total image 

dimensions. The compression ratio RC is simply obtained by 

RC =
m n 8

coded bits
. (6) 

 Fig. (3) shows the PSNR (dB) for each of the six 

thresholding algorithms. A Daubechies1 (Haar) mother 

wavelet (db1), a 5-level of decomposition, and a 256 256 

size image of Lena are used. The figure also compares the 

hard and soft threshold schemes. Fig. (4) plots the PSNR 

versus its corresponding RC values for both the hard and soft 

thresholding schemes. 

 

Fig. (3). The values of PSNR (dB) for hard and soft threshold. 

 The soft threshold scheme generates slightly higher RC 

compared to that of hard threshold, but the main 
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disadvantage is that the PSNR decreases, as shown in Figure 

4. Numerical results for the hard threshold scheme are shown 

in Table 2. It can be seen that good compression values are 

achieved when the mean and the standard deviation 

thresholding algorithms are used; nonetheless, they generate 

higher image distortion. These results are comparable with 

[13] where the authors reported PSNR=32.66dB and 

Rc=4.25 using a modified version of the Lempel-Ziv 

algorithm. Note that this algorithm allows additional 

compression ratio but it generates greater image distortion 

[13]. Fig. (5) shows RC and PSNR (dB) using 2, 3, 4 and 5 

levels of wavelet decomposition. It is observed that the 

higher number of sub-bands used, the higher compression 

ratio is obtained without modifying image distortion 

significantly. A comparison using other wavelets like 

Daubechies 2, Symmlet 3, and Coiflet 1, is presented in Fig. 

(6), and compared with the initial one (Daubechies1 or 

Haar). Five levels of wavelet decomposition and a hard 

threshold schemes were used. Note that the variations of RC 

and PSNR due to the different type of wavelets are mainly 

because the mother wavelet functions generating different 

transformed vector lengths. It is important to note here that 

when using these thresholding algorithms, the simpler 

wavelet is used, better performance was obtained. 

 

Fig. (4). The values of PSNR (dB) vs RC. 

Table 2. Compression Results 

 

 PSNR(dB) MSE RC 

Mean 37.73 10.97 3.37 

Std dev 34.25 24.43 4.09 

Minimax 42.9 3.33 2.57 

Fixed form 42.86 3.37 2.61 

Rigorous sure 42.9 3.33 2.57 

Heuristic sure 42.9 3.33 2.57 

 

 Note that the selection of a wavelet must be related to the 

common features of the events present in real signals. That 

is, a wavelet should be well adapted to the events to be 

analyzed [8] and the design of a wavelet must be optimized 

to produce a maximum number of wavelet coefficient that 

are close to zero. This particular feature is not only important 

for data compression but also for noise removal and fast 

calculations [10]. Different wavelet families have a trade-off 

between the degree of symmetry (i.e., linear phase 

characteristics of wavelets) and the degree to which ideal 

high-pass filters are approximated [9, 10]. The degree of 

symmetry in a wavelet is important in reducing the phase 

shift of features during the wavelet decomposition. If the 

phase shift is large, it can lead to distortions in the location 

of features in the transform coefficients. The degree to which 

ideal high-pass filters are approximated is also important 

since, ideally, the wavelet filter should resemble a high-pass 

(j = 1) or band-pass filter (j > 1), while the scaling filter 

should resemble a low-pass filter. For example, the Haar 

wavelet has compact support; however, it has just one 

vanishing moment and is piece-wise constant. Furthermore, 

the resulting wavelet basis functions have the characteristic 

of being discontinuous, which renders them unsuitable as 

basis functions for classes of smoother functions. 

a) RC 

 

b) PSNR (dB) 

 

Fig. (5). The values of a) RC, and b) PSNR (dB) for 2, 3, 4 and 5 

levels of decomposition. 

