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Abstract: This paper studied the static and dynamic characteristics of the real social networks as well as their proposed 
generative models, among which the Butterfly Model [1] is useful while not being flexible enough to generate the social 
networks with the expected power-law exponent. Therefore, a novel Flexible Butterfly Model (FBM) is proposed based 
on the Butterfly Model and combined with the Monte Carlo method and a Bayesian Graph Model for the training of the 
FBM Model is built in order to learn parameters from real social networks. Experiments have shown that the FBM model 
can adjust the law power exponent of the generated social network effectively by the introduced parameters. Meanwhile, 
the FBM model also maintains the vast majority of important characteristics that the Butterfly model has. 
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1. INTRODUCTION 

In recent years, virtual social networks, such as Face-
book, Twitter, etc., have emerged in large numbers, and have 
impacted human society in various aspects profoundly along 
with the penetrating applications of the internet. As the ex-
tension of complex network in human society, the social net-
works generate the relationships among individuals or groups 
and the activities taking place in a human society, for exam-
ple: friendly relationships of individuals, business relation-
ships of companies, or cooperation relationships of authors.  

With social entity represented by node and social rela-
tionship represented by edge, the social network can be de-
scribed as a graph, and it possesses some prominent static 
and dynamic characteristics. Here the question arises as how 
to establish a reasonable generative model to simulate the 
formative procedure of the social network. The answers to 
this question are significant to explain the formative mecha-
nism of the social network, forecast the trend and detect the 
abnormal behaviors in the social networks. 

Finding the characteristics and patterns of social net-
works is the foundation of constructing generative model, 
and a method informally named “observations and imita-
tions” is widely adopted by the researchers of the social net-
work; firstly, some characteristics and metrics are estab-
lished via observations on the data of real social networks, 
then their patterns are sought, further, more possible expla-
nations for the discovered patterns are provided. After that,  
setting up of reasonable generative model is required to 
mimic the formative procedure of the social network accord-
ing to the explanations and sequentially generate the synthetic  
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social networks complying with those patterns. Currently, 
studies on generative model of social networks mainly con-
centrate on the two areas: one is to find new characteristics, 
metrics and patterns, and the other,  to build new generative 
models. Researchers have found many interesting character-
istics and metrics and most of them are based on two original 
properties of the graph: degrees and distances of nodes. With 
the accumulation of data and the renovation of methods, re-
searchers are constantly discovering new interesting charac-
teristics and metrics as well as static or dynamic patterns. 

Analyzing characteristics and constructing generative 
model of social networks lay the groundwork for numerous 
applied researches and have penetrated into many application 
fields: these contribute to identifying the reputation of the 
webpage, thereby promoting the performance of search en-
gine [2] and are helpful to determine the importance of cus-
tomers in the virtual market and priority of recommender in 
social recommender system [3]; these can help to forecast 
the trend of social networks and can benefit social network 
operators to plan the scale and time of purchasing new hard-
ware and storage devices; these can be engaged to detect 
abnormalities in the social network so as to find and prevent 
the attack and abuse of social network such as spam links 
[4]; these can be used to generate data for scientific studies 
with similar characteristics of the real social network, which 
cannot only protect privacies in the real data, but can also 
cheaply produce the experimental data with the different 
characteristics and scales by adjusting parameters of the gen-
erative model, and then, reduce the costs for obtaining the 
data; it is also possible to generate the small-scale samples of 
the large-scale social networks to accelerate the experiments, 
or extrapolate the small-scale social networks to predict the 
trend  further. Therefore, studies on the characteristics of the 
social network and generative model are hot areas in the so-
cial network research. 
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The main contributions of this paper are: (1) it is con-
cluded that the faults of power law exponent generated by 
Butterfly Model hold fixed value, and by introducing param-
eters,  a new FBM model can be proposed with adjustable 
power law exponent. (2) a new random number generator 
function is derived to adjust the power law exponent of the 
FBM model taking advantage of the Monte Carlo method. 
(3)  a Bayesian graph model can be built  easily learnt by 
Gibbs Sampling method with the purpose of training the 
FBM mode. 

