
Send Orders for Reprints to reprints@benthamscience.ae

 The Open Cybernetics & Systemics Journal, 2014, 8, 779-783 779

 1874-110X/14 2014 Bentham Open

Open Access

Design of Network Protocol Analyzers Using WinPcap

Wang Huiran
1,*

 and Ma Ruifang
2

1
College of Computer Science, Xi’an Polytechnic University, Xi’an, Shaanxi 710048, China;

2
Software Engineering

School, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China

Abstract: This paper introduces two approaches to develop the network protocol analyzers, one of which is based on

NDIS (Network Driver Interface Specification), the other is based on WinPcap. The second approach is discussed in de-

tails. This paper outlines the WinPcap architecture. Functions exported by WinPcap are classified in three types. On this

classification, we can accurately configure the developing environment, e.g. define the preprocessors, set working directo-

ries. Three basic functions, i.e. pcap_ findalldevs_ex(), pcap_open(), and pcap_next_ex(), are interpreted thoroughly. In

the end, a step-by-step example is given with its outcomes.

Keywords: Network protocol analyzers, network protocol, network traffic, winpcap.

1. INTRODUCTION

Network traffic is the stream of information flowing in
networks. Its characteristics play an important role in net-
works. Understanding of network traffic is useful in network
design and management [1]. The first step in understanding
of traffic is capturing packets from the network [2]. There
are several tools already in existence, e.g. TcpDump, Win-
Dump, and Ethereal. However, we require a traffic capturer
with special features to meet our practical needs sometimes.
In this case, we have to develop a traffic capturer by our-
selves.

This paper intends to introduce how to develop a traffic
capturer/ monitor in details.

2. TWO BASIC METHODS FOR TRAFFIC CAPTUR-
ERS PROGRAMMING

Netware traffic capturers can be developed based on two
architectures [3, 4]. One architecture is NDIS (Network
Driver Interface Specification), and the other is WinPcap or
Libpcap. NDIS is a product of Microsoft, whereas WinPcap
was devised by Torino University of Italy.

2.1. Capturers based on NDIS

NDIS describes an interface by which one or more NIC
(Network Interface Card) drivers communicate with one or
more overlying protocol drivers and the operating system.
NDIS is implemented in a library, NDIS.SYS. The library
exports all NT Kernel-mode functions that can be used for
NIC driver development. It also takes care of all the Operat-
ing system specific tasks and also maintains binding and
state information about all underlying NIC drivers [3]. With
NDIS, we can develop three types of drivers, i.e. network
interface card (NIC) drivers, intermediate protocol drivers,
and upper-level protocol drivers.

To aid development of the traffic capturer/monitor
applications, Microsoft came up with the sample driver
PACKET.SYS and PACKET32.DLL along with the Micro-
soft Windows NT Device Development Kit (DDK). Through
PACKET32.DLL, a capture application communicates with
NIC drivers [3] (as shown in Fig. 1). This figure clearly de-
picts the way our application interacts with the
PACKET.SYS driver. The capture application calls the func-
tions in packet32. DLL, which in turn calls the entry points
in the driver PACKET.SYS. The driver uses the NDIS.SYS
exported functions to communicate with the Network Inter-
face Card.

Capture

Application

Packet32.dll

Packet.sys

NIC

Fig. (1). NDIS architecture.

Packet32.dll exports a set of basic functions, such as
PacketGetAdapterNames(), PacketOpen-Adapter(), Pack-
etSetFilter(), and PacketReceivePacket(), with which we
develop traffic capturers.

Based on NDIS, we can use its primitive functions and
have a complete control over the adapters. Unfortunately, we
lack of advanced functions to analyze and process the pack-
ets in this case.

780 The Open Cybernetics & Systemics Journal, 2014, Volume 8 Huiran and Ruifang

2.2. Capturers Based on WinPcap

WinPcap is architecture for packet capture or traffic
monitor. It consists of three parts, Netgroup Packet Filter
(NPF), packet.dll and wpcap.dll [4] (as shown in Fig. 2).

