
Send Orders for Reprints to reprints@benthamscience.ae

 The Open Cybernetics & Systemics Journal, 2015, 9, 131-137 131

 1874-110X/15 2015 Bentham Open

Open Access

The Study of a Hierarchical Hadoop Architecture in Multiple Data Cen-
ters Environment

Sun Shengtao
1,4,*

, Wu Aizhi
2
 and Liu Xiaoyang

3

1
School of Information Science and Engineering, Yanshan University, Qinhuangdao, Hebei, 066004, P. R. China;

2
College of Vehicles and Energy, Yanshan University, Qinhuangdao, Hebei, 066004, P. R. China;

3
Data Industry Re-

search Institute Limited Company, Qinhuangdao, Hebei, 066004, P. R. China;
4
Key Laboratory for Computer Virtual

Technology and System Integration of Hebei Province, Qinhuangdao, Hebei, 066004, P. R. China

Abstract: Hadoop is a reasonable tool for cloud computing in big data era and MapReduce paradigm may be a highly

successful programming model for large-scale data-intensive computing application, but the conventional MapReduce

model and Hadoop framework limit themselves to implement jobs within single cluster. Traditional single-cluster Hadoop

may not suitable for situations when data and compute resources are widely distributed this paper focuses on the applica-

tion of Hadoop across multiple data centers and clusters. A hierarchical distributed computing architecture of Hadoop is

designed and the virtual Hadoop file system is proposed to provide global data view across multiple data centers. The job

submitted by user can be decomposed automatically into several sub-jobs which are then allocated and executed on corre-

sponding clusters by location-aware manner. The prototype based on this architecture shows encouraging results.

Keywords: Across clusters, apache Hadoop, hierarchical distributed computing architecture, multiple data centers, virtual
Hadoop file system.

1. INTRODUCTION

The requirements for data-intensive analysis of scientific
data across distributed data centers have grown significantly
in recent years. The MapReduce paradigm has emerged as a
highly successful programming model for large-scale data-
intensive computing applications [1]. However, current
Hadoop implementations are developed to operate on single
cluster environments and cannot be applied to distributed
data processing across data centers. Nowadays, data-
intensive computing typically uses modern data center archi-
tectures and massive data processing paradigms [2]. As job
sizes become larger, single-cluster solution grows inade-
quately. This research is devoted to the study on the distrib-
uted computing model across multiple data centers.

In the design and implementation of distributed comput-
ing architecture of Hadoop across multiple spatial data cen-
ters, there are mainly three problems need to be discussed
and tackled. (1) How to obtain the view of all data in multi-
ple data centers, which may decide the allocation of comput-
ing task to proper data center, (2) How to decompose the job
into tasks and dispense them to corresponding clusters,
which can synergistically control each Hadoop execution
engine in multiple clusters, (3) How to deliver tasks trans-
parently across different administrative domains, which need
efficient and general way to keep communication among
different clusters. The investigations and researches on these
three issues have been started recently and made some pro-
gress.

In this paper, we try to improve the capability and flexi-

bility of Hadoop. A new hierarchical distributed computing

architecture of Hadoop across multiple data centers is pro-

posed. Socket is used to transfer these tasks to the corre-

sponding cluster (data center), where the data processing in

supposed to be run without data moving. Moreover, the vir-

tual HDFS (Hadoop Distributed File System) is presented to

provide global view of all data among these data centers,

which can record the meta-data and access path of each data

center. The design and application of this architecture is il-

luminated and we hope this study may enlighten the atten-

tion of Hadoop global implementation.

The rest of this paper is organized as follows: Section 2

discusses the background and related works of our research,

Section 3 presents the design of a hierarchical distributed

computing architecture of Hadoop, and a prototype system

based on this architecture is shown in Section 3. Finally,

Section 4 concludes the paper and points out the future

works.

2. BACKGROUND AND RELATED WORKS

Cloud computing is a set of network enabled services to

allow the centralized data storage and online access to com-

puter services or resources [3]. It provides scalable, quality

guaranteed, normally personalized, convenient computing

infrastructure on demand. So to say, Cloud computing is a

reasonable and prospective way to solve many challenges in

era of large data. The MapReduce paradigm and its open

sourced implementation-Hadoop have been recognized as a

representative enabling technique for Cloud computing [4].

132 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Shengtao et al.

