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Abstract: Based on stability theorems for nonlinear differential systems with commensurate fractional orders and on the 
use of a nonlinear coupling that does not require the total elimination of the nonlinear part of the system, we have 
obtained an analytical result to ensure the practical and exact synchronization of complex networks with fractional 
nonlinear order systems as elements. As an application, we present the synchronization with different kinds of fractional 
differential systems. We use some numerical results to verify the effectiveness of the proposed method. 
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1. INTRODUCTION 

 The interactions among different physical systems are 
common within the nature and artificial fields and they give 
rise to collective behaviours and in several works it has been 
pointed out that fractional differential operators are at least 
an alternative method to describe some physical systems; 
this is one of the reasons to study the synchronization of 
different kind of systems that are in interaction, forming 
complex networks, specially where such systems are 
mathematically described by means of fractional operators 
and therefore form complex fractional networks. 
Synchronization is a phenomenon that arises in many areas 
of science and technology. On the other hand, this kind of 
phenomena occurs all the time in nature e.g., fireflies 
flashing at the same time, crickets singing in synchrony, the 
heart cells that pump at the same beat, etc. [1, 2]. 

 The synchronization of a dynamically coupled network 
(dynamic systems in interaction, known as complex 
networks) has been studied for many years, within a 
common structure with base on the nonlinear dynamics of 
the systems of the network. The interest on such networks is 
due to their frequent arising in natural and artificial systems. 

 The construction of new models of the complex dynamic 
networks [3-5] has led to a fascinating set of common 
problems concerning the way a network facilitates and limits  
 
 

*Address correspondence to this author at the Physics and Mathematics 
Department, Universidad Iberoamericana, Prol. Paseo de la Reforma 880, 
01219 D. F., México; Tel: +52 (55) 5950-4000/9177-4400;  
E-mails: armando.lugo@correo.uia.mx, aflugop@gmail.com 

the collective behaviours. In particular, many efforts have 
been made in oscillator synchronization [6-8] and biological 
nervous networks synchronization [9, 10]. 

 We study fractional complex networks using fractional 
calculus, which has a history almost as large as the one of 
the ordinary calculus, however its applications in physics 
and in the engineering are recently appearing [11, 12]. There 
are many known systems where the modelling with 
fractional operators has turned out to be useful, for example 
systems involved in phenomena such as: visco-elasticity 
[13], dielectric polarization, electrode-electrolyte 
polarization, electromagnetic waves, chaotic dynamics and 
its synchronization [14-18]), stability [19-25], network 
synchronization [26], quantum evolution of complex systems 
[27], digital image processing, Euler-Lagrange equations, 
fractional kinetics, Polymer Physics, Biophysics, among 
others [12]. 

 Namely, in encryption, the fractional order chaotic 
systems have more adjustable variables than integer order 
chaotic systems, therefore it is widely believed that 
fractional-order chaotic systems can be applied in encryption 
efficiently and thus enlarge the key space [28, 29]. 

 On the other hand, during the last decade some 
extensions with fractional order operators for integer order 
chaotic systems have been investigated, some of these works 
are [30-32]. There are many different works on the 
synchronization of fractional complex systems [28, 33-35], 
and on the synchronization of fractional-order chaotic 
systems [36-40], in such works several schemes are 
proposed that ensure that the error dynamics satisfies [24] 
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type conditions, this means that the error dynamics must 
hold a linear relation. In this work a synchronization scheme 
is proposed that asserts that the error dynamics satisfies [25] 
type conditions, which means that is not necessary to cancel 
the nonlinear part of the error dynamics, but it does imply a 
particular kind of synchronization, which is known as 
practical synchronization. 

 This work is ordered as follows: in Section 2 basic 
definitions of fractional order systems are presented, in 
Section 3 the definition of a complex network is introduced 
and the problems of practical and exact synchronization are 
studied, in Section 4 an application of fractional order 
differential systems is analyzed, and finally in section 5 we 
give some conclusions are given. 

2. PRELIMINARIES 

 There are several definitions of a fractional derivative of 
order  ! "!+  [11, 41, 42]. We will use the Caputo fractional 
operator in the definition of fractional order systems, 
because the meaning of the initial conditions for systems 
described using this operator is the same as for integer order 
systems. 

 Definition 1 (Caputo Fractional Derivative) The Caputo 
fractional derivative of order  !"!

+  of a function x  is 
defined as (see [11]): 

x !( ) =t0
Dt

! x = 1
" m #!( ) t 0

t

$
dm x %( )

d% m t # %( )m#!#1 d% ,  (1) 

where: m !1 " # " m , 
dm x !( )

d! m  is the m -th derivative of x  

in the usual sense,  m !! , and !  is the gamma function 1 . 

