
Send Orders for Reprints to reprints@benthamscience.ae

 The Open Cybernetics & Systemics Journal, 2015, 9, 1019-1024 1019

 1874-110X/15 2015 Bentham Open

Open Access

Applying SNMP Technology to Manage the Sensors in Internet of Things

Huang Hui-Ping
*
, Xiao Shi-De, Meng Xiang-Yin

Electromechanical and Control Department, Mechanical Engineering College, Southwest Jiaotong University,

Chengdu, Sichuan, 610031, P.R. China

Abstract: Nowadays, the IoT is largely dependent on sensors. The IoT devices are embedded with sensors and have the

ability to communicate. A variety of sensors play a key role in networked devices in IoT. In order to facilitate the man-

agement of such sensors, this paper investigates how to use SNMP protocol, which is widely used in network device man-

agement, to implement sensors information management of IoT system. The principles and implement details to setup the

MIB file, agent and manager application are discussed. A prototype system is setup to validate our methods. The test re-

sults show that because of its easy use and strong expansibility, SNMP is suitable and a bright way for sensors informa-

tion management of IoT system.

Keywords: Agent, internet of Things, manager, MIB, sensors, SNMP.

1. INTRODUCTION

The Internet of Things (IoT) is the network of physical
objects or "things" embedded with electronics, software,
sensors and connectivity to enable it to achieve greater value
and service by exchanging data with the manufacturer, op-
erator and/or other connected devices. Each thing is uniquely
identifiable through its embedded computing system but is
able to interoperate within the existing Internet infrastructure
[1]. The Internet of Things (IoT) transforms the everyday
physical objects that surround us into an ecosystem of in-
formation that will enrich our lives. The IoT is largely de-
pendent on sensors. Sensors detect and measure changes in
position, temperature, light, etc. and they are necessary to
turn billions of objects into data-generating “things” that can
report on their status, and in some cases, interact with their
environment. For example, product and shelf sensors collect
data throughout the entire supply chain. In the gaming indus-
try, companies use tracking sensors to transfer the move-
ments of users onto the screen and into the action. Internet-
connected smart meters can measure power usage and pro-
vide feedback to the power consumer, sometimes automati-
cally adjusting the system’s parameters. All of these facts
show that sensors play a critical role in the IoT. So it’s im-
portant to ensure the normal operation of the sensors.

SNMP [2] is one of the most commonly used technolo-
gies when it comes to network monitoring. Anuj Sehgal [3]
has researched how to apply SNMP protocol to implement
management of resource constrained devices in the Internet
of Things. Deng Hubin [4] discussed the analysis and im-
plementation of embedded SNMP agent. Hillbrecht [5] has
investigated how to setup a SNMP-based virtual machines
management interface. Dow Chyi-Ren [6] has researched on

adaptive SWE and SNMP-based sensor management for
environmental monitoring.

Because of its simplicity, we choose SNMP technology
to help us manage the sensors in IoTs. This paper describes
how to use SNMP technology to facilitate management of
sensors in IoT. This paper is organized as follows: In section
II, the SNMP technology is introduced. In section III, we
explain some of the implementation details of applying
SNMP technology to manage the sensors of IoT devices,
including the design details of MIB, SNMP manager and
Agent. In section IV, we present the results of a prototype
system which can manage some sensors information. In sec-
tion V, we make a conclusion of this paper and propose the
future research directions.

2. SNMP INTRODUCTION

The Simple Network Management Protocol (SNMP) is a
component of the Transmission Control Protocol/Internet
Protocol (TCP/IP) protocol suite as defined by the Internet
Engineering Task Force (IETF). Introduced in 1988 to pro-
vide management capability for TCP/IP-based networks,
SNMP rapidly became the most widely used standardized
network management tool. It is a UDP-based network proto-
col. As an application layer protocol, it is used widely in
network management systems to facilitate the exchange of
management information between different network-attached
devices. It also helps the network administrators to monitor
the conditions of network devices for attention.

SNMP is based on the manager/agent model. An SNMP-
managed network has some key components: an SNMP
manager, managed SNMP devices, an SNMP agent, a data-
base of management information (MIB), and the network
management protocol [7].

• The SNMP manager acts as an interface between the
network administrator and the management system.

1020 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Hui-Ping et al.

• The managed SNMP device is a network node that can
be any type of hardware device such as computer hosts,
routers, access servers, and printers that are connected to
network.