The MapReduce programming model is inspired by two
main functions commonly used in functional programming:
Map and Reduce [5]. The Map function process key/value
pairs to generate a set of intermediate key/value pairs and the
Reduce function merges all the same intermediate system.
The most popular implementation of the MapReduce model
is the Hadoop framework, which allows applications to run
on large cluster built from commodity hardware. The
Hadoop framework transparently provides both reliability
and data transfer.

The MapReduce programming model is designed to
process large volumes of data in parallel by dividing the job
into a set of independent tasks [6]. The Hadoop framework
consisted of a single Master node and several Slave nodes. In
distributed computing frameworks based on Hadoop, one job
committed to master node (name node which runs a Job-
Tracker process and accepts job requests from client node)
may be divided into several same tasks and then run on sev-
eral slave nodes (data node which runs a TaskTracker proc-
ess and executes task in separate java processes). The data of
this job is stored in HDFS (Hadoop Distributed File System)
which is distributed to data nodes of the same cluster. In the
situation of distributed computing crossing clusters, the data
copying from multiple sites to the computing center is the
traditional method.

But the copy process is tedious and inefficient between
global distributed data centers through wide-area network,
especially in era of big data. Moving the computation instead
of moving the data is the proper way to tackle this problem
[7]. By using data parallel processing paradigms on multiple
clusters, simulations can be run on multiple computing cen-
ters concurrently without the need of copying the data. In G-
Hadoop [8], Gfarm and Torque were adopted to manage data
files and resources for clusters, and a security framework in
G-Hadoop has been studied [9]. In P2P-MapReduce [10], the
adaptive MapReduce framework provided a more reliable
MapReduce middleware in dynamic Cloud infrastructures
that can be effectively exploited to manage node churn, mas-
ter failures, and job recovery in a decentralized but effective
way. A Federated MapReduce [11] provided a transparent
way to run original MapReduce jobs across multiple clusters
without any extra programming burden. In the hierarchical
MapReduce framework [12], a Map-Reduce-GlobalReduce
model was adopted, and Gfarm file system was used to avoid
cross-cluster data movement.

The Apache Hadoop MapReduce implementation may be
upgraded for a multi-cluster environment with a decision
algorithm that would prefer local computers to the remote
[13]. The research on Hadoop (MapReduce) across data cen-
ters or clusters is rare, but we believe this issue is worth-
while. In our research, we strive to employ Hadoop in the
application of spatial data processing across multiple data
centers based on the location-aware manner.

3. THE DESIGN OF HIERARCHICAL DISTRIBUTED
COMPUTING ARCHITECTURE OF HADOOP

With the rapid step of manufacture technology and ob-
servation technique, human can obtain massive spatial data
of variant types from multiple sources. Researchers have
devoted to collecting variant spatial data and providing spa-

tial information service. Many spatial data centers have been
set up all over the world for different purposes and diverse
services. The processing and managing of spatial data must
face the status of multiple data centers. Users cannot deploy
a Hadoop on top of multiple clusters to form a single lager
MapReduce cluster because the internal nodes of a cluster
are not directly reachable from outside.

There are two possible approaches to addressing the chal-
lenge of internal nodes not being reachable from outside [6].
The first is to unify the underlying physical clusters as a sin-
gle virtual cluster by adding a special infrastructure layer,
and run MapReduce on top of this virtual cluster. The other
is to make the MapReduce framework directly with multiple
clusters without additional special infrastructure layers. We
adopt the first approach and study the architecture of Apache
Hadoop application. In this paper, we try to employ the hier-
archical methodology [14] and propose a hierarchical dis-
tributed computing architecture based on Hadoop across
multiple clusters (named HDC-Hadoop). The overview of
this architecture is shown as Fig. (1).

The HDC-Hadoop architecture represents a master/slave
communication model. The master node is the central entity
in this architecture and it is responsible for accepting jobs
submitted by user, splitting the jobs into smaller sub-jobs
and distributing these sub-jobs to the certain slave nodes
where required data are located. The master node is also in
charge of managing the metadata of all files available in
every data nodes (virtual HDFS view of multiple HDFS).
The slave node is installed on each participating cluster and
enables it to run sub-jobs allocated by Sub-Job Adapter in
the master node (we can also call it global name node).

