
Send Orders for Reprints to reprints@benthamscience.ae

2218 The Open Cybernetics & Systemics Journal, 2015, 9, 2218-2223

 1874-110X/15 2015 Bentham Open

Open Access

Algorithms for Computing Cluster Dissimilarity between Rooted Phyloge-
netic Trees

Li Shuguang
1,2,*

 and Liu Zhihui
1,2

1
Key Laboratory of Intelligent Information Processing in Universities of Shandong (Shandong Institute of Business and

Technology), Yantai, 264005, China;
2
College of Computer Science and Technology, Shandong Institute of Business and

Technology, Yantai, 264005, China

Abstract: Phylogenetic trees represent the historical evolutionary relationships between different species or organisms.

Creating and maintaining a repository of phylogenetic trees is one of the major objectives of molecular evolution studies.

One way of mining phylogenetic information databases would be to compare the trees by using a tree comparison meas-

ure. Presented here are a new dissimilarity measure for comparing rooted trees and three algorithms to efficiently compute

it. This new measure operates on clusters of compared trees as in the case of standard Robinson-Foulds distance, but ex-

tracts more subtle differences between clusters, and thus may offer better discrimination than the Robinson-Foulds distance.

Keywords: Cluster dissimilarity, combinatorial algorithms, phylogenetic trees, robinson-foulds distance, tree comparison.

1. INTRODUCTION

Phylogenetic trees are widely used in biology to repre-
sent evolutionary relationships of a collection of species.
Typically, the extant species correspond to the leaves each
assigned unique labels and the remaining vertices (the inte-
rior vertices) represent ancestral species. One interior vertex
may be distinguished from the others as the root so that the
tree becomes rooted, and among interior vertices only the
root may have degree two. Each vertex of a rooted tree asso-
ciates with a cluster, i.e., the subset of leaf labels in the sub-
tree rooted at this vertex. The set of all such clusters is called
the cluster representation of the tree. A tree is called a binary
tree if all its vertices have degree at most three [1].

With a large number of completely sequenced genomes
and many more in progress, there is a large publicly avail-
able dataset that can be used to generate phylogenetic trees.
Building phylogenetic trees is one of the primary objectives
of phylogenetics [2]. This is typically done on the basis of
molecular information (e.g., DNA sequences) from these
species, and there are many methods used for it: parsimony
[3], maximum likelihood [4, 5], distance matrices [6-8],
Bayesian approaches [9, 10], etc. The problem is NP-hard
under most models [3, 5, 11, 12].

Since applying different reconstruction methods often re-
sults in different trees for the same input data, many phylo-
genetic trees included in the databases are actually alterna-
tive trees for the same sets of species. This variety makes it
necessary to compare the trees for measuring their differ-
ences [3]. Moreover, even if a database is made available its
usefulness will be measured by how it can be queried. Tree

comparison is very useful in querying databases of phyloge-
netic information [13]. Tree comparison is also used for
other purposes, e.g., to assess the stability of the reconstruc-
tion algorithms [14], and in the comparative analysis of other
hierarchical cluster structures [15, 16].

Tree comparison concerns three related problems: to con-
struct a consensus tree for a given set of trees [17], to com-
pute a consensus index for a given set of trees [18, 19], and
to measure pairwise dissimilarity between trees. The third
problem may form the basis of consensus tree or index
methods [20]. A dissimilarity measure is used to determine
how far the two compared trees are. The larger the value, the
more different the two trees are considered to be.

There have been a number of dissimilarity measures pro-
posed for comparing phylogenetic trees in the literature.
Some measures are edit distances, such as the nearest-
neighbor interchange distance [21] and the subtree prune-
and-regrafting distance [22]. However, computing such edit
distances is typically NP-hard [22-24]. Some measures are
based on the comparison of phylogenetic trees through some
consensus subtree, e.g., the MAST (Maximum Agreement
Subtree) distances defined in [25, 26]. Finally, many dissimi-
larity measures compare the encodings of the phylogenetic
trees, such as the Robinson-Foulds distance [27], the quartet
distance [8], the triples distance [28], the splitted nodal dis-
tances [29], the cophenetic metrics [30, 31], to name just a
few.

