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Abstract: Equivariant function with respect to symmetries of the wallpaper group is constructed by trigonometric func-

tions. A proper transformation is established between Euclidean plane and hyperbolic spaces. With the resulting function 

and transformation, wallpaper patterns on the Poincaré and Klein models are generated by means of dynamic systems. 

This method can be utilized to produce infinity of beautiful pattern automatically. 
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1. INTRODUCTION 

Patterns that have symmetries of the wallpaper groups (or 
crystallographic group) can be found widely in the ancient 
decorative arts. However, the serious study of such groups is 
of comparatively recent. In 1924, Hungarian mathematician 
first listed the 17 wallpaper groups [1, 2]. It is surprising that 
230 crystallographic groups in three dimensional Euclidean 
spaces were discovered before planar wallpaper groups. 
With the development of computer techniques, there are 
many methods dedicated to the automatic generation of 
symmetric patterns. For example, in [3, 4], colorful images 
with symmetries of wallpaper groups were considered from 
the view point of dynamic systems. Many nice chaotic wall-
paper attractors were produced by iterating equivariant func-
tions [5-10].  

Hyperbolic geometry differs from the familiar Euclidean 
geometry merely in how it handles the parallel axiom: given 
a line and a point outside it, more than one parallel line 
through the point exists [11]. Compared with Euclidean pat-
terns, the visualization of hyperbolic patterns are rather un-
usual but exotic. In 1986, Dunham first utilized computers to 
create hyperbolic patterns automatically [12]. Inspired by his 
idea, various approaches have been investigated to create 
hyperbolic patterns [13-18]. 

It is well known that Euclidean and hyperbolic patterns 
are incompatible since they have essential differences [19-
21]. However, by establishing proper transformations, we 
present a way to create wallpaper patterns on the hyperbolic 
space. To our knowledge, this approach has never been re-
ported in any literature so far. 

The reminder of this paper is organized as follows. In 
Section 2, we present a method to yield patterns with sym-
metries of the wallpaper groups. In Section 3, to create 
Euclidean patterns on hyperbolic space, we establish a 
 

 
 

proper transformation between Euclidean and hyperbolic 
spaces. In Section 4, we describe how to yield wallpaper 
patterns on hyperbolic models and show some detailed im-
plements. 

2. FUNCTIONS THAT ARE EQUIVARIANT WITH 
RESPECT TO WALLPAPER GROUPS 

In this section, we present a simple method to construct 
functions that are equivariant with respect to wallpaper 
groups.  

A function is said to be equivariant with respect to the 
symmetries of G if for all,, where .  

Since wallpaper groups are characterized by translation 
in two independent directions, which give rise to a lattice. 
We need to consider a lattice in the plane along with a dual 
lattice. This means that, if and, then should be an integer. So 
if and, then is an integer multiple of and.  

Supposeare real constants, then is equivariant with re-
spect to the translations. Here the notation means to design 
reduction of points via the lattice to a fundamental field. 
With these analyses, we obtain the following proposition 
immediately. 

Proposition 1. Let be a finite subset of,,, A, are real con-
stants, then is equivariant with respect to the translational 
symmetries of . 

By periodicity, it is easy to check that Proposition 1 holds 
if we interchange sine or cosine arbitrarily. 

For wallpaper groups, we need two kind lattices. One is 
square fundamental field with base and, which is self-dual. 
We use. The other is hexagonal lattice, the base can be cho-
sen as. So we obtain a different dual lattice. 

Proposition 2 [6]. Let be an arbitrary function, be a fi-
nite group realized by matrices acting on. Assume is a func-
tion defined as 

Then, is equivariant with respect to.  
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Theorem 3. Let be a function defined as (1), be a group 
that maps the lattice back onto itself. Suppose is a function 
defined in Proposition 2. Then is equivariant with respect to 
translation symmetries of and symmetries of.  

Let and be, respectively, cyclic and dihedral groups. De-
note and. Then is the generator of and is the realization of. 
We will consider being equal to that set of matrices. Since is 
a reflection through the origin, set is a presentation of group. 