 Due to the problem that lies in the use of time 
translations in fractional operators, some researchers have 
claimed [43- 47] that if one wants to solve the usual initial 
value problem is necessary to know the initial trajectory in 
addition to the initial condition. Our work is focused on 
systems where the initial trajectory is unknown, and for such 
systems this modelling tool is enough. 

 We consider the initial condition problem for an 
autonomous fractional order nonlinear system, 
with 0 < ! < 1 : 

x(! ) = f x( ), x 0( ) = x0 ,  (2) 

where  x !" # !n ,  f :!" !n  is a Lipschitz continuous 
function 2 , with  x0 !" # !n  and !  is a region in  !

n . 

 For fractional order linear time invariant systems, i. e., 
f (x) = Ax , A !!n"n  we can guarantee the stability in the 

Lyapunov sense. The following result [24] deals with the 
system 

x(! ) = Ax, x 0( ) = x0 , 1,2 ,2(3) 

                                                
1To simplify the notation we omitted the time dependence in x(! ) , in what 
follows we take t0 = 0.  

 Theorem 1 ([24]) Let 0 < ! < 1 . The system (3) is: 

1. Asymptotically stable if and only if arg(spec(A))  
> !" / 2 ,  i = 1, 2,!, n , where (spec (A))  denotes 
the argument of the eigenvalues of A. In this case, the 
component of the state decays towards 0  like t !" ; 

2. Stable if and only if either it is asymptotically stable, 
or those critical eigenvalues which satisfy 
arg spec A( )( ) =!" / 2  have geometric multiplicity 

one. 

 For fractional order nonlinear systems we use the 
following result [25]: 

 Theorem 2 ([25]) Let us consider the n-dimensional 
fractional dynamic system 

x(! ) = Ax + f (x)  (4) 

where:  A !!n"n ,  f :!" !n  is a nonlinear function of x  
and 0 < ! < 1 . If: 

1. The solution x t( ) = 0  of x(! ) = Ax  is asymptotically 
stable, and !" A( ) > 1 , 

2. f 0( ) = 0  and x !0lim
f (x)
x

= 0,  

 then x t( ) = 0  for 0 ! t0 ! t , is a stable solution of 
(4). 

 For an n -dimensional nonlinear fractional order dynamic 
system with the Caputo derivative, 

x(! ) = Ax + g t, x( ), t > t0 ,  (5)  

under the initial conditions 

x !"k( ) t( ) |t=t0
= xk"1, k = 1, 2 ,  (6)  

where  x !!n ,  A !!n"n , 1 < ! < 2 , g t, x( ) :[t0 ,!) " !n # !n is 
a continuous function which holds the Lipschitz conditions 
relative to x , and g t, 0( ) = 0 . 

 Theorem 3 ([26]) Let us consider the system defined by 
(5) and (6), if the matrix A  is such that arg(spec(A)) ! 0 , 

arg(spec(A)) > !" / 2 , ! + 1
A

"
#$

%
&'

< 2 , and suppose that the 

function g t, x( )  satisfies uniformly 

x!"lim
g(t, x)

x
= 0, t ! t0 ,"[ ),  (7) 

then x t( ) = 0  is an asymptotically stable solution of (5). 

 The proof of this theorem for the Caputo derivative 
follows from the proof of Theorem 3.3 in [49] and the 

                                                                                
2This ensures the uniqueness of the solution [48]. 
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application of Lemma 2.7 in [49] together with the 
Gronwall-Bellman inequality. 

 We make use of all these results to obtain the 
stabilization or asymptotic stabilization of the origin of the 
dynamical systems of synchronization error for every 
element in the complex fractional network, this is equivalent 
to obtain the practical or exact synchronization of the 
network. It is clear from these previous results that the 
practical synchronization can be obtained for systems with 
0 < ! < 1  and the exact synchronization for systems with 
1 < ! < 2 . 

3. SYNCHRONIZATION OF FRACTIONAL 
COMPLEX NETWORKS 

 The synchronization scheme that is presented in this 
Section is roughly illustrated in Fig. (1). The individual 
controls are dependent on the master system and on the 
network topology. 

 We will define a synchronization error for each of the 
elements of the complex fractional network, and then we will 
search for the stabilization around the origin of the 
fractional-order nonlinear dynamical system of the error in 
order to guarantee the synchronization of all the elements 
within the network. 