The Robinson-Foulds distance is the most widespread
measure for the comparative analysis of phylogenetic trees.
For two rooted trees, it is defined as the normalized count of
the symmetric difference of their cluster representations. It
can be computed in linear time by using Day’s algorithm
[20]. For a set of phylogenetic trees, the distance matrix can
be computed in sublinear time [32]. The main disadvantages
of this measure come from its poor distribution and sensitiv-

Algorithms for Computing Cluster Dissimilarity The Open Cybernetics & Systemics Journal, 2015, Volume 9 2219

ity. The Robinson-Foulds distance between two random bi-
nary trees has a highly skewed distribution, in which most
values equal the largest possible value. It also lacks robust-
ness in the face of small changes in the original tree: one leaf
relocation may generate a tree at largest possible Robinson-
Foulds distance [33, 34].

In this paper, we introduce a new pairwise dissimilarity

measure for comparing rooted phylogenetic trees. Similarly

to the Robinson-Foulds distance, this measure is based on

comparing clusters. However, it considers not only the iden-

tity of clusters, but also more subtle differences between

clusters, and transforms the values of dissimilarity between

clusters to the final score of the dissimilarity of compared

trees. The proposed measure can be regarded as a weighted

extension of the Robinson-Foulds distance, and may offer

better discrimination than it. We propose three algorithms to

compute this new measure whose running times are
3()O n ,

2()O n and
2(log)O n n , respectively, where n is the

number of leaves in a tree. The running time of the third al-

gorithm becomes
2(log)O n n if the compared trees are

balanced, i.e., trees of the height at most (log)O n .

The remainder of this paper is organized as follows. In

Section 2, we review terminology needed, and then define a

new dissimilarity measure. In Section 3, we present three

algorithms to compute the new measure efficiently. We con-

clude this paper in Section 4.

2. PRELIMINARIES

The notations and definitions used here mainly follow

Semple and Steel [1]. For sets ,A B , let

(\) (\)A B A B B A= be their symmetric difference.

Denote by | |A the cardinality of set A . A graph

(,)G V E= is a structure consisting of a set V of vertices

and a set {{ , }: , }E x y x y V of edges. A sequence of

contiguous edges in G is called a path. A cycle is obtained

from a path by identifying its two ends without any retrac-

ing. G is connected if, for any pair of vertices

, ()u v V G , there is a path in G from u to v .

An unrooted tree (,)T V E= is a connected graph with

no cycles. An unrooted phylogenetic tree (on L) is an un-

rooted tree whose leaves are labeled bijectively by a set L

(species) and no vertex has degree 2. A rooted tree contains

a distinguished vertex, called the root, from which every

vertex can be reached through exactly one path. A rooted

phylogenetic tree (on L) is a rooted tree whose leaves are

labeled bijectively by a set L and no vertex but the root may

have degree 2.

Since we consider rooted phylogenetic trees in this paper,

we neglect the unrooted case. Hence, we often use the term

“tree” instead of “rooted phylogenetic tree” in the following

for brevity. We identify leaves with their labels. That is, for

tree T , let ()L T denote the set of leaves of T or the set of

labels of those leaves. See Fig. (1) for an example.

Fig. (1). An example.
1
T and

2
T are two rooted phylogenetic trees

with
1 2() () { , , , }L T L T a b c d= = .

1
T is a binary tree, while

2
T

is not.

A rooted tree defines naturally a partial order relation
T

on its vertices. For two vertices , ()u v V T , we have

T
u v if the path in T from u to the root of T contains

v . We shall say that u is a descendant of v and also that v

is an ancestor of u . In particular,
T

v v for any

()v V T .

Given a vertex v of T , the subtree of T rooted at v is

a subgraph of T , (,)T V E= , such that V is the set of

descendants of v (including v itself) in T and E consists

of those edges of T with both ends in V .

Each vertex u of T associates with a cluster denoted by

()L u , i.e., the set of leaf labels in the subtree rooted at u .

