
Send Orders for Reprints to reprints@benthamscience.ae

1472 The Open Cybernetics & Systemics Journal, 2015, 9, 1472-1477

 1874-110X/15 2015 Bentham Open

Open Access

A New Encoding Scheme of Supporting Data Update Efficiently

Houliang Xie
1,*

 and Liang Lei
2

1
Information Engineering Department, Zhangjiajie Institute of Aeronautical Engineering, Zhangjiajie 427000;

2
School

of Computer and Information Technology, Xinyang Normal University, Xinyang 464000

Abstract: At present, more and more data are expressed in the form of XML format, how to manage these data efficiently

becomes an important issue. To solve the problems of large encoded data storage space, data update and low query effi-

ciency, we propose a new encoding scheme named SDUE (Supporting Data Update Efficiently). We tried to decompose

the encoding node location information, avoiding recording redundant information, thus effectively saves storage space;

moreover, SDUE also effectively support data updates. In the area of query, since record-taking point SDUE path infor-

mation encoded in the path of the query, which avoided the structural join operations, query efficiency has been improved

efficiently. Experimental results show that compared with other coding, SDUE coded has obvious advantages such as

storage space utilization, efficiency query and nodes update speed.

Keywords: Efficiency query, nodes update speed, storage space, XML data encoding.

1. INTRODUCTION

At present, more and more data in XML format suggests
that XML data is becoming a mainstream form of data and
the standard exchange and processing of data on the net-
work. The way of managing XML data more effectively is
obtaining more and more attention. In recent years, for stor-
ing and querying XML data, researchers have proposed a
number of new technologies that enable efficient storage and
improved querying XML data. But there are some disadvan-
tages, such as the lower utilization, dynamic data update
problem, the path length affecting query time. In this regard,
this article, considering from the perspective of XML data
storage and query, proposes a new data coding scheme
SDUE. SDUE coding can support any number of nodes up-
date, which completely avoids re-encoding, the encoding
also has a high storage efficiency and query efficiency.

2. RELATED RESEARCH

In order to improve the efficiency of storage and query
XML data, XML data needs to be converted into structured
data. As for the query structured data, dealing with conver-
sion and check for data have been made by lots of current
researchers coding scheme [1-6] and query technology [7-
11].

In the study of the coding scheme, most of them are
about the study of interval coding and prefix code. Region
Coding design ideas is an XML document tree that each
node is assigned a range of numbers <start, end>, through
the front junction preorder and postorder traversal order de-
termining the relationship between the nodes. The nodes of
the former order and after preorder sequence has been

determined at the time of the initial coding. However coding
interval can not effectively support data updates. The re-
searchers based on the interval and after the preamble se-
quence have proposed to improve the encoding vector-based
[1] based on the dynamic range coding DLS [5]. The im-
proved coding has smaller the range of storage space, but it
can not be completely support data update. And query effi-
ciency is not high. Prefix code [6]. The idea of the parent
node coding node is about judging by the relationship be-
tween nodes. Structural relationship of prefix code is clear,
which can effectively support data updates, but recorded a
lot of duplication of information and low storage space utili-
zation.

Research data queries are more concerns about the main
structure, which can be summarized as optimization tech-
niques, slicing technology and technology-based decomposi-
tion path. Structural optimization technology is mainly used
to connect indexing techniques [7] and reduce the node set
traversal to improve the efficiency. In slicing technique
[8,9], a regional division of the method sets unnecessary
nodes connected into different areas to reduce unnecessary
structural join operations, but also essentially optimize op-
erations on the structure of the connection slicing technique.
Destination path decomposition technique [11] is to elimi-
nate repetitive queries to improve query efficiency, in the
path decomposition, which turns the complex query into
simpler sub-queries, and intermediate results by subquery,
generating the final query results.