The contents of this paper are organized as follows: sec-
tion 2 introduced some found static and dynamic characteris-
tics and their generative models; section 3 analyzed the de-
fects of Butterfly Model; section 4 deduced a novel FBM 
model on the basis of Butterfly Model and proposed a 
Bayesian graph model for its training; section 5 designed 
several experiments to verify the FBM, and the last section 
drew a conclusion for this paper. 

2. RELATED WORKS 

In this section,  some discovered static and dynamic 
characteristics, metrics and patterns are first introduced and 
the main  generative models are proposed. 

2.1. Researches Related to Characteristics of Social Net-
work 

The studies on the characteristics and metrics mainly fo-
cus on three aspects: the power-law characteristics that the 
nodes and edges satisfy, network diameters and community 
structure. By means of different metrics, researchers have 
discovered various significant power-law characteristics that 
edges and nodes meet, variation laws of network diameter 
and community structures in the social network. 

The characteristics of power-law related to nodes and 
edges include：Degree of nodes follows a power-law distri-
bution [5]，the discrete probability distributions of degree 

  f (d )  follow   f (d )! d " ," < 0 ; Density obeys a power-law 
distribution [6], that is, at any time  t , the number of total 
edges ( )E t  and the number of total nodes ( )N t  in the social 
network meet ( ) ( ) , 0E t N t ! ! >µ ; The weight of the network 
follows the power-law distribution [1], namely at any time 
 t , the sum of weights on all edges   W (t)  and the number of 

all edges ( )E t  comply with   W (t)! E(t)" ," >1 ; Weight of 
any individual node  N  follows the power-law distribution 
[1], the sum of weights on the edges connected to the node 

nW  and degree of the node 
nd  submit to   Wn ! dn

" ," >1 ; The 
number of triangles follows the power-law distribution [7], 
the number of triangles existing in the social network !  and 
the number of nodes involved in the triangles ( )f !  are obe-

dient to   f (!)"!# ,# < 0 ; The eigenvalues of the adjacency 
matrix representing the social network follow the power-
laws perfectly [8] and the maximum of eigenvalues follows 
the power-law distribution too [9]; Moreover at any time t , 

the maximum of eigenvalues 
1( )t!  and the number of all 

edges ( )E t  observe 1( ) ( ) , 0.5t E t !" ! <µ . 

Apart from this, researches have also found some mean-
ingful characteristics in the growth of the social network: 
with the scale increasing, social networks exhibit small-
world phenomenon [10, 11], gradual shrink of the network 
diameter [12] and clear community structures [13, 14]; the 
number of nodes in the second and the third connected com-
ponents maintain relative invariableness [1] and similar to 
the network traffic, newly arrived edges or weights which 
exhibit the property of self-similarity in different timescales 
[15], have burstiness rather than uniform peak, etc. 

2.2. Researches Related to Generative Models 

The role of the generative model is to simulate and gen-
erate the social network with some special characteristics. In 
order to establish reasonable generative models, substantial 
studies are conducted to find out the formative mechanism of 
the social networks. The procedure of exploring new charac-
teristics and the procedure of establishing new generative 
models have moved forward alternately, and the first try of 
the generative model named as ER model [16] has been 
made by Erdos and Renyi, while the ER model is ideal, ex-
planative and not practical; In 1999, Albert and Barabasi put 
forward the BA model [17] which explained the formative 
mechanism of power-law as a Yule process. The BA model 
can partly simulate the power-law characteristics in the so-
cial network, as well as the small-world phenomenon, but 
there are strict restrictions; nevertheless, the BA model laid 
the foundation for later researches. To generate community 
structure, based on the BA model, Kleinberg, et al. proposed 
the Copy Model [18] which mimics a newcomer‘s behavior 
when he joins an unfamiliar society; when a new node ar-
rives, it randomly selects a node in the social network to 
connect, and then, the chosen node continues to copy his 
friends (relationships of neighbors) to the new node with 
certain probability. Copy Model cannot only generate  the 
community structure, but can also simulate more power-law 
characteristics in social networks. Subsequently, Jure, et al. 
found density power-law and shrinkage of the network di-
ameter and considered that the Self-Organized Criticality 
[19] existing in the system accounts for its findings, thus 
they put forward the Forestfire model [6]; Because the power 
laws could also derive from the self-similarity, the research-
ers studied the formative procedures of various self-similar 
phenomena naturally [20, 21], and on these bases, proposed 
R-MAT model [22], Kronecker graph model [23] and RTG 
model [24]. 