 We propose the general form of a complex fractional 
network. That is, this section is devoted to the study of N  
systems with fractional order, which are interacting under a 
certain interconnection, see the Fig. 2a), of the form 

xi
(! ) = Ai xi + fi (xi ) +

j=1

N" Hij (x j ),  (8) 

  
xi

(! ) = Ai xi +
j=1

N" Aij x j +
j=1

N" Fij (x j ),  (9) 

where, for every  i = 1, 2,!, N  we have 

1.  xi !!
n  is the state of the i -th slave system, 

2.  Ai :!!n"n  represents the linear part of the i -th slave 
system, 

3.  fi !!
n  represents the nonlinear part of the i -th slave 

system, 

4.  Hij !!
n  describes how the j -th slave system is 

connected with the i -th slave system, i. e., this 
relation specifies the strength and the topology of the 
interconnection of the systems, 

5.   Aij !!
n"n  represents the linear part of Hij , 

6.   Fij !!
n  is fi  plus the nonlinear part of Hij . 

 In general, not all the systems are interconnected in the 
same way, and we assume that fi  and Hij  are Lipschitz 
continuous functions. 

 Let us consider another fractional dynamical system with 
the same fractional order, which will be the master system: 

 xM
(! ) = AM xM + fM (xM )  (10)  

where   xM !!n  is the state vector,   AM !!n"n  and   fM !!n  
is a Lipschitz continuous function. 

 Also let us consider a complex fractional network with 
elements of the form 

 
xi

(! ) = Ai xi +
j=1

N" Aij x j +
j=1

N" Fij (x j ) + ui ,  (11) 

which will be the slave systems and ui  is a new 
interconnection, with  xM , that we want to choose in such a 
way that we synchronize the entire network with the master 
system. 

 In other words; in the master-slave synchronization 
scheme  xM  describes the target signal, while xi  represents 
the response signal, see Fig. 2b). Therefore the 
synchronization problem can be established as follows: 

 Given the master system (10) and our slave system (11), 
we should be determinate an interconnection ui , such that 
the target signal is synchronized with the response signal. 
Therefore, if we define the synchronization error by 

 ei = xM ! xi ,  (12) 

then we will need to find the conditions over ui  such that 

t!"lim ei (t) = 0,  for every i . 

3.1. Practical Synchronization of Fractional Complex 
Networks 

 With this master-slave scheme we will prove that 
practical synchronization [50] is achieved for 0 < ! < 1 . 

 Theorem 4 Consider a complex fractional network 
whose elements are of the form (11), where   Aij !!

n"n  and 

 Fii 0( ) = 0  and 
 

x!"lim
Fii (xi )

xi

= 0  hold, for 

 i, j !{1, 2,!, N} . Moreover, assume that there are 

 B1, B2 ,!, Bn !"
n"n  such that Ai + Bi  satisfies 

 
Fig. (1). Synchronization scheme. 
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arg(spec(Ai + Bi )) > !" / 2  and !" Ai + Bi( ) > 1 , for 

 k = 1, 2,!, n ; finally we add a master system as in (10) to 
the network, see Fig. (2). Then we have that the 
interconnections defined by the equation 

 

ui = AM xM + fM xM( ) ! Ai xM ! Bi xM ! xi( ) !
Fii xM ! xi( ) ! j=1

N" Aij x j ! j=1

N" Fij x j( )  (13) 

 Ensure the practical synchronization of the complex 
network (11) with the master system (10) 

 Proof. Considering the error synchronization equation 
(12), and take its derivative of order !  

 

ei
(! ) = xM

(! ) " xi
(! ) = AM xM + fM xM( ) "

Ai xi +
j=1

N# Aij x j +
j=1

N# Fij (x j ) + ui( ),  (14) 

replacing (13) in (14) we have 

 
ei

(! ) = Ai + Bi( )ei + Fii ei( ).  (15) 

 Now, due to our earlier supposition we have  Fii 0( ) = 0  

and 
 

x!"lim
Fii (xi )

xi

= 0 , we only need to choose  Bi !!
n"n  

in such a way that arg?(spec(Ai + Bi )) > !" / 2  and 

!" Ai + Bi( ) > 1,  for  k = 1, 2,!, n;;  but we have already 
asked for such Bi  as hypothesis, thus by Theorem 2 we have 
that the origin of each of the fractional order differential 
nonlinear synchronization error systems of commensurate 
fractional order is stable, which gives us the practical 
synchronization of the entire network with the master 
system. 