The set of all such clusters for T is called the cluster repre-

sentation of T and is denoted by ()T , from which T can

be reconstructed in linear time [1]. Among the clusters in

()T , those associated with the leaves or the root are called

trivial clusters since they can be found in every tree, and the

remaining clusters are called non-trivial clusters. Denote by

*()T the set of all non-trivial clusters of T . For the rooted

trees in Fig. (1), * 1() {{ , },{ , }}T a b c d= and

* 2() {{ , , }}T a b c= .

Cluster representations play an important role in design-

ing dissimilarity measures between phylogenetic trees. For

example, the Robinson-Foulds distance is defined to be the

number of different clusters in compared trees (divided by

2). For the rooted trees in Fig. (1) the Robinson-Foulds dis-

tance is 1.5.

We now introduce the new dissimilarity measure. With-

out loss of generality, we assume that {1,2, , }L n= …

from now on.

Each cluster of a tree T associates with a binary vector

 of length n : For any leaf i , set [] 1i = if i is in this

cluster, otherwise set [] 0i = . Denote by ()BV T and

*()BV T the sets of binary vectors associated with the clus-

ters and non-trivial clusters of T , respectively. For a binary

vector ()BV T , let C be the cluster associated with it.

2220 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Shuguang and Zhihui

Given two trees
1
T and

2
T with 1 2() ()L T L T L= = .

The cluster dissimilarity between
1
T and

2
T is defined as

follows:

2
* 1

1
* 2

1 2
()

()

()
()

(,) ((,)

 (,)) / 2

H
BV T

BV T

H
BV T

BV T

Cd T T Min d

Min d

= +

 (1)

where (,)
H
d is the classical Hamming distance between

the two vectors and . It is easy to see that

(,)
H
d C C= .

Each binary vector associated with a cluster of a tree has

a most similar binary vector associated with a (not necessar-

ily non-trivial) cluster of another tree. The most similar bi-

nary vector has the smallest Hamming distance from the

binary vector. Compute the sum of the Hamming distances

between each binary vector and its most similar binary vec-

tor. The cluster dissimilarity between two trees is equal to

this sum divided by 2. Since each binary vector associated

with a trivial cluster of a tree has the same binary vector in

another tree, we need not count the Hamming distance be-

tween them in (1).

For the trees
1
T and

2
T shown in Fig. (1), the cluster

dissimilarity between
1
T and

2
T , 1 2(,)Cd T T , is equal to

(1 1 1) / 2 1.5+ + = .

3. THREE ALGORITHMS

In this section we will present three algorithms to com-

pute 1 2(,)Cd T T efficiently. These algorithms are all based

on tree post-order traversal, but different in the methods to

compute
2()

(,)
H

BV T

Min d and
1()

(,)
H

BV T

Min d before

using (1), and thus have different time complexity.

Algorithm 1:

Step 1. Traverse
1
T and

2
T in post-order respectively,

and get all of the binary vectors associated with the clusters

in
1
T and

2
T .

Step 2. For each * 1()BV T , compute the Hamming

distance between and each 2()BV T . Choose the

smallest one from among the obtained values as

2()
(,)

H
BV T

Min d .

Step 3. For each * 2()BV T , compute the Hamming

distance between and each 1()BV T . Choose the

smallest one from among the obtained values as

1()
(,)

H
BV T

Min d .

Step 4. Compute 1 2(,)Cd T T by (1).

We then get the following theorem.

Theorem 1. Algorithm 1 computes the cluster dissimilar-

ity between two trees
1
T and

2
T in

3()O n time, where n is

the number of leaves in
1
T and

2
T .

Proof. Steps 1 and 4 can be executed in ()O n time.

Computing the Hamming distance between two clusters re-

quires ()O n time. Since there are at most 2 1n clusters

in a tree, each
2()

(,)
H

BV T

Min d and
1()

(,)
H

BV T

Min d

can be obtained in
2()O n time. Since there are at most

2n non-trivial clusters in a tree, Steps 2 and 3 can be

executed in
3()O n time. Hence the running time of Algo-

rithm 1 is
3()O n .

We now modify Algorithm 1 to reduce the time complex-

ity to
2()O n . We only need to show that in fact each

2()
(,)

H
BV T

Min d and
1()

(,)
H

BV T

Min d can be com-

puted in ()O n time.