Virtual HDFS provides a global view of all files in
HDFSs of every cluster. In HDC-Hadoop framework, data
must be managed in a location-aware manner in order to
provide the required location information for the task adapter
on master node. Virtual HDFS just records meta-data of all
HDFS files obtained from name nodes, such as data size, file
format, access path and so on. When new file is input or ex-
isting file is modified, related name node (records the meta-
data of HDFS in one cluster) sends the updated meta-data to
virtual HDFS. The architecture of virtual HDFS is shown in
Fig. (2).

User can query and obtain the filename in virtual HDFS
based on metadata in global name node. The filename se-
lected by user in MapReduce program will be transferred
automatically into more specific address for file operation,
which includes: cluster address, HDFS directory and block
number. Cluster address is used to locate program execution
location (the name node’s address of a cluster), HDFS direc-
tory is used to indicate the paths of file accessing (some data
nodes’ addresses of the same name node), and block number
is used to find the partition of data addressing (disk partition
of the local file system in a data node).

4. THE JOB EXECUTION WORKFLOW BASED ON
HDC-HADOOP

Submitting a job to HDC-Hadoop is not different from
the traditional Hadoop. Users write the MapReduce applica-
tion for the desired job, the application is compiled and then
run on the client nodes.

The Study of a Hierarchical Hadoop Architecture The Open Cybernetics & Systemics Journal, 2015, Volume 9 133

Fig. (1). Architecture overview of HDC-Hadoop.

Fig. (2). Architecture of the virtual hadoop file system.

In HDC-Hadoop framework, user writes the MapReduce
program for the desired job based on the data files in virtual
HDFS. After compiling and decomposing, the file names in
Map or Reduce function may be transfered to certain loca-
tions of files in HDFS. Then, the program is allocated and
executed on one or several slave nodes where the required
data files are resident. If all the files in MapReduce program
are located in one cluster (data center), the Map and Reduce
programs may be transferred to corresponding cluster (slave

node). Otherwise, when the files in program are located in
several clusters, the program may be recompiled to Map-
Map-Reduce program or Map-Reduce-Map-Reduce pro-
gram, and the program may be executed step by step in dif-
ferent clusters (so as to say, the program is organized into
several sequential or parallel sub-jobs of different clusters).
The job execution flow in HDC-Hadoop framework is
shown in Fig. (3). The whole workflow is composed of
seven steps as below.

134 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Shengtao et al.

1) Data selection: Before submission of a job, the re-
quired data need to be query and selected. Based on the
metadata in virtual HDFS, user can find the desired data file
from data centers and add the file names in Map program as
the input of job.

2) Job submission: From client node, user submits a job
(programming in MapReduce paradigm based on Java lan-
guage) and its configurations (including parameters, input
file names and additional resources) to the master node of
HDC-Hadoop. The job scheduler in master node may set a
job ID for the new job and push it in the queue of jobs. Upon
a successful request the job client copies the MapReduce
executable (JAR) and its configurations to a designated
working directory on the file system of master node.

3) Program compiling and decomposing: On the mas-
ter node, jobs in queue may be split into small location-
aware sub-jobs based on required data. Based on meta-data
in virtual HDFS, if all files in the MapReduce program are
located in one cluster (data center), the program may be
transferred directly to corresponding cluster (slave node).
Else if the files in the MapReduce program are located in
different clusters, the program may be recompiled to Map-
Map-Reduce or Map-Reduce-Map-Reduce program and or-
ganized into several sequential sub-jobs of different clusters.
The file names in Map and Reduce functions based on vir-
tual HDFS are translated into local file path of the HDFS in
clusters.

4) Sub-job localization and assignment: Based on vir-
tual HDFS, sub-job may be assigned properly to the name

node of related cluster in data-aware manner. This allocation
adopts socket communication method, which can inter-
transfer message, program and file based on TCP (Transmis-
sion Control Protocol). And then a job execution (the method
runJob() of Hadoop is called) can be run on the cluster based
on local file system.

5) Task submission and execution: After the job is lo-
calized on the cluster, the JobTracker in name node splits
into smaller tasks. When the TaskTraker in data node re-
ceives a new task, it localizes the tasks executable and re-
sources in local file system. Then the job is executed by
spawning a new JVM (Java Virtual Machine) on the com-
puted node and running the corresponding task with the con-
figured parameters.