Different from others, McGlohon and Kang, et al. pro-
posed the Butterfly model and Community Connect model 
[25] based on random walk. Besides the different perspec-
tives, two models are the same and they can simulate the 
majority of the found characteristics and patterns in the so-
cial network but there are some obvious shortcomings that 
the models can only generate social networks with fixed 
power-law exponents and lack effective methods to fit the 
models according to real data. Even so, they are still the 
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novel ones compared with other models. This paper analyzed 
the lacking of the two models, combined with Monte Carlo 
method, and proposed a novel Flexible Butterfly Model and 
its Bayesian probabilistic graphical model for the training. 

3. DEFECT ANALYSIS OF THE BUTTERFLY MODEL 

3.1. The Procedure Description of the Butterfly Model 

The Butterfly Model contains three parameters ( Plink , 

 
Pstep ,  Phost ), and can be simply described as follows: 

P1. When a node node_newer wants to join the social net-
work, it is assigned with a probability 

 
Pstep  following a spe-

cific distribution, and then it is transferred to the process P2. 

P2. A new walk process is restarted with probability 

 Phost , and if the restart is successful, a node node_host in the 
social network as the starting point for the new walk process 
is uniformly selected,  transferring it to the process P3. If the 
restart is unsuccessful, a failure occurs in the restart  and the 
formative processes are terminated. 

P3. The node_host is taken as the current node 
node_current, and moves one step forward with the probabil-
ity 

 
Pstep  repeatedly until the end of this walk process, and 

then is transferred to the process P2. Each step in the walk 
process can be stated as: first uniformly select a node as the 
node_current in this step from all neighbors of node_current 
in the previous step, and then, establish connections between 
the node_newer with the node_current in this step with 
probability Plink . 

Sketch of Butterfly Model is shown in Fig. (1). 

3.2. The Probability Analysis of Butterfly Model 

In terms of the above process, some conclusions can be 
drawn: the length of a walk process L follows a geometric 

distribution 
  
!(L = l) = Geom(l,1" Pstep ) , the expectation of L 

is 
  
E(L) =1 / (1! Pstep ) , the time of all walk processes H fol-

lows a geometric distribution   !(H = h) = Geom(h,1" Phost ) , 

the expectation of H is   E(H ) =1 / (1! Phost ) , total length of 
all walk processes LA follows   P(LA = la) = NBin  

  
(la, h,1! Pstep ) "Geom(h+1,1! Phost ) ,  NBin  denotes a nega-
tive binomial distribution and degree of the new node 
node_newer follows 

  
P(D = d ) = NBin (d , h,1! Pstep ) "Geom  

  (h+1,1! Phost ) " Plink , and approximately follows   P(D = d ) !  

  
h ! E(L) = h / (1" Pstep ) = Geom (h,1" Phost ) / (1" Pstep ) . 

Evidently, let  Plink  be constant, given hostP  and stepP  fol-
lowing the same distribution, D and L will comply with the 
same power-law, and if hostP is assigned by 

  
E(Pstep ) , and D 

and L obey the near power-laws. The Butterfly Model in 
detailed procedure is shown in Fig. (2). 
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Fig. (1). Butterfly model in conceptual perspective. 
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Fig. (2). Butterfly model in detailed procedures. 
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3.3. Defects and Improvements of the Butterfly Model 

Here, defects of the Butterfly model are analyzed, start-
ing from deducing the quantitative relation between the dis-
tribution of degree D and length of a walk process L: for the 
convenience of deducing, 

 
Pstep  is relabeled by X, the length 

of a walk process L is relabeled by Y, and in the Butterfly 
Model, 

 
Pstep  follows the uniform distribution 

  
f pstep

~  

  uniform(0,1) , and 
  
Y = E(L) !1=1 / (1! pstep ) !1= x /    (1! x) . 