3. SDUE CODING

3.1. SDUE Coding

Fig. (1) is a document tree of XML, the solid circle rep-
resents the tree of the junction nodes, the dashed rectangle
boxes represents the node values, The attribute name and
attribute values are represent in solid rectangular box. SDUE

A New Encoding Scheme of Supporting Data Update Efficiently The Open Cybernetics & Systemics Journal, 2015, Volume 9 1473

code used four data table to record the data of XML docu-
ment:

(1) The table of the node name. Node name table records
node name and node name number, for different nodes, as
long as the node name is same, the corresponding node
number is also same, as shown in Table 1.

Table 1. Node name table.

n_NameId n_Name

1 site

2 person

3 regions

4 name

5 phone

6 location

Table 2. The table of node property.

n_Id Attribute Name Attribute Value

2 id p1

4 id p2

Table 3. Node value table.

n_Id Value

5 Jame

6 1478

7 Unite

8 Cre

9 Toni

10 5685

(2) The table of node property. Nodes attribute table re-
cords the numbers, node attributes and attribute values,
nodes number is different from the name of the Numbers, as
shown in Table 2.

(3) Node value table. The table records nodes number
and value, as shown in Table 3.

(4) The table of Node location. It records the nodes posi-
tion and their relationships. The table can be shown as five
elements group
<n_Id n_NameId n_Postion pathNameId pathFreId>,
as shown in Table 4.

The n_Id represents the junction code number, n_NameId
represents the number of node, N_Postion values of nodes is
the parent record which a child node, the root node of the
n_Postion value is set null. Node n_Postion value is repre-
sent with Numbers and letters, coding for the first time is
only digital representation, nodes of the first child (left 1)
n_Postion value is 1, the second child node n_Postion value
is 2, and so on.

The path name pathNameId represents the number of
nodes. PathNameId records the path information of itself to
the root, such as Table 4, the n_Id for 10 nodes pathNameId
value for 1/2 "/", through the node name list can be found,
"site/person/" is the name of 1/2 "/" path.

The pathFreId represents the frequency of node path.
There are many different paths with the same name in the
XML document path, so we need to distinguish with path-
FreId values. Such as n_Id in Table 4 to 5 and 9 nodes corre-
sponding path name number are "1/2 /", but they are a differ-
ent path, and it need to be distinguish by pathFreId value.

Definition 1 If the u node are the v’s ancestor, node v is
the ancestor of n node, and it exists a path L from u to v and
it a path S from u to n, the L is the parent paths of S, S is the
sub path of S.

Theorem 1 If the occurrence frequency of the path
named L is n, then W is any sub path of L, the number of
occurrences: W < = n.

Proof: the XML document tree traversal is top-down ac-
cess order, then it must visit the parent node first and then
access the child node, so the parent node is accessed is al-
ways more than or equal to the number of child nodes access
number, the number of occurrences of the parent path is al-

Fig. (1). The model of XML document tree.

1474 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Xie and Lei

ways more than or equal to the path is the number of occur-
rences of child nodes.

3.1.1. Node Updates

Definition 2: N_Postion value consists of Numbers and
letters, in the form of n_Postion value it is continuous pres-
ence of letters (or digital) known as a letter (or number)
fragments, n_Postion LNPV value length is the sum of num-
ber of segments of letters and Numbers.

N_Postion value can be added and subtracted 1, which
only produces an effect on the end of the segments of letters
or Numbers when it calculated. Digital comparison rules is
applied in n_Postion, as for the letter part, the comparison
corresponds ASCII letters, the comparison of letters and
Numbers distinguished positive and negative, all subtractive
digits (or letters) are less than those without a minus sign (or
letters). For example 1<2 -1>-2 a<b -a>-b. The
n_Postion value comparison results with location of the
number (or letters) pieces, it is only when the current digital
segment (or letters) is equal to the next that the Compare
continue. For example: 101ab and 101cd, their first segment
are same, then compare their second ones, because ab is less
than cd, 101ab < 101cd.

There are four situations in Node updates

1. New added nodes have no brothers, then the new node
n_Postion value is 1. As shown in Fig. (2a).

2. The new added nodes have and only have left brothers,
the new nodes n_Postion value is left brothers n_Postion
value plus 1, as shown in Fig. (2b).