3.2. Exact Synchronization of Fractional Complex 
Networks 

 Now for the case of 1 < ! < 2 , we proceed in a similar 
way. Theorem 3 can be used to ensure the stability of a 

partially autonomous differential nonlinear system, which is 
said to be partially autonomous because the nonlinear part 
can be time-varying and Theorem 3 gives sufficient 
conditions for the asymptotic stability of the origin, i.e., now 
we will have 

t!"lim ei (t) = 0.  (16)  

 Now for this result we let the nonlinear parts of the 
systems, represented by the equations (8) to (11), be partially 
nonautonomous. Rewriting equation (9) for a system with a 
nonautonomous nonlinear part we have 

 
xi

(! ) = Ai xi +
j=1

N" Aij x j +
j=1

N" Fij (t, x j ),  (17) 

and rewriting equation (10) 

 xM
(! ) = AM xM + fM (t, xM )  (18) 

with initial conditions 

xi
!"r( ) t( ) |t=t0

= xir"1
, r = 1, 2 ,  (19)  

and 

 
xM

!"r( ) t( ) |t=t0
= xMr"1

, r = 1, 2 ,  (20) 

where   Fii (t, x j ) :[t0 ,!) " !n # !n  is a continuous function 

in which  Fii t, 0( ) = 0 ; moreover, 
 
Fii t, x j( )  fulfills the 

Lipschitz condition with respect to x j . 

 Theorem 5 Consider a complex fractional network with 
elements of the form (17) (11), where   Aij !!

n"n , 

 
Fii t, 0( ) = 0  and 

 
Fii t, xi( )  satisfies 

 
x!"lim

Fii (t, xi )
xi

= 0 , 

for  i, j !{1, 2,!, N} . Moreover, assume that there are 

 B1, B2 ,!, Bn !"
n"n  such that Ai + Bi  has 

arg(spec(Ai + Bi )) ! 0 , arg(spec(Ai + Bi )) > !" / 2  and 

! +1 / Ai + Bi < 2 , for  k = 1, 2,!, n ; finally we add a 

 
Fig. (2). a) Fractional Complex Network, b) Master System  xM  and the Slave systems xi .  
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master system as in (18) to the network. Then we have that 
the interconnections defined by the equation 

 
ui = AM xM + fM t, xM( ) ! Ai xM ! Bi xM ! xi( ) ! Fii t, xM ! xi( )  

 
!

j=1

N" Aij x j  
!

j=1

N" Fij (t, x j )  (21) 

ensures the exact synchronization of the complex network 
(17) with the master system (18). 

 Proof. Considering the error synchronization equation 
(12), and take its derivative of order !  

 

ei
(! ) = xM

(! ) " xi
(! ) = AM xM + fM t, xM( )

" Ai xi +
j=1

N# Aij x j +
j=1

N# Fij (t, x j ) + ui( ),  (22) 

replacing (21) in last equation 

 
ei

(! ) = Ai + Bi( )ei + Fii t, ei( ).  (23) 

 In a similar way that in the proof of Theorem 4, we 
already have asked for 

 
Fii t, ei( )  to satisfy the second 

hypothesis from Theorem 3, we only need to choose 

 Bi !!
n"n  in such a way that Ai + Bi  satisfies the first part of 

the hypothesis from Theorem 3 but we also have asked for 
Ai + Bi  to hold such conditions, and as a consequence we 
get the desired result. 

4. NUMERICAL EXAMPLE 

 In this section we deal with a slave network whose 
components are fractional order differential systems: two 
Lorenz systems and one Chen system. The master will be a 
Lü system. The method introduced in [51] implies that the 
system has a unique solution. For the simulations we have 
taken the approximation of the fractional order operators 
presented in [52], based on [53]. First we present the 
individual systems of the network. 

 We take into account the modified fractional order 
Lorenz system [25], i. e., 

xi
!( ) t( ) = Ai xi + fi (xi )  

=
!ai ai 0
bi !ci 0
0 0 di

"

#

$
$
$

%

&

'
'
'

xi +
0

!xi1xi3

xi1xi2

"

#

$
$
$

%

&

'
'
'

 (24) 

where xi = xi1 xi2 xi3
!
"

#
$

T
. The case that ai = 10 , 

bi = 28 , ci = !8 , di = 8 / 3  and ! = 0.8  is shown in Fig. 
(3a). 

 The fractional order Lü system [35], i. e., 

 xM
!( ) t( ) = AM xM + fi (xM )  

 

=
!aM aM 0

0 cM 0
0 0 !bM

"

#

$
$
$

%

&

'
'
'

xi +
0

!xM1xM 3

xM1xM 2

"

#

$
$
$

%

&

'
'
'

 (25) 

where 
 
xM = xM1 xM 2 xM 3

!
"

#
$

T
. The case that 

 aM = 10 ,  bM = 3 ,  cM = 28  and ! = 0.8  is shown in Fig. 
(3b). 