The NPF runs inside the kernel of OS, interacts directly
with the network interface drivers. It is system dependent.
NPF bypasses the TCP/IP protocol stack in order to access
the raw data transiting on the network. NPF is composed
mainly of three components, i.e. filter, statistical engine and
dump engine. They perform packet capture, traffic monitor
and data dump operations, respectively.

The packet.dll offers a low-level API in order for user
applications to directly access the functions of the NPF and
to obtain a programming interface independent from the Mi-
crosoft OS.

The Wpcap.dll (lipcap.dll on Unix system) exports a
more powerful set of high level capture functions, allowing
to capture packets in a way independent from the underlying
network hardware and operating system.

3. CAPTURE PROGRAMMING BASED ON WINPCAP

This section, we will discuss capture programming based
on WinPcap in details.

3.1. Download and install WinPcap

Wpcap is free software. You can download it from its
homepage http:// winpcap.polito.it. The latest version is
WinPcap 3.1beta3. Following its guidance, you will install it
successfully. Packet.dll and wpcap.dll will be installed under
directory winnt\system32, and npf.sys under winnt\
system32\drivers, respectively.

Next, you should download the developing environment
wpdpack from the same location as above. Wpdpack has the
format of zip file. After unzipped, there are 4 subdirectories,
e.g. lib, include, docs and examples under wpcaproot direc-
tory. Under subdirectory lib there are 2 libraries, packet.lib
and wpcap.lib. Under subdirectory include are some header
files. To aid programming, Wpdpack provides us with user
manuals under subdirectory docs, and with examples under
subdirectory examples.

3.2. Preparation for Programming

We divide functions exported by wpcap into three types,
i.e. libpcap compatible, wpcap-specific and remote capture
(as shown in Table 1). You can know into which type a func-
tion of interest falls by reading the wpcap manual or by look-
ing it up in these header files. Each type has header file and
preprocessor of its own. In programming, you have to in-
clude pcap.h in the beginning of your source code, and set
the corresponding preprocessor(s). Depending on how the
preprocessors are set, the other two header files will be in-
cluded by the system automatically.

Furthermore, the linker has to be set to include the
wpcap.lib library file, as the wpcap is implemented in DLL.
Also, the linker should be set to contain the wsock32.lib,
which is located in directory Microsoft Visual Stu-
dio\VC98\Lib. Some functions in wsock32.lib may be in-
voked by wpcap.

In order for Microsoft Visual C++ to look for files suc-
cessfully, we have to configure its directory option. The in-
clude file directory has to point to the directory under which
the wpcap header files are located. The library file directory
has to point to the directory which include wpcap.lib.

Fig. (2). NPF archtecture.

Design of Network Protocol Analyzers Using WinPcap The Open Cybernetics & Systemics Journal, 2014, Volume 8 781

Table 2 summarizes preparations for capturing program-
ming.

Table 2. Preparations for capturing programming.

No. Content

1 Include wpcap.h files in your source code

2
Define preprocessors WIN32, WPCAP, and optionally

HAVE_REMOTE in the project settings dialog

3
Add wpcap.lib and wsock32.lib to the linker in the

project settings dialog

4

Add wpcaproot\include under include file directory,

and wpcaproot\lib under library file directory in the

options dialog

3.3. Three basic Functions

To develop a traffic capturer successfully, we have to
understand three basic functions, i.e. pcap_ findalldevs_ex(),
pcap_open() and pcap_ next_ex().

Before capturing packets, we need to known how many
adapters are installed in our machine, and what they are. To
do this, we use function pcap_findalldevs_ex(), which cre-
ates a list of network interface adapters. As shown in Table
1, this function belongs to the type of remote capture, and
has the following format (in Wpcap 3.1beta3),

int pcap_findalldevs_ex(char *source, struct
pcap_rmtauth *auth, pcap_if_t **alldevs, char *errbuf)

It takes four parameters, i.e. source, auth, alldevs, and
errbuf. Parameter source is of character pointer type, and
specifies the adapters location. It follows Source Specifica-
tion Syntax, and may take one of the three formats as listed
in Table 3.