6) Result of sub-job return back: Name node monitors
the status of all tasks in data nodes of the same cluster. After
all tasks of a sub-job are completed in the cluster, the output
file is stored in the designated directory of HDFS. Then, the
name node obtains and returns the result files paths to the
sub-job adapter in master node.

7) Result of job return back: The sub-job adapter in
master node checks whether this sub-job is a simple job
(which means all required data files located in one cluster,
that is to say there is only one sub-job corresponding to a
user job). If it is a simple job then register the new output file
in virtual HDFS and return the file name list to the job
scheduler. Else if this sub-job has other subsequent or rele-
vant sub-jobs, the output of this sub-job may be used as the
input or parameter of other sub-jobs which may then be allo-

Fig. (3). Execution flowchart of a MapReduce Job in the architecture of HDC-Hadoop.

The Study of a Hierarchical Hadoop Architecture The Open Cybernetics & Systemics Journal, 2015, Volume 9 135

cated and executed on corresponding clusters. Till all the
sub-jobs of one job are completed, the output files are regis-
tered in virtual HDFS and the file name list is returned to job
scheduler. Finally, job scheduler returns the results to corre-
sponding user by job ID.

5. APPLICATION AND PROTOTYPE

In order to illuminate the feasibility of the HDC-Hadoop
architecture, this section discusses a prototype example of
spatial data distributed processing platform based on this
architecture.

In this prototype, two clusters are built on two data cen-
ters (two data centers of remote sensing raster data, one for
MODIS data service and another for ETM data service)
separately based on Hadoop. The schematic diagram of the
deployment is shown in Fig. (4).

When user submits a new job, he firstly searches the re-
quired data based on the data view of virtual HDFS, which
can make the details of multiple data centers transparent,
shown as Fig. (5).

After selecting the required spatial data files, user
uploads the algorithm runtime environment of virtual ma-
chine (Virtual machine in public cloud or private data centers
have become the norm for running transactional applications
[15]), which may be transferred to the cluster where the re-
quired data are resident. In the job center, the execution of
each job can be monitored in Web portal, shown as Fig. (6).

The final execution results are expressed in the form of
KML (Keyhole Markup Language) files, and the access
paths may be returned to the user interface in Web portal
server. Based on the HDC-Hadoop architecture, the simula-
tion system can realize data distributed computing based on

Hadoop across multiple clusters, but this prototype is still a test
bed currently and there are many unresolved problems yet.

CONCLUSION

The requirements for data-intensive computing across
distributed clusters and multiple data centers have grown
significantly in recent years. However, original MapReduce

Fig. (5). The query interface of spatial data.

Fig. (4). Deployment diagram of the prototype system.

136 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Shengtao et al.

paradigm and Hadoop framework are developed to operate
on single cluster environments, which cannot be imple-
mented in large-scale distributed data processing across mul-
tiple clusters and data centers. The goal of this research is to
apply Hadoop framework in the large-scale distributed com-
puting across multiple data centers without data moving (so
as to say, bringing computation to where data is resident). In
this paper, a hierarchical distributed computing architecture
is designed and presented. This architecture is based on mas-
ter/slave communication model and virtual HDFS is pro-
posed to provide global view of data sets across distributed
clusters. The HDC-Hadoop architecture, virtual HDFS struc-
ture and job execution flowchart are illuminated, and also a
prototype based on this architecture is built up and presented.
The results show roughly that this design is feasible and has
application prospect. To make HDC-Hadoop fully functional
and implementable, next step we plan to enhance the distrib-
uted file system across wide area networks, design the pro-
gramming model and scheduling algorithm of this frame-
work, support workload balance of tasks among heterogene-
ous clusters, and provide the security mechanism across mul-
tiple administrative domains for this architecture.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

The authors would like to thank the advices of Professor
Lizhe Wang and the help from team members of Data Tech-
nology Department in CEODE (Center of Earth Observation
and Digital Earth) of Chinese Academy of Sciences.

This work is supported by the National Natural Science
Foundation of China (No. 61303130), the Science and Tech-
nology Research Plan of Qinhuangdao (No. 201401A010)
and the Natural Science Foundation of Hebei Province (No.
F2014203093).

REFERENCES

[1] R.Y. Krishna, and P. Singh, “MapReduce programming paradigm
solving big-data problems by using data-clustering algorithm”, In-

ternational Journal of Advanced Research in Computer Engineer-
ing & Technology, vol. 3, no. 1, pp. 77-80, 2014.