3. TRANSFORMATIONS BETWEEN EUCLIDEAN 
PLANE AND HYPERBOLIC SPACE 

Hyperbolic geometry was established by Lobachevsky, 
Bolyai and Gauss at the beginning of 19

th
 century [19-21]. 

There are many different models of hyperbolic geometry in 
Euclidean space. In this section, we establish transformations 
between Euclidean plane and hyperbolic models. We only 
consider the three most familiar hyperbolic models: Poin-
caré, Klein and upper half-plane models [21].  

The definition domain of Poincaré and Klein models is 
the point in the interior of the Euclidean unit disk, i.e.,. No-
tice that the hyperbolic lines in Poincaré model are circular 
arcs cut the boundary of the disk at right angle; while hyper-
bolic lines in Klein model are interpreted as chords of the 
unit disk (including diameters).  

The definition domain of upper half-plane model is the 
point of the upper half plane, i.e.,. In this model, hyperbolic 
lines are semicircles orthogonal to the -axis, including verti-
cal lines.  

The formula that transforms Klein model to upper half-
plane model is 

 where. 

The formula that transforms Poincaré model to upper 
half-plane model is  

 where [22]. 

It is well known that Euclidean and hyperbolic patterns 
are incompatible since they have different metric. In some 
sense, they are the completely distinct worlds. However, if 
we treat upper half-plane model as Euclidean space, then (3) 
and (4) establish transformations linking the two spaces. 
This provides a way to create Euclidean patterns on the hy-
perbolic model.  

The practical coordinates used in experiment were mag-
nified by. For example, the coordinates used in (3) are. Let 
be the mesh formed by mutually perpendicular linesand. By 
using the inverse transformation of formula (4), i.e., where, 
we obtain a corresponding mesh on the Poincaré model, as 
shown in Fig. (1). Similarly, we can also generate the mesh 
on the Klein model. 

4. PATTERNS WITH SYMMETRIES OF THE WALL-
PAPER GROUPS ON THE HYPERBOLIC MODELS 

In this section, we describe how to create wallpaper pat-
terns on the Poincaré and Klein models.  

We take Klein model as an example showing how to cre-
ate aesthetic patterns on hyperbolic space. We summarize it 
as follows: 

  

Fig. (1). The mesh on the Poincaré model obtained by transforming 

rectangular mesh of upper half-plane model. 

  

Fig. (2). An aesthetic pattern of kind. 

Step 1. Let be a point of the unit disc on the Klein model. 
By formula (4), is transformed to the point on the upper half-
plane. 

 Step 2. is used as initial iteration point of the equivariant 
function of theorem 3.  

Step 3. Use a certain color scheme to determine the color 
of. In this manner, we finally get a colored pattern on hyper-
bolic model which possesses the symmetries of wallpaper 
group. 

The color scheme used in Step 3 was developed by Lu et 
al. They employed it to render wallpaper patterns [4]. For 
more details of the scheme, please refer to [4] and references 
therein. 

For convenience, the caption donation “A_B” labeled in 
each figure means A is the name of wallpaper group and B is 
the kind of hyperbolic models. For example, pattern of the kind 
means it is a pattern in the Poincaré model with symmetry. 

In Figs. (2-8) illustrate some wallpaper patterns on the 
hyperbolic modes. As a matter of fact, the patterns shown in 
Poincaré and Klein models have nested structures similar to 
the self-similarity of fractals. This could be firmed by magni-
fying figures. In Fig. (3), we show the magnified semicircle 
part of Fig. (2). 
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Fig. (3). An aesthetic pattern of kind.  

 

Fig. (4). The magnified semicircle of Fig. (2). 

 

Fig.(5). An aesthetic pattern of kind. 

 

Fig. (6). An aesthetic pattern of kind. 

 

Fig. (7). An aesthetic pattern of kind. 

 

Fig. (8). An aesthetic pattern of kind . 

CONCLUSITON  

In this paper, we present a new form of equivariant func-
tions with respect to wallpaper groups. We establish trans-
formations which can transform Euclidean patterns into hy-
perbolic models perfectly. Though Euclidean and hyperbolic 
patterns are incompatible, our transformations can create 
aesthetic patterns on hyperbolic space, which realize the no-
tion of infinity in a finite area. This method can create a great 
many of aesthetic patterns. 
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