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Abstract: The evaluation of network risk is a vital task. Nevertheless, there‘s no approach for looking both the severity of 

the vulnerabilities and the general status of network security. It can not handle with uncertainty occurred in the process of 

evaluation. This paper proposes a practical approach named HTV to solve the upper two problems. First, an algorithm us-

ing the Bayes Theorem is designed to check the causal dependencies of attack events and their evidence. Then, a model 

that we call Bayesian Attack Graph (BAG) is proposed to model the attack events and the vulnerabilities and the attack 

evidence so that the vulnerabilities in system could be identified correctly and availably. Finally, we adapt the definition 

that we call the degree threat of vulnerability (DVT) to quantify the severity of vulnerabilities. Results in experiments 

show that this approach can split the vulnerabilities into various levels, so it can help assess the severity of the vulnerabili-

ties and the general status of network security availably. 
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1. INTRODUCTION 

As networks continue to grow both in size and complex-
ity, network security mainly caused by vulnerabilities has 
become a rising concern. From a security perspective, a 
strong network is one in which almost all of vulnerabilities 
can be logically identified and almost all of threats can be 
comprehensively evaluated. Conversely, current scanning 
and detecting techniques, such as X-Scan can evaluate 
threats, but can’t comprehensively evaluate them. They can 
also identify vulnerabilities, but can not availably identify 
them because of the hardware upgrading and software re-
lease. So it is essential to have an availably assessment 
method to address them. 

At present, attack graphs and Bayesian network have 
been the most popular techniques evaluating network secu-
rity [1-4]. The attack graph can be applied to identify poten-
tial vulnerabilities and comprehensively evaluate network 
security. In addition, it offers the capability showing all at-
tack paths by analyzing the dependency of vulnerabilities 
and configurations within networks. However, as it stands in 
assessment process, lots of uncertainty needs to be dealt 
with. One of them is the causation of attacks and attack evi-
dence. While for the attack graph, it only shows what is pos-
sible without any indication of what is likely

 
[5]. It is often 

without any way to describe the non-determinism of depend-
ency. 

In contrast to the attack graph, Bayesian network has the 
capability of describing and dealing with uncertainty. And it 
is an attribute attack graph in essence. Therefore, Bayesian  
 

network is more effective than the attack graph for address-
ing above issues. However, it must achieve the measurement 
metrics of individual vulnerability. 

Currently, one of the standardization of measurement 
metrics for an individual vulnerability is Common Vulner-
ability Scoring System (CVSS) [6]. It has the capability of 
quantifying metrics of vulnerabilities and atomic attacks and 
providing basic data for assessment of network security. In 
reality, threat level caused by different vulnerabilities is 
commonly different considerably in different cost and sever-
ity. So we need targeted give priority to dealing with vulner-
abilities posing a worst threat to systems based on Bayesian 
network and CVSS. 

2. LITERATURE REVIEW 

Recent years have seen meaningful effort on the progress 
of combination of Bayesian network and the CVSS in solv-
ing above issues. There are also some methods and models 
on feasibility of network security assessment. Jone et al. [5] 
present a method utilizing the combination of Bayesian net-
work and the CVSS to measure probability which vulner-
abilities might be exploited successfully. Sawilla et al. [7] 
consider the importance of graph nodes for attackers to gain 
privileges of network and apply the Google PageRank algo-
rithm to compute their numeric ranks. Mehta et al. [8] also 
utilize Google PageRank on different types of attack graphs 
to evaluate network security. While there still exists draw-
backs for posing a worst threat to the system. 

To alleviate such drawbacks, Nayot et al. [9] propose a 
probabilistic model to assess Dynamic Security Risk. By 
applying logical Bayesian network to analyze vulnerabilities, 
they model networks to compute probability of multi targets. 
However, they don’t tell us how to give a specific evaluation 
to overall security of networks. Anoop et al. [10] present a 



954        The Open Cybernetics & Systemics Journal, 2015, Volume 9 Hui et al. 

method to quantity threats for an individual vulnerability 
based on attack graphs. They quantitatively input possibility 
that vulnerabilities can be exploited successfully into its in-
terval and have an effective evaluation to network. But it 
fails to present an effective way to evaluate the severity of 
vulnerability. Holm et al. [11] analyze influences that basis 
data from CVSS have on assessment result and present a 
quantitative method. However, the quantitative method is so 
complex that it will be only applied to small networks. 

In this paper, we propose a practical method named the 
hierarchical threat of vulnerability (HTV) to address these 
limitations. Our major contributions are definitions of Baye-
sian Attack Graph (BAG) and the degree threat of vulner-
ability (DTV). We also give a detection algorithm CRDA 
and a revised algorithm BAGA generating BAG. By defin-
ing DVT, our method can be used to divide vulnerabilities in 
networks into different levels and give an effective assess-
ment to the overall security risk and the severity of vulner-
ability simultaneously. Compared with [10], the BAGA can 
be used to generate Bayesian network because it can elimi-
nate cycle paths in attack graphs. 