Fix a non-trivial cluster * 1()C T . Denote by
1
n the

number of labels in C . Traverse
2
T in post-order. Suppose

that the current cluster is 2()C T during the traversal.

Let
1
l be the number of labels that are in both C and C ,

and
0
l be the number of labels that are in C but not in

C . Then we get 1 1 0(,)
H
d n l l= + . Compute the

Hamming distance between and each 2()BV T in

this way. Choose the smallest one from among the obtained

values as
2()

(,)
H

BV T

Min d .

For the clusters associated with the leaves of
2
T , the val-

ues of
1
l and

0
l can be obtained in (1)O time. For any

cluster associated with an interior vertex of
2
T , the values of

1
l and

0
l can be computed respectively by adding the values

of
1
l and

0
l of all the children. Hence for each

* 1()BV T ,
2()

(,)
H

BV T

Min d can be computed in

()O n time.

Similarly, for each * 2()BV T ,
1()

(,)
H

BV T

Min d

can be computed in ()O n time.

Algorithms for Computing Cluster Dissimilarity The Open Cybernetics & Systemics Journal, 2015, Volume 9 2221

Algorithm 2:

Step 1. Traverse
1
T in post-order, and get all of the clus-

ters in
1
T . For each * 1()BV T , compute

2()
(,)

H
BV T

Min d in ()O n time using the above method.

Step 2. Traverse
2
T in post-order, and get all of the clus-

ters in
2
T . For each * 2()BV T , com-

pute
1()

(,)
H

BV T

Min d in ()O n time using the above

method.

Step 3. Compute 1 2(,)Cd T T by (1).

We then get the following theorem.

Theorem 2. Algorithm 2 computes the cluster dissimilar-

ity between two trees
1
T and

2
T in

2()O n time, where n is

the number of leaves in
1
T and

2
T .

In order to compute
2()

(,)
H

BV T

Min d for

* 1()BV T , we have to compare with each element in

2()BV T in the two algorithms presented above. Actually, a

technique used in [35] allows us to compare with just a

proper subset of 2()BV T . This is the basic idea of Algo-

rithm 3 presented below.

Before we describe the algorithm, some preliminary

definitions and initial lemmas are necessary.

The Least Common Ancestor (LCA) of vertices u and v

in a tree T , denoted by LCA(,)u v , is the shared ancestor

of u and v that is located farthest from the root, i.e.,

LCA(,) min{ | , }
T T

u v w u w v w= .

Lemma 1. [36, 37] Given a tree T . There are algorithms

that can answer LCA query in T in constant time after only

linear time preprocessing of the tree.

Given ()X L T . The restriction of T to X , denoted

by |T X , is constructed by first finding the minimal subtree

of T containing X , and then suppressing all vertices of

degree two except the root.

Lemma 2. [35] A tree T can be preprocessed in linear

time so that for any ()X L T , |T X can be computed in

(log)O X n time, where n is the number of leaves in T .

In the proof of this lemma in [35], the authors first sort

the leaves of T according to the in-order traversal, and then

find the leaves with labels in X . Suppose that these leaves

are
1 2
, , ,

m
s s s… in the order. |T X is constructed as fol-

lows: 1LCA(,)
m

s s is the root,
2 1
, ,

m
s s… is inserted one

by one such that each interior vertex of |T X is actually an

interior vertex of T representing an LCA.

For a set S of vertices inT , if there is a vertex

u S such that
T

v u for anyv S , then we let max S

be u , otherwise max S is undefined.

For any vertex ()u V T , let (,)D u X be the set of all

the vertices in |T X that are under u in T , i.e.,

(,) { | and | }
T

D u X v v u v T X= .

Lemma 3. [35] If (,)D u X , then max (,)D u X is

well defined.

For * 1()BV T , denote by 2()M T the cluster

associated with
2()

arg (,)
H

BV T

Min d . Similarly, For

* 2()BV T , denote by 1()M T the cluster associ-

ated with
1()

arg (,)
H

BV T

Min d .