Now let
  
y = g(x) = x

1! x
, hence   x = g!1( y) =  

  
h( y) = y

y +1
, 

and according to the formula of probability density on func-
tion of random variables, we have formula (1): 

  
fY ( y) = fX (h( y)) ! dh( y)

dy
= ( y +1)"2         (1) 

Therefore, the Butterfly model can only generate social 
network with power-law exponent near -2. Multiple edges 
and the number of restarts occupy a very small part, there-
fore, the distribution of LA can be approximately given by 
the distribution of L and the above conclusion is also applica-
ble to the repeatedly walk processes in the Butterfly Model. 

Obviously, the power-law exponent generated by the 
Butterfly Model is not flexible enough to meet the needs of 
the social networks with mutative power-law exponents. In 
order to generate social network with flexible power-law 
exponents, authors have introduced two new parameters to 
the Butterfly model and then have used the Monte Carlo in-
verse function method to adjust the probability distribution 
of X and Y, thus adjusting the power-law exponents of the 
model. The improved Butterfly Model, named as Flexible 
Butterfly Model (FBM), can learn parameters from the real 
data through building a Bayesian graph model, hence appear-
ing to be more practical. 

4. FLEXIBLE BUTTERY MODEL 

4.1. Description of the Flexible Butterfly Model 

The main difference between FBM model and Butterfly 
model exists in P1, in which the new model is no longer sub-
jected to uniform distribution but a deduced special distribu-
tion. FBM model may change the generated power-law ex-
ponent by changing the parameters of the special distribu-
tion, though besides that, P2 and P3 are the same. 

Assuming that Y wants to follow target distribution: 

   fY ( y) !b ! ( y +1)"a 1< y <# , a and b are the introduced 
parameters, a is the power-law exponent, b is magnification 
factor related to scale of social network(number of nodes in 
the social network). In the light of  Monte Carlo inverse 

function method, let 
  
x = h( y) = y

y +1
 as primitive function, 

let 
  
y = h!1(x) = g(x) = x

1! x
 as inverse function, so that X 

needs to be as follows:  

  
fX (x) = fY (g(x)) ! g(x) ' = b ! (1" x)a"2        (2) 

To generate the above distribution of X,  another random 
variable R can be taken following uniform distribu-
tion  fR ~ uniform(0,1) . Similarly in line with the Monte Car-
lo inverse function method, taking   x = !(r)  as primitive 

function and   r = !
"1(x)  as inverse function, we have 

  
fX (x) = fR (!"1(x)) # d

dx
!"1(x)  and   b ! (1" x)a"2 =  

  
1! d

dx
"#1(x) , then it can be deduced that:  

  
! (r)=1" a "1

b
# r

$

%
&

'

(
)

1
a"1

a >1,b * a "1       (3) 

As mentioned above that L is relabeled as Y and L and D 
obey the near power-laws, the graph model of the D’s target 
distribution can be shown in Fig. (3), and it means that new 
model can change the distribution of 

 
Pstep  by changing pa-

rameter a, hence changing the power-law exponents of D. 
Conversely, the introduced parameters could be trained from 
degrees distribution through sampling methods, such as 
MCMC with Gibbs Sampling [26], on graph model. From 
the above derivation, it is not difficult that: let a = 2.0, b = 
1.0, then stepP obeys the uniform distribution between (0, 1), 
and the FBM model is equivalent to the Butterfly Model. 
According to the above derivations and explanations,   
the algorithm description of the FBM model is proposed as 
shown in Table 1. 

rn lan

N

( )φ ⋅

a b

phost h

dn

plink

pstep

 
Fig. (3). Graph model of the degree’s target distribution. 

4.2. Training of the FBM Model 

The FBM model takes the modificationof the distribu-
tion

stepP as the entry point, by introducing parameter a and b, 
and has achieved the regulation of the power-law exponent. 
Previously, in order to simplify the discussion, linkP  and 

hostP  were set in the new model as  empirical values in the 
original model, respectively as 0.3 and 0.5. Now for training 
the FBM model,  Phost , Plink  together with the introduced pa-
rameters a, b, four parameters must be learned, so as to es-
tablish a complete training model. Based on Fig. (3), the 
Bayesian graph model is established to train the FBM, and  
the Bayesian graph model is described via a pseudo-code 
similar to OpenBUGS [27] syntax, as shown in Table 2.  
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Table 1. Algorithm description of Flexible Butterfly Model. 