 To overcome the disadvantage of the Haar wavelet, 

Daubechies has developed a theory for obtaining higher 

order mother wavelet filters with compact support [9]. These 

filters have even lengths L (between 2 and 20); however, 

they are identified not by the length L but by the number of 

vanishing moments, v = L/2. As the number of vanishing 

moments increases, the wavelet filter becomes longer and its 

approximation to an ideal high-pass filter improves. That is, 

a lesser amount of leakage is obtained, which is caused by 

the non-ideal filter shape [8]. Daubechies proved that the 

Haar filter is the only real compactly supported conjugate 

mirror filter that has a linear phase. The Symmlet filters of 



36    The Open Cybernetics & Systemics Journal, 2013, Volume 7 Alarcon-Aquino et al. 

Daubechies are optimized to obtain an almost linear phase 

and they are more symmetric. On the other hand, Coiflet 

filters have v vanishing moments and a minimum size 

support [10]. The order of the filter is equal to the number of 

vanishing moments and, for the case, of Daubechies filters, it 

is half the length of the filter. Note that for v = 1, the 

Daubechies wavelet filter is equivalent to the Haar wavelet 

filter. 

 Figs. (8, 9) show the resulting images using standard 

deviation and rigorous sure thresholding algorithms, 

respectively. Both of them based on hard threshold scheme, 

5-level decomposition and using wavelet db1. For 

comparison purposes, the original image is shown in Fig. (7) 

as well. The mean and standard deviation thresholding 

algorithms generate similar reconstructed images and PSNR 

in which the differences between them are slightly noticeable 

by HVS. Hence, only the resulting image from the standard 

deviation algorithm is shown here. Reconstructed images 

using minimax, fixed form, rigorous sure and heuristic sure 

algorithms have lower distortion compared to that of mean 

and standard deviation algorithms, and consequently not 

noticeable by the HVS when compared to the original image. 

In addition, their PSNR values are very similar, and 

therefore only the image generated by using rigorous sure 

algorithm is shown here. 

a) RC 

 

b) PSNR(dB) 

 

Fig. (6). The values of a) RC, and b) PSNR (dB) for different types 
of wavelets.  

 Finally, the error images generated by standard deviation 

and rigorous sure thresholding algorithms are shown in Figs. 

(10, 11), respectively. It is clearly observed from Fig. (10)  

 

that standard deviation thresholding algorithm introduces a 

high level of distortion due to the elimination of many high 

frequency coefficients. By using this thresholding technique, 

only the lowest details are suppressed, and consequently a 

sense of border detection can be appreciated in its respective 

error image. When minimax, fixed form, rigorous sure and 

heuristic sure algorithms are applied to image compression, a 

better de-noised image is observed. In fact, its corresponding 

error images are mainly noise. 

 

Fig. (7). Original image. 

 

Fig. (8). Resulting image using standard deviation thresholding. 

 Using higher dimension images, the performance tends to 

increase and this can be observed in Fig. (12). Compression 

ratio tends to increase for all the thresholding algorithms 

when bigger image sizes are used. The PSNR also increases 

noticeably for the mean and the standard variation 

thresholds, while for the other four algorithms the PSNR 

differences are at low levels. Analyzed images are composed 

by 256 grayscale levels (8 bits-per-pixel resolution) so an  
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Fig. (9). Resulting image using rigorous sure thresholding. 

analysis for color images can be implemented using this 

method for each of the RGB component matrixes, achieving 

similar compression ratios and PSNR values. Note that the 

64-point vector transform used in this work follows a scan 

with a Hilbert fractal curve and it therefore allows lower 

computational time than the conventional 8x8 sub-images 

matrix transform. The processing time for the proposed 

approach is thus in the order of seconds (depending on 

hardware and image characteristics). 

 

Fig. (10). Error image using standard deviation thresholding.  

5. CONCLUSIONS 

 An approach for image compression has been proposed 

and implemented based on the DWT and several 

thresholding techniques. Numerical results have been 

obtained based on high frequency coefficient elimination 

following different thresholding algorithms. The discrete 

wavelet transform used achieved good PSNR values. A 

Hilbert fractal curve is used for sub-image 2-D to 1-D 

decomposition due to the fact that follows a more distributed  

 

 

Fig. (11). Error image using rigorous sure algorithm. 

a) RC 

 

b) PSNR(dB) 

 

Fig. (12). The values of a) RC, and b) PSNR (dB) for different 
image sizes. 

pattern than a linear scan and allows a faster computational 

performance for those realized by 2-D wavelet transforms. 