Lemma 4. Given two trees
1
T and

2
T . For each

* 1()BV T , M must be associated with a vertex in

2 |T C . Similarly, for each * 2()BV T , M must be

associated with a vertex in 1 |T C .

Proof. Consider * 1()BV T . Suppose that

[] 1i = for some {1,2, , }i n… . Let e be the binary

vector in which [] 1e i = and [] 0e j = for any j i .

We have (,) 1
H
d e C= . It follows that

2()
(,) 1

H
BV T

Min d C .

Now consider a vertex v such that 2()v V T but

2(|)v V T C . Let
v

 be the binary vector associated

with the cluster ()L v . We distinguish between two different

cases:

If (,)D v C = , then M cannot be associated with

v because otherwise we get
2()

(,)
H

BV T

Min d C> .

If (,)D v C , then set max (,)w D v C= .

Lemma 3 ensures that w is well defined. Let
w

 be the

binary vector associated with the cluster ()L w . Since

() ()L w L v and () ()L w C L v C= , we get

(,) (,)
H v H w
d d> . Therefore, M cannot be asso-

ciated with v .

The second half of the lemma can be proved similarly.

2222 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Shuguang and Zhihui

We are now ready to describe the third algorithm.

Algorithm 3:

Step 1. Traverse
1
T and

2
T in post-order respectively,

and store at each vertex the number of leaves under it.

Step 2. For each * 1()BV T , compute

2()
(,)

H
BV T

Min d as follows. First construct 2 |T C , and

then traverse it in post-order. During the traversal compute

for each vertex 2(|)v V T C the number of leaves under

v in 2 |T C , i.e., ()C L v , where ()L v is the set of

leaf labels in the subtree of
2
T rooted at v . (Every vertex of

2 |T C must be a vertex of
2
T .) Let

v
 be the binary vec-

tor associated with the cluster ()L v . We can now compute

(,) () () 2 () .
H v
d C L v C L v C L v= = +

 For each 2(|)v V T C compute (,)
H v
d as described

above and then choose the smallest one from among the ob-

tained values as
2()

(,)
H

BV T

Min d .

Step 3. For each * 2()BV T , compute

1()
(,)

H
BV T

Min d as follows. First construct 1 |T C , and

then traverse it in post-order. During the traversal compute

for each vertex 1(|)u V T C the number of leaves under

u in 1 |T C , i.e., ()C L u , where ()L u is the set of

leaf labels in the subtree of
1
T rooted at u . (Every vertex of

1 |T C must be a vertex of
1
T .) Let

u
 be the binary vec-

tor associated with the cluster ()L u . We can now compute

(,) () () 2 () .
H u
d C L u C L u C L u= = +

 For each 1(|)u V T C compute (,)
H u
d as de-

scribed above and then choose the smallest one from among

the obtained values as
1()

(,)
H

BV T

Min d .

Step 4. Compute 1 2(,)Cd T T by (1).

We then get the following theorem.

Theorem 3. Algorithm 3 computes the cluster dissimilar-

ity between two trees
1
T and

2
T in

1 2() ()
(() log () log)

u V T v V T
O L u n L v n+ time,

where n is the number of leaves in
1
T and

2
T . The time

complexity is
2(log)O n n in the worst case and

2(log)O n n when
1
T and

2
T are balanced.

Proof. Lemma 4 ensures the correctness of Algorithm 3.

Steps 1 and 4 can be executed in ()O n time. By Lemma 2,

Steps 2 and 3 can be executed in

1 2() ()
(() log () log)

u V T v V T
O L u n L v n+ time.

Each ()L u and ()L v is at most n and there are at

most 2 1n vertices in each tree, hence the time complexity

of Algorithm 3 in the worst case is
2(log)O n n . Observe

that the total cardinality of the clusters at the same depth of a

tree is at most n . Hence if
1
T and

2
T have height at most

(log)O n , the time complexity of Algorithm 3 reduces to

2(log)O n n .