P1: getPStepByMonteCarlo(node_newer, a, b) 

input: node_newer with uninitialized pstep, and a, b is  

parameters to adapt the exponents of the 

power lawer 

output: node_newer with initialized pstep  

(0,1)r Uniform!  

if 1.0 and 1a b a> ! "  then 

 
1
1.01.0_ . 1 ( )astep

a
node newer p r

b
!!" ! #  

else 

_ . 1stepnode newer p !"  

End 

 

P2: restartWalks(phost, N, a, b) 

input: Restart walks with phost, N is total of nodes 

output: Directed Graph G 

G!Graph() 

N ! the total of nodes 

for 1i!  to N do  
 _ ( )node newer Node i!  

 getPStepByMonteCarlo(node_newer,a,b) //call P1 
 G.add_node(node_newer) 
 while rand() < phost do 

_ . _ ()node host G random node!  

travel(node_newer, node_host) //call P3 
 end 

end 
return G 

 

P3: travel(node_newer, node_host) 

input: node_newer is the newer, the node_host is the  

starter of a walk process 

output: link the node_newer to the visited nodes 

node_current! node_host 

repeat 

 if rand() < plink then 

 G.add_directed_edge(node_newer, node_ current) 

 End 

 if node_current has neighbors then  
_ ( _ . ())node current chooseRandom node current neighbors!  

continue 

 else 

break 

 end 

until rand()>node_newer.pstep 

Table 2. Bayesian graph model of the FBM. 

Init:{ N = N0} 

Data: {d[i] = degrees of real social networks} 

Model{ 
 6(1.0,10 )a Normal -:  

 6(2.0,10 )b Normal -:  

 6(0.3,10 )linkp Normal -:  

 6(0.5,10 )hostp Normal -:  

 (1 )hosth Geom p-:  

 for( i in 1 : N ) { 
 [ ] (0,1.0)r i Uniform:  

 [ ] 1.0 (( 1) [ ] / , ( 1))stepp i pow a r i b a¬--?-  

 [ ] (1 [ ], 1)stepla i NBin p i h--:  

 [ ] [ ] linkd i la i p¬?  

 } 

} 

The Bayesian graphical model consists of three parts: 
part Init expresses initialization of model, part Data lists the 
observed data in the model, which is mainly the random se-
quence of degrees in the social network and part Model pre-
sents the distributions of random variables and dependencies 
among the random variables in the model. The Bayesian 
model takes the degree of nodes D as observed variable, 
takes other variables as the latent random variable, takes

hostP , 

linkP , a and b as the parameters to be learnt, assumes that the 
parameters are subjected to the normal distribution with very 
small variance, sets the mean of 

hostP , 
linkP as the empirical 

values of original model, and sets the mean of a, b as 1.0 and 
2.0 respectively. h is the random variable representing the 
number of restarts and follows the geometric distribution 
with   1! phost , N is number of sampling, r obeys the uniform 
distribution between 0 and 1, 

stepP follows the special distribu-
tion defined by ( )! " , la follows the negative binomial distri-
bution with 

  
1! pstep , and 1h ! . The training of the Bayesian 

graph model can use MCMC with Gibbs sampling, calculate 
the posterior distribution of the parameters and treat posteri-
or mean value of the normal distribution as the learned value 
of the parameters. The learned parameters can be employed 
for FBM to generate the social network with the power-law 
exponents similar to the real social network. Due to limited 
space, MCMC with Gibbs sampling on the Bayesian graph 
model and related tools are not discussed here. 

5. DESIGN OF EXPERIMENTS 

The main purposes of the experiment are to verify the ef-
fectiveness of adjusting the power-law exponent in the FBM 
model and verify whether the FBM model can keep all the 
main characteristics of Butterfly Mode. Therefore, the exper-
imental data is generated by the FBM model. 
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5.1. Validation of Adjustment on Power-Law Exponent 