3. New added nodes have and only have the right brother,
then the new nodes n_Postion value is right brother value
minus 1, as shown in Fig. (2c).

4. The new added nodes have left brothers and the right
brothers at the same time, discussing in the following three
conditions:

(1) Left nodes LNPV value equal to the right brother
LNPV values. If left brother nodes N_Postion values ends

Fig. (2). Add new nodes.

Fig. (3). Left nodes LNPV value equal to the right brother LNPV

values.

with digits, the new node n_Postion value is the value of
itself plus a, as shown in Fig. (3a); If left brother nodes
n_Postion values closing in on the letter, the new nodes
n_Postion value is left brothers n_Postion value behind the
Numbers 1, as shown in Fig. (3b).

(2) The Left brother’s LNPV values is more than the
right one. If the left brother nodes n_Postion values closing
in digits, then plus one directly, as shown in Fig. (4a). If it
ends with letters, the last letter should first converted to AS-
CII, ASCII value plus one, and then converted to the corre-
sponding letters, as shown in Fig. (4b). If left his brother's
last letter z node n_Postion values, the new nodes n_Postion
value is left brothers behind n_Postion value directly with
letters a, as shown in Fig. (4c).

(3) The left brother’s LNPV value is less than the right
brothers. If the right brother’s n_Postion values closing in
digit, the new nodes n_Postion value is the right one minus

Table 4. The table of node location.

n_Id n_NameId n_Postion Path NameId Path FreId

1 1 null null null

2 2 1 1/ 1

3 3 2 1/ 1

4 2 3 1/ 2

5 4 1 1/2/ 1

6 5 2 1/2/ 1

7 6 1 1/3/ 1

8 4 2 1/3/ 1

9 4 1 1/2/ 2

10 5 2 1/2/ 2

A New Encoding Scheme of Supporting Data Update Efficiently The Open Cybernetics & Systemics Journal, 2015, Volume 9 1475

1, as shown in Fig. (5a); If the right brother n_Postion values
ends with letter, the last letter should be converted to ASCII
first, then make ASCII value minus 1, and then converted to
the corresponding letters, as shown in Fig. (5b); If the right
brother n_Postion value is the last letter a fragment and let-
ters to more than one letter, n_Postion value is right brother
nodes removed at the end of the letter a is a new node
n_Postion value, as shown in Fig. (5c); If the right brother
nodes n_Postion value the last letter is a fragment is only one
letter a, and letters are letters a transform into n_Postion
value after the "-a" n_Postion value with the new node, as
shown in Fig. (5d).

SDUE code has the following properties:

Property 1: Nodes a and b, if a is the prefix of path-
FreId=b.pathFreId and a.pathNameId+ ‘/’+a.n_NameId is
b.pathNameId, a is the ancestor nodes of b, b is the offspring
of a.

Property 2: Nodes a and b, if a.pathFreId=b.pathFreId
and a.pathNameId+ ‘/’+a. n_NameId=b.pathNameId,then a
is the parent node of b, b is a’s child node.

Property 3: Nodes a and b, if a.pathFreId= b.pathFreId
and a.pathNameId=b.pathNameId,then a is the brother node
of b, if a.n_Postion<b.n_Postion, then b is a’s child node.

3.1.2. Data Query

In SDUE coding, first of all transform the XML data into
structured data stored in a relational database, the data of
queries in relational database, query processing steps fol-
lows:

(1) Decompose the query path into Q1 and Q2, Q2 repre-
sents the last query path’s node name and number, the name
number information query path Q1 said other nodes;

(2) To determine whether a query path contains the
predicate condition or not, if it doesn’t include the predicate
condition, shift (3);If containing the predicate condition,
shift (4);

(3) Access to relational tables node position, with nodes
position in the table name by Q2 number comparison, Q1
and node location path name number comparison of rela-
tional tables, return and to satisfy the two conditions of ver-
tex set R, query over;

(4) Extract the information of query path predicates,
through nodes table and attribute table to find out the satis-
faction value conditions set V of nodes and attribute node set
A condition;

(5) Through Q1, Q2 and V, respectively, and the node lo-
cation path name in the table number, name of node number
and node number comparison, it is concluded that satisfy the
three conditions of node collection R1;

(6) Extract nodal set R which contains A path in R1, R is
result sets, query over..