From the above table, we know that function
pcap_findalldevs_ex() can find adapters in local machine,
adapters in remote machine, and dumpfile in a given path.

The second parameter auth holds the information re-
quired to authenticate the connection to the remote host. It is
not meaningful in case of a query to the local machine, and
can be NULL.

The fourth parameter errbuf keeps error information of
string type, which allow us to know what has happened if
there is something wrong in the operation.

The third parameter alldevs is a pointer of structure
pcap_if, and points to the first adapter of the adapter list.

Function pcap_findalldevs_ex() return ‘0’, if the opera-
tion is successfully. Otherwise, it return ‘-1’.

After getting the list of network adapters, we can open
one of them using function pcap_open(). Its prototype is：

pcap_t *pcap_open(const char *source, int snaplen, int
flags, int read_timeout, struct pcap_rmtauth *auth, char
*errbuf)

This function takes six parameters. Parameter source is a
string containing name of the adapter to be opened.

Parameter snaplen defines the length of the portion of a
packet, which will be sent to the traffic capturer or monitor.
If snaplen equals , for example, to 150, only the first 150
bytes of the packet will be sent to the user in spite of this
packet with a great length of more than 1500bytes, perhaps.

Parameter flags specifies the operation mode of this
adapter. Flags with a value of PCAP_ OPENFLAG
_PROMISCUOUS means that the adapter will be in promis-
cuous mode, which is the usual mode in packet capturing.

Parameter read_timeout specifies the time for reading
packets. Even though a packet has been seen, the read opera-

Table 1. Types of wpcap exported functions.

Function Type Header File Preprocessor Example Functions

Libcap compatible Pcap.h WIN32
pcap_open_live

pcap_setfilter

Wpcap specific Win32-Extensions.h WPCAP
pcap_live_dump

pcap_offline_filter

Remote capture remote-ext.h HAVE_REMOTE
pcap_findalldevs_ex

pcap_remoteact_list

Table 3. Parameter source of function pcap_findalldevs_ex.

Format Example Action by pcap_findalldevs_ex

rpcap:// rpcap:// to look for all adapters in the local machine

rpcap://host rpcap://10.121.10.09 to look for all adapters in host 10.121.10.09

file://fold file://d:\wcpt\dumpfile to look for all of the pcap data files in the directory d:\ wcpt\ dumpfile

782 The Open Cybernetics & Systemics Journal, 2014, Volume 8 Huiran and Ruifang

tion does not return until the read_timeout elapses. In this
manner, multiple packets may be read in a single operation.

Now that we have found and opened a adapter, we can
read packets from it by function pcap_ next_ex(). This func-
tion has the following format,

int pcap_next_ex(pcap * p, struct pcap_pkthdr **
pkt_header, u_char ** pkt_data)

Parameter p is a pointer returned by function
pcap_open(). Parameter pkt_data is a string holding the
packet data received.

Parameter pcap_header is a structure pcap_pktdr pointer.
Structure pcap_pktdr contains three members, i.e. ts, caplen

and len. caplen is a integer denoting length of the packet data
received. len is also an integer denoting length of the whole
packet. ts is the timestamp of the packet and has two pointer
members, tv_sec and tv_usec. tv_sec is the integer portion of
the timestamp in seconds, whereas tv_usec is the fractural
portion in microsecond.

3.4. An Example Capturer

To show how to develop a packet capturer clearly, we
provide a step-by-step example (as shown in Fig. 3).

Four steps are involved in development of packet captur-
ers.