High frequency mean and standard deviation thresholding 

algorithms generated high compression ratios while the 

PSNR obtained is low. On the other hand, minimax, fixed 

form, rigorous sure and heuristic sure algorithms achieved 

higher PSNR but at lower compression ratios. Performance 

is better when higher levels of decomposition are used (5-

level wavelet transforms instead of 3 or 4). Furthermore, a 

comparison using four different types of mother wavelets has 

been presented and results have shown that the simpler 

wavelet is used, better performance was obtained, and this is 

related to the number of vanishing moments used in wavelet 
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functions. The present proposed approach can be used for 

other purposes, such as image de-noising, where the noise 

elements are located in high frequency bands or along the 

entire signal, image border detection and micro-calcifications 

detection. Wavelet transforms represent an excellent tool in 

image processing, increasing results in quality and 

performance. 

CONFLICT OF INTEREST 

 The authors confirm that this article content has no 

conflict of interest. 

ACKNOWLEGEMENTS 

 The authors gratefully acknowledge the financial support 

from the National Council for Science and Technology of 

Mexico. 

REFERENCES 

[1] J. G. Proakis, Digital Communications, 4th ed. Mc Graw Hill, NY, 
2001. 

[2] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed. 
Prentice Hall, USA, 2001. 

[3] K. W. Chen, C. W. Lin, T. H. Chiu, M. Y. Chen, and Y. P. Hung, 
“Multi-resolution design for large-scale and high-resolution 

monitoring”. IEEE Trans. Multimed., vol. 13, no. 6, 1256-1268, 
Dec. 2011. 

[4] O. Starostenko, V. Alarcon-Aquino, H. Lobato-Morales, and O. 
Sergiyenko, “Computational Approaches to Support Image-Based 

Language Learning Within Mobile Environment”, In: [Special 

Issue on Mobile and Ubiquitous Technologies for Language 
Learning], Int. J. Mob. Learn. Org., vol. 4, no. 2, 150-171, Mar. 

2010. 
[5] G. Yang, N. Zheng, C. Li and S. Guo. “Extensible JPEG2000 

image compression systems”. In: IEEE International Conference 
on Industrial Technology, 2005, pp. 1376-1380. 

[6] K. H. Talukder and K. Harada. “Development and performance 
analysis of an adaptive and scalable image compression scheme 

with wavelets”. In: International Conference on Information and 
Communication Technology, March 2007, pp. 250-253. 

[7] J. C. Galan-Hernandez, V. Alarcon-Aquino, O. Starostenko, J. M. 
Ramirez-Cortes. Foveated ROI compression with hierarchical trees 

for real-time video transmission. In: Proceedings of the 3rd 
Mexican Conference on Pattern Recognition, MCPR’11, Springer-

Verlag, Berlin, Heidelberg, pp. 240–249, 2011. 
[8] V. Alarcon-Aquino and J. A. Barria, “Change detection in time 

series using the maximal overlap discrete wavelet transform”, Latin 
Am. Appl. Res. An. Int. J., vol. 39, no. 2, 145-152, April 2009. 

[9] I. Daubechies, Ten Lectures on Wavelets. New York: SIAM, 
Philadelphia, 1992. 

[10] S. Mallat, A wavelet tour of signal processing. Academic Press, 
USA, 2nd ed, 1999. 

[11] S. Sardy, A. Antoniadis, P. Tseng. Automatic smoothing with 
wavelets for a wide class of distributions. J. Comput. Graph. Stat., 

vol. 13, no. 2, 399-421, 2004. 
[12] J. Qian, Denosing by Wavelet Transform. Rice University, 

Department of Electrical Engineering, Houston, 2000. 
[13] V. Crnojevic, V. Senk and Z. Trpovski, “Lossy lempel-ziv 

algorithm for image compression”, In: 6th International 
Conference on Telecommunications in Modern Satellite, Cable and 

Broadcasting Service, TELSIKS, 2003, pp. 522-525. 

 

 

Received: July 22, 2013 Revised: September 3, 2013 Accepted: September 4, 2013 

 
© Alarcon-Aquino et al.; Licensee Bentham Open. 
 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ 
by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. 