 And the fractional order Chen system [30], i. e., 

xi
!( ) t( ) = Ai xi + fi (xi )  

=
!ai ai 0

ci ! ai ci 0
0 0 !bi

"

#

$
$
$

%

&

'
'
'

xi +
0

!xi1xi3

xi1xi2

"

#

$
$
$

%

&

'
'
'

 (26) 

where xi = xi1 xi2 xi3
!
"

#
$

T
. See Fig. (3c) to observe the 

behavior of this system for ai = 35 , bi = 3 , ci = 28 , 
di = 8 / 3  and ! = 0.8 . 

 Let us take a complex network with, two Lorenz's 
systems for i = 1, 2 , and a Chen's system for i = 3 , the 
bidirectional coupling scheme proposed in [18] is used; so 
we have that the elements of the network are of the form 

xi
!( ) t( ) = Ai xi + fi xi( ) +

j=1

3" Hij (x j ),  (27)  

where 

Hij x j( ) =

! ijdi1 0 0

0 ! ijdi2 0

0 0 ! ijdi3

"

#

$
$
$$

%

&

'
'
''

x j1

x j2

x j 3

"

#

$
$
$$

%

&

'
'
''

, ! ij =
(2, if i = j
1, if i ) j

*
+
,

-,
 (28) 

 
Fig. (3). Graphs of the fractional-order nonlinear systems of the network; (a) Lorenz system, (b) Lü system, (c) Chen system. 
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and we consider that the network can be separated in a linear 
plus a nonlinear part; in such case, the nonlinear part in each 
system is  F11 = F22 = F33  and we have 

0 ! xi1
2 xi3

2 + xi1
2 xi2

2

xi1
2 + xi2

2 + xi3
2 ! xi3

2 + xi2
2 ,  

and applying the limit when x ! 0  we have that 
hypothesis 2 from Theorem 2 holds. Now let us consider a 
Lü system as the master and construct the interconnections 
as in (13), thus having 

 

ui = AM xM + fM xM( ) ! Ai xM ! Bi xM ! xi( ) !
Fii t, xM ! xi( ) ! j=1

3" Aij x j ! Fii xi( )
 (29) 

 

here 
 
Aij = Hij  wich implies that the equations of the 

synchronization error will be of the kind of (15). With the 
election of 

B1 = B2 = B3 =
!50 0 0
0 !50 0
0 0 !50

"

#

$
$

%

&

'
'  (30) 

the first condition from Theorem 2 holds, specifically, the 
term A1 + B1  has the eigenvalues !70, ! 32, ! 52.66  and 
!" A( ) = 56 , the graphs are shown in Fig. (4) 

 We take the parameters of Hij  as d11 = !1 , d12 = 2 , 
d13 = !3 , d21 = 4 , d22 = 2 , d23 = !3 , d31 = 100 / 29 ,  
 

 

 
Fig. (4). In the simulations we turn on the corresponding interconnections  ui on t= 1.5s, and then we turned it off on t = 3s. 
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d32 = !1  and d33 = 17 / 48 , where the selection of these 
values was arbitrary. 

 Before the activation of the interconnection we observe 
the behavior in each of the states of the complex network 
and when activated, the corresponding states of the network 
synchronize with the corresponding master system. We can 
also observe that the error approximates zero when the 
interconnection is turned on (see Fig. 4). 

CONCLUSIONS 

 In this work we use a coupling scheme to achieve the 
fractional complex network synchronization in a Master-
Slave scheme, where all the elements of the network are 
fractional order dynamical systems. As a specific difference 
with other works, the results used herein allow us to let the 
dynamical error be nonlinear. The respective coupling ui  is 
nonlinear and does not cancel completely the nonlinear part 
of each system, thus the practical synchronization and the 
exact synchronization are respectively guaranteed, despite 
this nonlinearities. 

 In particular, the results obtained are applicable when we 
have different fractional linear systems, when we have 
fractional linear systems of the same type, or when we are 
working with a linearization of the original nonlinear 
systems or we consider a system-to-system synchronization 
scheme, because it turns out that these schemes are particular 
conditions of the family of complex networks treated herein. 
For linear systems with their orders lying in (1,2) we only 
need to use Theorem 3.3 from [49]. 

 It is important to notice that the hypothesis on each node 
is applicable also to other kinds of fractional dynamical 
systems [32, 54], and not only to that used in the example 
presented here. 
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