The experiments verify the effectiveness of the adjusting  
power-law exponent which is estimated by 1-5% normal 
interval estimates in statistics. Firstly, the experiments assign 
respectively five different values in (1.6-2.0) to a, and treat b 
as the constant and maintain the value of 1.0, so that  each 
pair of a and b is used to generate 20 social networks with 
10000 nodes repeatedly. Experiments calculate the degree 
frequency of nodes, and take the degree as x axis and degree 
frequency as the y axis so as to draw scatter plot under the 
loglog coordinates. In order to measure the power-law expo-
nent, experiments fit straight lines on the scatter plot by the 
least squares method and treat the fitted slope e as the esti-
mated  power-law exponent. Experiments suppose that e 
follows normal distribution. With the estimated values of 
power-law exponent denoted by e[1]-e[20] for each pair of 
a,b, the 1-5% confidence interval and the mean value of the 
random variable e are calculated. Experiments take the fifth 
group as reference, where the FBM model is equivalent to 
the Butterfly model by having parameters a=2.0, b=1.0. The 
results of experiment are shown in Table 3 and Fig. (4). 

 
Fig. (4). Estimation of e with the growth of a. 

 
Fig. (5). Estimation of e with the growth of b. 

Then, the experiments further test whether parameter b 
has impact on the power-law exponent. Experiments assign 
respectively five different values in (1.0, 2.2) to b, hold a to 
2.0, perform the processes similar to the previous ones and 
take the first group as reference.  The result is shown in  Ta-
ble 4 and Fig. (5). 

Fig. (4) shows that the estimated mean of power-law ex-
ponent e increases while parameter a increases and b remains 
unchanged and Fig. (5) demonstrates that the estimated mean 
of power-law exponent e essentially remains unchanged 
while b increases and a remains the same. Therefore, exper-
iments have testified that the FBM model can effectively 
adjust the power-law exponent through the parameter a. Alt-
hough the experiments show that parameter b has no obvious 
effect on the adjustment of power-law exponent, as related to 
the size of social networks, the parameter b  plays important 
role while fitting the FBM model to various real social net-
works with different power-law exponents and scales. 

5.2. Social Network Characteristics of the FBM Model 
Similar to the Butterfly Model in [1], this paper does not 

verify all the social network characteristics of the FBM, but 

Table 3. Estimation of e with the growth of a. 

GID 1 2 3 4 5 

a 1.6 1.7 1.8 1.9 2.0 

e 
1-5% 1.42-1.59 1.58-1.69 1.65-1.80 1.81-1.95 1.87-2.01 

mean 1.51 1.64 1.73 1.88 1.94 

Table 4. Estimation of e with the growth of b. 

GID 1 2 3 4 5 

B 1.0 1.3 1.6 1.9 2.2 

e 
1-5% 1.87-2.01 1.90-1.20 1.91-1.97 1.89-2.01 1.91-1.97 

mean 1.94 1.95 1.94 1.95 1.94 
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verifies the four major dynamic characteristics: power law of 
density, power law of weight, shrinking diameter phenome-
non in giant connected component (GCC) and constant size 
of next large connected component (NLCC). Fig. (6) shows 
the temporal variations of dynamic characteristics in a FBM-
generated social network assigning a=2.0, b=1.0. 

Fig. (6) shows that the density and weight of social net-
works have approximately linear growth with the nodes un-
der loglog coordinates; and NLCC integrates into the GCC 
after growing to a certain extent, and its nodes are almost 
constant; network diameter of GCC increases with time and 
begins to shrink after the peak. Therefore, the FBM model is 
not only able to adjust the power-law exponent, but also 
maintains the major dynamic social networking characteris-
tics that the Butterfly Model has. 

CONCLUSION  
This paper analyzed the defect of Butterfly model and  

proposed a novel FBM model based on Butterfly Model by 
introducing new adjustable parameters. The experiments 
show that the FBM model has overcome the shortcomings of 
Butterfly Model, power-law exponent of which can only be 
near to the fixed value and the introduced parameters may 
adjust the power-law exponent of generated social networks,  
making FBM able to simulate social networks with different 
power-law exponents. The experiments also show that the 
FBM model maintained some important social network 
characteristics, such as the power-law of density and weight, 
network diameter shrinks in the largest connected compo-
nent (GCC) and that the nodes of next large connected com-
ponent (NLCC) remain relatively constant. 

In order to learn required parameters from the sequence 
data of the real social network, this article has also estab-
lished a Bayesian graph model for the FBM model, which 
makes the FBM model more practical because of its capabil-
ity of fitting real social networks. Evaluating and validating 
the performance of Bayesian graph model will be the focus 
of  further work based on this paper. 
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