4. THE EXPERIMENT AND ANALYSIS

The experiment happens on a PC(2.7 GHz proces-
sor,2GB memory), Windows XP operating system, the
MySQL database, using the Java programming language.
Experimental data are XMark generated XML test data.

4.1. Data Encoding

In the experiment, set the XMark coefficient is 0.087,
0.174, 0.260, 0.346, 0.432, and generate the size of 10126
KB, 20215 KB, 30267 KB, 40146 KB, 50066 KB docu-
ments, use interval coding XISS, prefix encoding LSDX and
SDUE code to encode XML documents, respectively. The
situation that coding takes up relational database storage
shown as Fig. (6).

The experimental results show that encoding takes the re-
lational database storage space increasing with the the XML
document, for the three kinds of coding mode above, the
same size of the XML document which takes up the largest
relational database storage space LSDX coding, because the
code node information of LSDX contains all the ancestor’s

Fig. (4). The left brother’s LNPV value is more than the right brothers.

Fig. (5). The left brother’s LNPV value is less than the right brothers.

1476 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Xie and Lei

Fig. (6). Encoding length.

nodes path information, a lot of storage space could be used
to represent the position relationship between nodes, with the
increasing of the depth of the nodes, it will make the data
length coding way is nonlinear growth. Interval coding and
SDUE XISS coding length have no direct relationship with
the depth of the node and the relational database occupied
not much storage space. In SDUE coding, coding for the first
time the location of the node’s relationship is only represent
in numerals, A fewer number can represent a large number
of node position, The complexity of space is O (log10n), the
number of node represent the path, the depth of the node has
less influence on the code’s length, XISS and SDUE coding
length increased with the node number and depth linearly.

4.2. Data Update

The experiment generates the size to 1 MB, 5 MB, 10
MB of XML documents respectively. By adding LSDX and
SDUE code 10, 100, 1000 respectively, the results as shown
in Table 5.

That can be found by experiment, with the increase of the
number of new nodes and the document size, it has more and
more advantages in the speed of SDUE code updating. Due
to record LSDX coding node is prefix code, before inserting
new node, it needs to transform the path of the new node
information into prefix code, however, it would take much
time to finish it so the efficiency of data updating is not high.

Because SDUE coding has recorded the node path number, it
can be very quickly to determine the insert position for just
transform the node name and its number, then most of time
can be used on the insert.

4.3. Data Query

In this experiment, the size of 100 MB of XML docu-
ments, document contains 1442042 nodes, set up five differ-
ent query condition in query use cases, as shown in Table
6.With SDUE code query algorithm, XISS algorithm and B
+ tree query algorithm are compared, the query results are
shown in Fig. (7).

Table 6. Query cases.

Number Query Path

Q1 //regions//item

Q2 /site/catagories//description/parlist/listitem/text

Q3 /site/regions/Europe/item[@id=number1@]

Q4 /site/person/name[Tomes]

Q5 //itemref[@item=item1@]/price[113.87]

0

500

1000

1500

2000

2500

3000

3500

Q1 Q2 Q3 Q4 Q5

Fig. (7). The comparison of query time.

Table 5. Node update time.