• The SNMP agent is a network-management software
module that resides on a managed device. It provides the
interface between the manager and the physical managed
device(s). It collects and stores management information
received by the managed devices.

• The SNMP MIB is a collection of managed objects resid-
ing in a virtual database used to manage the devices in a
communication network. The database is organized in a
tree structure and entries are addressed through object
identifiers (OID).

Manager Agent

Get

GetResponse

Set

SetResponse

Trap MIB

Fig. (1). Communication between the SNMP manager and agent.

As illustrated in Fig. (1), the SNMP manager and agent
use a MIB and five basic commands (GET, GET-NEXT,
GET-RESPONSE, SET, and TRAP) to exchange informa-
tion [8]. The following Table 1 is a list of these commands.

Security has been the biggest weakness of SNMP since
the beginning. SNMPv1/v2 can neither authenticate the
source of a management message nor provide encryption.
Without authentication, it is possible for nonauthorized users
to exercise SNMP network management functions. It is also
possible for nonauthorized users to eavesdrop on manage-
ment information as it passes from managed systems to the
management system. To correct the security deficiencies of
SNMPv1/v2, SNMPv3 was issued as a set of Proposed Stan-
dards in January 1998. SNMPv3 addresses the security prob-
lems that have plagued both SNMPv1 and SNMPv2. So, by
using SNMPv3 technology, we can not only manage the sen-
sors in IoT, but also ensure the security and privacy of sensor
data.

3. KEY PROBLEMS AND IMPLEMENT DETAILS

We choose SNMP to manage the sensors in IoT because
SNMP provides a bare-bones set of functions, and it is in-

deed easy to implement, install, and use. As mentioned
above, SNMP is based on three basic concepts: managers,
agents, and the Management Information Base (MIB). In our
IoT sensors management system, one manager node runs
SNMP management software. The networked devices
equipped with sensors to be managed are installed with an
agent software module. This SNMP agent monitors sensor
data. The management agent has data stored in memory loca-
tions. Polling the SNMP agent from a remote SNMP man-
ager via the SNMP protocol can access the data of sensors
embedded in IoT devices. The database within the manage-
able networked devices in IoT is called a MIB (management
information base.) The MIB contains real-time status data of
various sensors. So, the key problems in applying SNMP to
manage the sensors in IoT involve the design of MIB,
development of manager and agent software.

3.1. Design of MIB

MIB stands for Management Information Base and is a
collection of information which is organized hierarchically.
The SNMP MIB is conceptually a tree structure. The SNMP-
related branches of the MIB tree are located in the internet
branch, which contains two main types of branches:

 Public branches (mgmt=2), which are defined by the

Internet Engineering Task Force (IETF) RFCs, are the

same for all SNMP-managed devices.

 Private branches (private=4), which are assigned by the

Internet Assigned Numbers Authority (IANA), are de-

fined by the companies and organizations to which these

branches are assigned.
The following Fig. (2) shows the structure of the SNMP

MIB tree. There are no limits on the width and depth of the
MIB tree.

Immediately beneath the root of the MIB tree, Interna-
tional Organization for Standardization (iso), is the Organi-
zation (org) branch, followed by Department of Defense
(dod), and then Internet (internet). Management (mgmt), the
main public branch, defines network management parame-
ters common to devices from all vendors. Underneath the
Management branch is MIB-II (mib-2), and beneath this are
branches for common management functions such as system
management, printers, host resources, and interfaces.

The private branch of the MIB tree contains branches for
large organizations, organized under the enterprises branch.

Table 1. Five basic commands of SNMP.

Command Operation

 GET
The SNMP manager sends an SNMP get request to the specified node in the MIB tree to obtain one or more variables from

an SNMP agent.

GET-NEXT The SNMP manager sends an SNMP get next request to the next specified node in the MIB tree from an SNMP agent.

GET-RESPONSE
The SNMP agent responds with a GET-RESPONSE message with either the information requested or an error indication as

to why the request cannot be processed.

SET The SNMP manager uses the SNMP SET command to set or change the value of one or more variables in an SNMP agent.

TRAP The SNMP agent sends a TRAP message to report the SNMP manager of extraordinary events.

Applying SNMP Technology to Manage the Sensors in Internet of Things The Open Cybernetics & Systemics Journal, 2015, Volume 9 1021

Each organization has a root branch node under this object.
Each organization creates its own subset of MIB branches
and objects, which must comply with a common definition
of SNMP information known as Structure of Management
Information (SMI). SMI defines the allowed data types for
MIB objects.