CONCLUSION

We introduced a new dissimilarity measure for compar-
ing rooted phylogenetic trees. We showed that this measure
can be computed in quadratic time in the worst case, and in
roughly linear time for balanced trees. It would be interesting
to investigate whether this measure can be computed in sub-
quadratic time in the worst case.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

This work is supported by the National Natural Science
Foundation of China (Nos. 61173173, 61272016, 61272430,
61373079 and 61432010), Key project of Chinese Ministry
of Education (No. 212101), Shandong Provincial Natural
Science Foundation of China (Nos. ZR2013FM015 and
ZR2011FL004), A Project of Shandong Province Higher
Educational Science and Technology Program (No.
SX12J4).

REFERENCES

[1] C. Semple, and M. A. Steel, Phylogenetics. Oxford University
Press, 2003.

[2] M. Salemi, A.-M. Vandamme, and P. Lemey, The phylogenetic
handbook: a practical approach to phylogenetic analysis and hy-

pothesis testing. Cambridge University Press, 2009.
[3] W. H. Day, D. S. Johnson, and D. Sankoff, "The computational

complexity of inferring rooted phylogenies by parsimony", Mathe-
matical Biosciences, vol. 81, pp. 33-42, 1986.

[4] S. Guindon, and O. Gascuel, "A simple, fast, and accurate algo-
rithm to estimate large phylogenies by maximum likelihood", Sys-

tematic Biology, vol. 52, pp. 696-704, 2003.
[5] S. Roch, "A short proof that phylogenetic tree reconstruction by

maximum likelihood is hard", IEEE/ACM Transactions on Compu-
tational Biology and Bioinformatics (TCBB), vol. 3, pp. 92, 2006.

[6] R. R. Sokal, "A statistical method for evaluating systematic rela-
tionships", University of Kansas Science Bulletin, vol. 38, pp.

1409-1438, 1958.
[7] N. Saitou, and M. Nei, "The neighbor-joining method: a new

method for reconstructing phylogenetic trees", Molecular Biology
and Evolution, vol. 4, pp. 406-425, 1987.

[8] W. M. Fitch, and E. Margoliash, "Construction of phylogenetic
trees", Science, vol. 155, pp. 279-284, 1967.

Algorithms for Computing Cluster Dissimilarity The Open Cybernetics & Systemics Journal, 2015, Volume 9 2223

[9] J. P. Huelsenbeck, and F. Ronquist, "MRBAYES: Bayesian infer-

ence of phylogenetic trees," Bioinformatics, vol. 17, pp. 754-755,
2001.

[10] A. J. Drummond, and A. Rambaut, "BEAST: Bayesian evolution-
ary analysis by sampling trees", BMC Evolutionary Biology, vol. 7,

pp. 214, 2007.
[11] L. R. Foulds, and R. L. Graham, "The Steiner problem in

phylogeny is NP-complete", Advances in Applied Mathematics,
vol. 3, pp. 43-49, 1982.

[12] B. Y. Wu, K. -M. Chao, and C. Y. Tang, "Approximation and exact
algorithms for constructing minimum ultrametric trees from dis-

tance matrices", Journal of Combinatorial Optimization, vol. 3, pp.
199-211, 1999.

[13] J. T. Wang, H. Shan, D. Shasha, and W. H. Piel, "Fast structural
search in phylogenetic databases", Evolutionary Bioinformatics,

vol. 1, pp. 37-46, 2005.
[14] W. Williams, and H. Clifford, "On the comparison of two classifi-

cations of the same set of elements", Taxon, vol. 20, no. 4, pp. 519-
522, 1971.

[15] J. Handl, J. Knowles, and D. B. Kell, "Computational cluster vali-
dation in post-genomic data analysis", Bioinformatics, vol. 21, pp.

3201-3212, 2005.
[16] G. Restrepo, H. Mesa, and E. J. Llanos, "Three dissimilarity meas-

ures to contrast dendrograms", Journal of Chemical Information
and Modeling, vol. 47, pp. 761-770, 2007.