Fig. (6). The monitor interface of job execution.

The Study of a Hierarchical Hadoop Architecture The Open Cybernetics & Systemics Journal, 2015, Volume 9 137

[2] L. Wang, J. Tao, H. Marten, A. Streit, S. U. Khan, J. Kolodziej,

and D. Chen, “MapReduce across distributed clusters for data-
intensive applications”, In: Proceedings of IEEE International

Parallel & Distributed Processing Symposium, Shanghai, China,
pp. 2004-2011, 2012.

[3] L. Qian, Z. Luo, Y. Du, and L. Guo, “Cloud computing: an over-
view. cloud computing”, Lecture Notes in Computer Science, vol.

5931, pp. 626-631, 2009.
[4] H, Lu, H. S. Chen, and T.T. Hu, “Research on hadoop cloud com-

puting model and its applications”, In: Proceedings of 3rd Interna-
tional Conference on Networking and Distributed Computing,

Hangzhou, China, pp. 59-63, 2012.
[5] R. Lammel, “Google’s MapReduce programming model- Revis-

ited”, Science of Computer Programming, vol. 70, no. 1, pp. 1-30,
2008.

[6] M. Cardosa, C. Wang, A. Nangia, A. Chandra, and J. Weissman,
“Exploring mapReduce efficiency with highly-distributed data”, In

Proceedings of 2nd International Workshop on MapReduce and its
Applications, California, USA, pp. 27-33, 2011.

[7] L. Wang, J. Tao, Y. Ma, S. U. Khan, J. Kolodziej, and D. Chen,
“Software design and implementation for MapReduce across dis-

tributed data centers”, Applied Mathematics & Information Sci-
ences, vol. 7, no. 1, pp. 85-90, 2013.

[8] L. Wang, J. Tao, R. Ranjan, H. Marten, A. Streit, J. Chen, and D.
Chen, “G-Hadoop: MapReduce across distributed data centers for

data-intensive computing”, Future Generation Computer Systems,
vol. 29, no. 3, pp. 739-750, 2013.

[9] J. Zhao, L. Wang, J.Tao, J. Chen, W. Sun, R. Ranjan, J. Kolodziej,

A. Streit, and D. Georgakopoulos, “A security framework in G-
Hadoop for big data computing across distributed Cloud data cen-

tres”, Journal of Computer and Systems Sciences, vol. 80, no. 5, pp.
994-1007, 2014.

[10] F. Marozzo, D. Taliaa, and P. Trunfio, “P2P-MapReduce: Parallel
data processing in dynamic Cloud environments”, Journal of Com-

puter and System Sciences, vol. 78, no. 5, pp. 1382-1402, 2012.
[11] C. Wang, T. Tai, J. Shu, J. Chang, and C. Shieh, “Federated

mapReduce to transparently run application on multicluster envi-
ronment”, In: Proceedings of IEEE 3rd International Congress on

Big Data, Alaska, USA, pp. 296-302, 2014.
[12] Y. Luo, B. Plale, Z. Guo, W. W. Li, J. Qiu, and Y. Sun, “Hierarchi-

cal MapReduce: towards simplified across-domain data process-
ing”, Concurrency and Computation: Practice and Experience, vol.

26, no. 4, pp. 878-893, 2014.
[13] I. Tomasic, A. Rashkovska, and M. Depolli, “Using Hadoop

MapReduce in a Multicluster Environment”, In: Proceedings of
36th International Convention on Information & Communication

Technology Electronics & Microelectronics, Opatija, Croatia, pp.
345-350, 2013.

[14] C. Andres, C. Molinero, and M. Nunez, “A hierarchical methodol-
ogy to specify and simulate complex computational systems”, Lec-

ture Notes in Computer Science, vol. 5544, pp. 347-356, 2009.
[15] B. Sharma, T. Wood, and C. R. Das, “Hybrid: A Hierarchical

MapReduce Scheduler for Hybrid Data Centers”, In: Proceedings
of IEEE 33rd International Conference on Distributed Computing

Systems, Pennsylvania, USA, pp. 102-111, 2013.

Received: September 16, 2014 Revised: December 23, 2014 Accepted: December 31, 2014

© Shengtao et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/-

licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