There are two types of MIBs: scalar ones and tabular
ones. Scalar objects define a single object instance whereas
tabular objects define multiple related object instances
grouped in MIB tables. At the programmatic level, the defi-
nition of each MIB object that an SNMP agent manages in-
cludes the following elements:

 The object name and object identifier (also known as an
OID).

 A text description of the object.

 The object’s data-type definition (such as counter,
string, gauge, or address).

 The index for objects that are assigned complex data
types. The index specifies the key field for the table —
that is, the field that can be used to identify a row.

 The only complex SNMP data type that is allowed is a
table, and tables cannot be nested.

 The level of access to the object (such as read or
read/write) that is allowed.

 Size restrictions.

 Range information.

Because the various sensors embedded in networked de-
vices in IoT are non-standard managed objects, we must de-
fine private MIB objects. The MIB tree for managing sensors
in IoT is actually a private MIB tree. Private MIB objects are
defined under the node {1.3.6.1.4.1}, allowing individual
users to expand their MIB objects.

SNMP references each MIB variable by using its unique
object identifier, which identifies the location of a given
managed object within the MIB namespace. The object iden-
tifier reflects the object’s position within the hierarchy of the
MIB tree, containing a sequence of subidentifiers that begin

at the root of the MIB tree and end at the object (leaf node).
Subidentifiers are separated with a period.

There are two methods to define a MIB. One is to write
MIB text file directly in a text editor in accordance with SMI
syntax. The other is to use some graphical tools to create a
MIB tree. In this paper, we choose MIB Editor sub-module
of Agent Toolkit C Edition to produce a MIB file. The MIB
file defines the voltage, current and temperature variables of
sensors. This MIB tree is shown in Fig. (3). A piece of code
defining a voltage variable is shown as follows.

dyvalue OBJECT-TYPE

 SYNTAX DisplayString

 MAX-ACCESS read-write

 STATUS current

 DESCRIPTION "Description :this variable de-

scripts the value of voltage"

 DEFVAL { "220.0" }

 ::= { dianya 1 }

3.2. Design of Agent

SNMP agents do the bulk of the work. They are respon-
sible for gathering information about the sensors in IoT and
storing them in MIB. As mentioned above, the MIB is a hi-

org=3

dod=16

internet=1

iso=1

enterprises=1

private=4

mib-2=1

mgmt=2

Fig. (2). Structure of the SNMP MIB tree.

Fig. (3). An example of our designed MIB tree for managing some
sensors information.

1022 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Hui-Ping et al.

erarchical, pre-defined structure that stores sensors informa-
tion that can be queried. In a managed IoT devices which has
some sensors, the specialized agent software accesses infor-
mation about the sensors and make it available to the SNMP
Manager. Managed sensors maintain values for a number of
variables and report those, as required, to the manager. For
example, an agent might report such data as the voltage of a
sensor, temperature value monitored by a temperature sensor.

SNMP agents respond to most of the commands defined
by the protocol. These include GetRequest, GetNextRequest,
GetBulkRequest, SetRequest and InformRequest. In addi-
tion, an agent is designed to send Trap messages.

When the MIB file has been created, we can program the
agent software using Agent Toolkit C Edition Tool. Ad-
ventNet Agent Toolkit C Edition is a rapid prototyping and
development tool to build SNMP (SNMP v1, SNMP v2c and
SNMP V3) agent [9]. It is a platform independent Java-based
toolkit that can be installed in any operating system with
JVM support. It offers a comprehensive and complete devel-
opment environment with agent development tools for agent
information-defining editors, Compilers for development and
testing tools. Agent development tools such as MIB Editor,
TL1 Message Builder, CLI Editor, MIB compiler, TL1 com-
plier, CLI compiler reduce agent development complexity
and enhance productivity. The main function of the agent
module include managing agent MIB file, listening on the
network port, SNMP packet decoding and encoding, and
processing manager's request.