#include <pcap.h>

main(int argc, char **argv)
{

// Define variables
pcap_if_t *adapterlist, *d;
pcap_t *adapterpointer;
u_int adapterNo, i=0;
char errbuf[PCAP_ERRBUF_SIZE];
int scs;
struct pcap_pkthdr *header;
const u_char *pkt_data;
struct tm *ltime;
char timestr[16];

// A. Retrieve the local device list
if (pcap_findalldevs_ex("rcap://", NULL, &adapterlist, errbuf) !=0)
{

printf("Error in looking for adapters: %s\n", errbuf);
return -1;

}

for(d=adapterlist; d; d=d->next) /* Print the list */
printf("\n %d. %s ", ++i, d->name);

// Select one adapter from the adapter list
printf("\n\nSelect adapter by number (1-%d):",i);
scanf("%d", &adapterNo);

// Jump to the selected adapter
for (d=adapterlist, i=0; i<adapterNo-1 ;d=d->next, i++);

// B. Open the adapter
adapterpointer=pcap_open(d->name,

150 ,

PCAP_OPENFLAG_PROMISCUOUS,
50,

NULL,
errbuf);

if (adapterpointer==NULL) return -1;

// C. Read, convert and print packets,
while((scs = pcap_next_ex(adapterpointer, &header, &pkt_data)) >= 0)
{

if(scs == 0) continue; //Timeout elapsed

// convert the timestamp to readable format
ltime=localtime(&header->ts.tv_sec);
strftime(timestr, sizeof timestr, "%H:%M:%S", ltime);

// print timestamp and packet length
printf("\n%s:%ld (%ld)\n", timestr, header->ts.tv_usec, header->len);

for (i=1; (i <33) ; i++)
{

printf("%.2x ", pkt_data[i-1]);
if ((i % 16) == 0) printf("\n");

};
}
return 0;

}

Fig. (3). Example capture.

Design of Network Protocol Analyzers Using WinPcap The Open Cybernetics & Systemics Journal, 2014, Volume 8 783

Step 1. Install WinPcap (See paragraph 3.1).

Step 2. Configure Microsoft Visual C++ (See Table 2)

 Define preprocessors WIN32, WPCAP,
HAVE_REMOTE.

 Add wpcap.lib and wsock32.lib to the linker in the
project settings dialog.

 Add wpcaproot\include under include file directory,
and wpcaproot\lib under library file directory in the options
dialog

Step 3. Write the C source codes, and keep in mind to in-
clude pcap.h in the top of the codes.

Step 4. Build and run the capturer

When built and run, the example capturer prints results as
shown in Fig. (4). As we see, it found 2 adapters. After se-
lecting adapter No.2, it started capturing packets from this
adapter and printing them out. First came the timestamp,
following by packet length in parentheses, then the packet
data (here only printed two lines to save space).

The result showed the example capturer operated well.

CONCLUSION

(1) Packet capturer can be developed based on NDIS, or on
WinPcap.

(2) We divide functions exported by wpcap into three types,
i.e. lipcap compatible, wpcap specific, and of remote cap-
ture.

(3) To develop captures successfully, one has to configure
the developing environment correctly, e.g. to define the

preprocessors, to set the include file directory and library
file directory.

(4) Follow the example capturer given in this paper, it is easy
for you to develop a capturer by yourself.

(5) Advanced functionalities, for example, performance
analysis, traffic statistics and fault diagnosis, can be
added conveniently to capturers.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

This paper was completed when I was visiting Kyoto
University of Japan. I would like to thank Professor T. Taka-
hashi and Doctor T. Asaka for their help and support.

REFERENCES

[1] De Souza, Erico; Matwin, Stan ; Fernandes, Stenio. Network traffic
classification using AdaBoost Dynamic. 2013 IEEE International

Conference on Communications Workshops, ICC 2013, pp. 1319-
1324.

[2] Anderson, Keith F. A survey of techniques for improving the cali-
bration of high-power network analyzers. 78th ARFTG Microwave

Measurement Conference: High Power RF Measurement Tech-
niques, ARFTG 2011.

[3] Hofstede, Rick; Drago, Idilio; Sperotto, Anna; Pras, Aiko. Flow
monitoring experiences at the ethernet-layer. Lecture Notes in

Computer Science , v6955, p 134-145, 2011.
[4] Loris Degioanni. WinPcap documentation 3.0.

http://winpcap.polito.it. January 8, 2005.

Received: September 16, 2014 Revised: December 23, 2014 Accepted: December 31, 2014

© Huiran and Ruifang; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/-

licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

Fig. (4). Outputs of the example capturer.