Update Time/ms Document

Size
Node Number

Add Node

Number SDUE LSDX

10 211 463

100 561 1871 1MB 14974

1000 1589 7526

10 213 963

100 564 3563 5MB 72156

1000 1596 13522

10 216 1659

100 568 6015 10MB 145864

1000 1604 24560

A New Encoding Scheme of Supporting Data Update Efficiently The Open Cybernetics & Systemics Journal, 2015, Volume 9 1477

Through experiments, the query performance SDUE cod-
ing algorithm is superior to the other two search algorithm.
XISS query uses a structured connection, which needs to
traverse the nodes, and has low query efficiency. B + tree
algorithm uses the pointer to find the next node connected to
participate, and do not need to traverse the entire node set,
which reduces the time complexity of the structure of the
connection. But the intermediate result set size and query
path length still affect query efficiency. In SDUE coding
query algorithm, by converting the path name to the path
name ID query, the query path length does not affect query
efficiency. The time complexity is O (n). When the query
path has predicate conditions, it takes extra time to deal with
the predicate conditions. But the overall performance is still
higher than the other two algorithms.

CONCLUSION

Proposed SDUE coding by decomposing node route in-
formation avoids repetition of recording information and has
a high space utilization. It uses path information with the
node name of the node number to indicate and distinguish
path name in same different paths by setting the frequency of
the path name, which can effectively support node ancestor,
indicating offspring parent-child relationship. By numbers
and letters which represent fraternal relations between nodes
together, flexible combination of numbers and letters can
effectively support data update. In terms of path query, since
the structure can avoid join operations, SDUE coding also
has good query performance.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

Houliang Xie (1974), male, vice professor, His research
interests include knowledge integration, XML encoding.

REFERENCES

[1] Z. Can-Wei, F. Shao-Rong, and L. Zi-Yu, “Dynamic containment
labeling scheme for XML”, Journal of Software, vol. 23, no. 3, pp.

582-593, 2012.
[2] Y. Li, M. Zong-Min, and L. Jian, “XML modeling of fuzzy data

with relational databases”, Chinese Journal of Computers, vol. 34,
no. 2, pp. 291-303, 2011.

[3] F. Xue, and M. Zong-Min, “Construction of DICOM SR relational
database based on foggy diagnostic model and representation with

XML”, Journal of Northeastern University, vol. 34, no. 4, pp. 486-
489, 2013.

[4] S. Y. Noh, S. K. Gadia, and H. Jang, “Comparisons of three data
storage models in parametric temporal databases”, Journal of Cen-

tral South University, vol. 20, no. 7, pp. 1919-1927, 2013.
[5] J. Ren, X. Yin, and X. Guo, “A dynamic labeling scheme for XML

document”, Journal of Communication and Computer, vol. 3, no.
5, pp. 61-65, 2006.

[6] D. C. An, J. Y. Kim, and S. Park, “Access control and labeling
scheme for dynamic XML data”, In: The 3rd International Conference

on Grid and Pervasive Computing Workshops, 2008, pp. 329-334.
[7] W. Hongqiang, L. Jianzhong, and W. Hongzhi, “Processing XPath

over F&B-Index”, Journal of Computer Research and Develop-
ment, vol. 47, no. 5, pp. 866-877, 2010.

[8] L. De-Xi, W. Chang-Xuan, and L. Xi-Ping, “A snippet retrieval
srategy based on element weighting model”, Chinese Journal of

Computers, vol. 36, no. 8, pp. 1729-1744, 2013.
[9] H. Jing, L. Jiaheng, and M. Xiaofeng, “Effieient XML keyword

query refinement with meaningful results generation”, Journal of
Computer Research and Development, vol. 47, no. 5, pp. 841-848,

2010.
[10] Z. Jun-Feng, and M. Xiao-Feng, “Keyword search on XML Data: a

survey”, Chinese Journal of Computers, vol. 35, no. 12, pp. 2459-
2478, 2012.

[11] F. Linlin, L. Husheng, and G. Hongyu, “A pipelinning solution of
XML Holistic Twig query”, Journal of Computer Research and

Development, vol. 48, no. z2, pp. 105-113, 2011.

Received: June 10, 2015 Revised: July 29, 2015 Accepted: August 15, 2015

© Xie and Lei; Licensee Bentham Open.

This is an open access article licensed under the terms of the (https://creativecommons.org/licenses/by/4.0/legalcode), which permits unrestricted, non-

commercial use, distribution and reproduction in any medium, provided the work is properly cited.