Take the MIB tree shown in Fig. (3) for example, if we
want to read a sensor variable value “dianliu”, we should add
some code like this:

U_CHAR *GetDlvalue(INT32 *varValLen, U_CHAR

*status)

{

DEBUGMSG1("\n\t@@@@@ Inside GetDlvalue()

@@@@@\n");

CHECK_FOR_NULL(gv_dlvalue);

* Please provide your code to instrument "dlvalue" here

*/

printf("there is a getting requestment for the variable of

dianliu.\n");

printf("the value of dianliu is:%s A\n\n",gv_dlvalue);

*varValLen = __Strlen((CHAR *)gv_dlvalue);

return (U_CHAR *)gv_dlvalue;

}

3.3. Design of Manager

An SNMP manager is a component that is configured to
poll SNMP agent for information. The management compo-
nent, when only discussing its core functionality, is actually
a lot less complex than the agent configuration, because the
management component simply requests data.

The manager can be any machine that can send query re-
quests to SNMP agents with the correct credentials. Some-
times, this is implemented as part of a monitoring suite,
while other times this is an administrator using some simple
utilities to craft a quick request.

Almost all of the commands defined in the SNMP proto-
col are designed to be sent by a manager component. These
include GetRequest, GetNextRequest, GetBulkRequest, Se-
tRequest, InformRequest, and Response. In addition to these,
a manager is also designed to respond to Trap, and Response
messages.

In our design, WinSNMP [10] is used to develop the
SNMP manager. Using WinSNMP is as simple as including
the correct header file as opposed to downloading and link-
ing to an outside library. WinSNMP provides a single inter-
face to which application developers can program and multi-
ple SNMP software vendors can conform. This specification
thus defines the procedure calls, data types, data structures,
and associated semantics to which an application developer
can program and which an SNMP software vendor can im-
plement.

In general, the SNMP manager software include two im-
portant threads, sending thread and receiving thread, which
has several implement steps. We can use the relevant
WinSNMP API functions to code these steps so as to pro-
duce SNMP manager software module.

Sending thread include the following steps:

(1) Create the managed object’s OID

(2) Create a variable binding table VBL

(3) Generate PDU and assign its content

(4) Send the messages

There are some API functions to support every step.

(1) Receive the messages

(2) Extract VBL from PDU, record the OID and value of
every variable in VBL

(3) Convert the format and show people the get value in
manager application.

A WinSNMP application must call the SnmpSendMsg
function to request that the Microsoft WinSNMP implemen-
tation transmit the PDU, with the other required message
elements defined by the relevant RFC. In addition to the des-
tination entity, the application must specify the source entity
and a context for the request. The SnmpSendMsg function
executes asynchronously.

The WinSNMP application must call the SnmpRecvMsg
function to retrieve the response to a SnmpSendMsg request.
The implementation verifies the validity of the PDU and the
other message elements when an application calls
SnmpSendMsg.

The SnmpCreateSession function passes an application
window handle and a notification message identifier to the
Microsoft WinSNMP implementation. When the application
window receives this message, it signals the application to
call the SnmpRecvMsg function using the session handle
returned by SnmpCreateSession.

Applying SNMP Technology to Manage the Sensors in Internet of Things The Open Cybernetics & Systemics Journal, 2015, Volume 9 1023

The SnmpRecvMsg function returns two entity handles, a
context handle, and the handle to a PDU. It is recommended
that the WinSNMP application free these resources using the
SnmpFreeEntity, SnmpFreeContext, and SnmpFreePdu func-
tions.

Several important programming function examples are
listed as follows:

SnmpMgrOpen(

IN LPSTR lpAgentAddress, // Name/address of target

agent

IN LPSTR lpAgentCommunity, // Community for target

agent

IN INT nTimeOut, // Comm time-out in milliseconds

IN INT nRetries // Comm time-out/retry count

);

SnmpMgrRequest(

IN LPSNMP_MGR_SESSION session, // SNMP session

pointer

IN BYTE requestType, // Get, GetNext, or Set

IN OUT RFC1157VarBindList *variableBindings, //

Varible bindings

OUT AsnInteger *errorStatus, // Result error status

OUT AsnInteger *errorIndex // Result error index

);

4. TEST RESULTS OF A PROTOTYPE SYSTEM

We have developed a prototype system to validate the
methods proposed in this paper. We use the Magi-
cARM2200-A hardware platform, which has several sensors
embed in it, to emulate the networked device in IoT. Accord-
ing to the implement details and steps described above, we

develop a MIB file and an SNMP agent application with the
AdventNet Agent Toolkit c edition software development
kit. Also, we develop a SNMP manger with WinSNMP. The
MIB file stores the information of the sensors embedded in
MagicARM2200-A hardware platform. The agent applica-
tion is aimed to manage the MIB file and responds to man-
ager requests, such as get, getnext and set commands etc.
Besides, the agent can store all the operation and the time
when the operation carry out, so that the manager can query
it when the device runs down, and yet tried the trap function.
The manager can receive and display the context of the sen-
sor information on the screen. The results of our prototype
system in shown in Fig. (4). The results show that the
SNMP-based methods proposed in this paper can facilitate
management of sensors in IoT.