[17] D. Bryant, "A classification of consensus methods for phylogenet-
ics", DIMACS Series in Discrete Mathematics and Theoretical

Computer Science, vol. 61, pp. 163-184, 2003.
[18] D. L. Swofford, "When are phylogeny estimates from molecular

and morphological data incongruent", In: M. M. Miamoto, J. Crac-
raft, eds, Phylogenetic analysis of DNA sequences, pp. 295-333,

1991.
[19] D. Bryant, "Building trees, hunting for trees, and comparing trees:

theory and methods in phylogenetic analysis," 1997.
[20] W. H. Day, "Optimal algorithms for comparing trees with labeled

leaves", Journal of Classification, vol. 2, pp. 7-28, 1985.
[21] M. S. Waterman, and T. F. Smith, "On the similarity of dendro-

grams", Journal of Theoretical Biology, vol. 73, pp. 789-800, 1978.
[22] B. L. Allen, and M. Steel, "Subtree transfer operations and their

induced metrics on evolutionary trees", Annals of Combinatorics,
vol. 5, pp. 1-15, 2001.

[23] B. D. Gupta, X. He, T. Jiang, M. Li, J. Tromp, and L. Zhang, "On
distances between phylogenetic trees", In: Proceedings of the 8th

annual ACM-SIAM symposium on Discrete algorithms, Philadel-

phia, PA, USA, 1997, pp. 427-436.
[24] G. Hickey, F. Dehne, A. Rau-Chaplin, and C. Blouin, "SPR dis-

tance computation for unrooted trees", Evolutionary Bioinformatics
Online, vol. 4, pp. 17, 2008.

[25] C. Finden, and A. Gordon, "Obtaining common pruned trees",
Journal of Classification, vol. 2, pp. 255-276, 1985.

[26] Y. Zhong, C. A. Meacham, and S. Pramanik, "A general method
for tree-comparison based on subtree similarity and its use in a

taxonomic database", Biosystems, vol. 42, pp. 1-8, 1997.
[27] D. Robinson, and L. R. Foulds, "Comparison of phylogenetic

trees", Mathematical Biosciences, vol. 53, pp. 131-147, 1981.
[28] D. E. Critchlow, D. K. Pearl, and C. Qian, "The triples distance for

rooted bifurcating phylogenetic trees", Systematic Biology, vol. 45,
pp. 323-334, 1996.

[29] G. Cardona, M. Llabrés, F. Rosselló, and G. Valiente, "Nodal dis-
tances for rooted phylogenetic trees", Journal of Mathematical Bi-

ology, vol. 61, pp. 253-276, 2010.
[30] G. Cardona, A. Mir, F. Rosselló, L. Rotger, and D. Sánchez, "Co-

phenetic metrics for phylogenetic trees, after Sokal and Rohlf",
BMC Bioinformatics, vol. 14:3, 2013.

[31] G. Cardona, A. Mir, and F. Rossello, "The expected value of the
squared euclidean cophenetic metric under the Yule and the uni-

form models", arXiv preprint arXiv:1301.5131, 2013.
[32] N. D. Pattengale, E. J. Gottlieb, and B. M. Moret, "Efficiently

computing the Robinson-Foulds metric", Journal of Computational
Biology, vol. 14, pp. 724-735, 2007.

[33] M. A. Steel, and D. Penny, "Distributions of tree comparison met-
rics - some new results", Systematic Biology, vol. 42, pp. 126-141,

1993.
[34] D. Bryant, and M. Steel, "Computing the distribution of a tree

metric", IEEE/ACM Transactions on Computational Biology and
Bioinformatics (TCBB), vol. 6, pp. 420-426, 2009.

[35] L. Zhang, "On matching nodes between trees", Technical Report,
2003-67, HP Labs2003.

[36] D. Harel, and R. E. Tarjan, "Fast algorithms for finding nearest
common ancestors", SIAM Journal on Computing, vol. 13, pp. 338-

355, 1984.
[37] M. A. Bender, and M. Farach-Colton, "The LCA problem revis-

ited", In: LATIN 2000: Theoretical Informatics, Springer, 2000, pp.
88-94.

Received: June 10, 2015 Revised: July 29, 2015 Accepted: August 15, 2015

© Shuguang and Zhihui; Licensee Bentham Open.

This is an open access article licensed under the terms of the (https://creativecommons.org/licenses/by/4.0/legalcode), which permits unrestricted, non-

commercial use, distribution and reproduction in any medium, provided the work is properly cited.