CONCLUSION

Now, more and more objects are becoming embedded
with sensors and gaining the ability to communicate. Many
IoT devices have sensors that can register changes in tem-
perature, light, pressure, sound and motion. A variety of sen-
sors play a key role in networked devices in IoT. To facili-
tate the management of such sensors, this paper presents a
method based on SNMP technology and the implement de-
tails to setup the MIB file, agent and manager application.
The agent stores all of its data into a tree of Management
Information Bases(MIBs), which contain variables that hold
the values representing sensors information. A manager ap-
plication can send a message to the agent of the managed IoT
devices embedded with sensors and get the value of the vari-
ables stored in MIB to know the sensor information. For
example, when people want to know the relevant informa-
tion about a temperature sensor in IoT, he can use the man-
ager application to send a get request to agent, then receive
the corresponding information stored in MIB. We have setup
a prototype system to validate the methods presented in this
paper. The test results show that the prototype system can
work successfully and reliably. By applying SNMP technol-

Fig. (4). Test results of our prototype system.

1024 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Hui-Ping et al.

ogy combined with the sensors in IoT devices, people will be
able to easily collect, store, and view sensors information. In
future, we plan to promote this method and prototype system
to actual IoT systems and products so as to facilitate the
management of sensors embedded in IoT devices.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

We acknowledge that our work is supported by the Si-
chuan Application Fundamental Research Funds (No.
2014JY0212).

REFERENCES

[1] QIAN Zhi-hong,WANG Yi-jun, “IoT technology and Application”,

Acta Electronica Sinica, vol. 40, no. 5, pp. 1023-1028, May 2012.
[2] J. Schönwälder and V. Marinov, “On the Impact of Security Proto-

cols on the Performance of SNMP,” IEEE Trans. Network and
Service Management, vol. 8, no. 1, pp. 52-64. Mar. 2011,

[3] Sehgal, Anuj; Perelman Vladislav;and etc., “Management of re-

source constrained devices in the internet of things”. IEEE Com-
munications Magazine, vol. 50, No. 12, pp. 144-149, May 2012

[4] Deng, Hubin; Liu, Guiyuan; Zhang, Lei. “Analysis and implemen-
tation of embedded SNMP agent”, Computer and Computing

Technologies in Agriculture IV - 4th IFIP TC 12 Conference,
Nanchang, China. 2010, pp. 96-102

[5] Hillbrecht, Ricardo, De Bona, Luis Carlos. “SNMP-based virtual
machines management interface”. Proceedings - 2012 IEEE/ACM

5th International Conference on Utility and Cloud Computing,
UCC 2012, Chicago, Illinois, USA, 2012, pp. 279-286

[6] Dow, Chyi-Ren; Lee, Yu-Hong; Hu Ruei, Yu. “Adaptive SWE and
SNMP-based sensor management for environmental monitoring”,

International Journal of Communication Networks and Distributed
Systems, vol. 13, pp. 314-334, January 2014.

[7] LIU Su-ping, DING Yong-sheng1,"A Scalable Policy and SNMP
Based Network Management Framework", Journal of Donghua

University(English Edition), vol. 26, PP. 143-146, February 2009.
[8] Li Mingjiang, “Simple Network Management Protocol”, Beijing,

Electronic Industry Press, 2008, pp. 186-190.
[9] Jiang Fei, Shi Hao-shan, Xu Zhi-yan, Dong Xiang-jun, “Novel

hierarchical framework for the network management system based
on multi-agent collaboration”, Journal of Xidian University, vol.

36, pp. 366-372. Apr. 2009.
[10] Wang Dong, "The Design and Realization of Network Managment

Software Based on SNMP". M.S. thesis, Beijing University of
Posts and Telecommunications, Beijing, 2012.

Received: June 10, 2015 Revised: July 29, 2015 Accepted: August 15, 2015

© Hui-Ping et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the (https://creativecommons.org/licenses/by/4.0/legalcode), which permits unrestricted, non-

commercial use, distribution and reproduction in any medium, provided the work is properly cited.