3. THE CORRELATION BETWEEN ATOMIC AT-
TACKS AND ATTACK EVIDENCE 

Within networks, causation of network attacks and attack 
evidence will be inevitably non-determinate. To correctly 
account for it, we will define some notions on network secu-
rity and design a detection algorithm. 

Definition 1 Vulnerability: Let V be the set of vulner-
abilities and vi V. For each vi V, We define vi as a vulner-
ability in the set V.  

Definition 2 Atomic Attack: Let A be the set of atomic 
attacks and aj A. For each aj A, We define aj as an atomic 
attack in the set A. 

Within the actual network, it is necessary to utilize a se-
ries of attack actions exploiting vulnerabilities to gain a sin-
gle privilege sequentially. So we define an individual action 
as the atomic attack. Further, it is essentially a set composed 
by a number of command or operations in a sorted order. 
That means we can uniformly name the command or opera-
tions as elementary operations, represented within the con-
cept as mi. If elementary operations and their built-up se-
quences are different, as well atomic attacks consisted of 
them. In Fig. (1), for example, {m1 m2 m3 m4} and 
{m1 m2 m3 m4} are two different atomic attacks. 

m1 m2

m3

m4

m4

m3

A

B

 

Fig. (1). Atomic attack. 

Definition 3 Attack Evidence: Let O be the set of attack 
evidence and ol O. For each ol O, We define ol as one at-
tack evidence in the set O. 

In terms of attack evidence, each of them is composed of 
a series of elementary operations, recorded by monitoring 
system as the observation data in System log. Because of 

system malfunction, few of elementary operations must be 
missing within the System log. Like that, we come to believe 
that atomic attacks are composed by the same elementary 
operations, but in different order. That is to say attack evi-
dence from above atomic attacks is always the same. One 
atomic attack will induce some different attack evidence, but 
the occurrence of one attack evidence may also depend on 
multiple atomic attacks. The indeterminacy of their causation 
is shown in Fig. (2). 

a1

o2o1 o4o3

a2

 

Fig. (2). Causation bayesian network. 

In Fig. (2), we can clearly know that a1 is likely to induce 
o1 and o2 and o3 and that a2 is likely to induce o1 and o2. 
However, the occurrence of o2 and o3 depends on atomic 
attacks both a1 and a2. The causation between o2 and o3 and 
a1 and a2 is their indeterminacy. That’s to say we don’t know 
whether a1 will induce o2 or o3, as well a2. 

To address above indeterminacy, there is a need for an 
accurate metric measuring possibility that atomic attacks  
will actually induce attack evidence, namely P(o1,o2…ol| 
a1,a2…aj). Here, we will employ following notions. 

Proposition 1 Here, we assume that the set X consists of 
a collection of Xi and that the set Y consists of a collection of 
Ym. Let the set Z be the subset of Y, namely Z Y. For any 
integer r, with the constraints of C1 (1 r n) andC2 (1  
i1<i2…<ir), if Xi1, Xi2…Xir are independent of each other 
when the events which the set Z stands for happen, the prob-
ability will be computed by the following Eq: 

P(X
i1
, X
i2

… X
ir
| Z ) = P(X

ir
| Z)

r=1

r
 

Let O={o1,o2…ol} and A={a1,a2…aj}be the nodesets of 
Bayesian network . We assume O is independent when 
events which the set A stands for happen. Thus we will logi-
cally obtain Eq. (1) based on Proposition 1.  

  
P(o

1
, o

2
… o

l
| a

1
, a

2
… aj ) = P(o

l
| a

1
, a

2
… aj)

l=1

l

   (1) 

More unconditionally, for any attack evidence ol O, if 

A={A1,A2…Al }is a different form of the set A, which Al is 

also one subset of A, and the set Al keeps attack evidence ol 

and all subsets within {A1,A2…Al-1} mutual independence, 

then P(o1,o2…ol|a1,a2…aj) can be further computed from Eq. 

(1), using the multiply: 
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However, as is usually the condition of Eq. (2), it isn’t 
easy to compute the value of P(ol |Al), since only the 
independence of both two is really complex. Thus we will 
define the proportion of nl (the number of elementary 
operations within ol) and ks (the number of elementary 
operations within aj equals to nl) to represent P(ol |Al). Here, 
we assume that the set of ks corresponding to {A1,A2…Al} is 
{k1 k2…ks}, then we obtain Eq. (3). 

P o
l
| A
l( ) =

n
l

k
s

s=1

s
             (3) 

Defining the probability P(o1,o2…ol|a1,a2…aj) as Eq. (4):  

P(o
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2
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l
| a
1
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n
l

k
s

s=1

s

l=1

l         (4) 

In Fig. (2), we assume that elementary operations of 
a1,a2,o1 and o2 as follows: a1={m1,m2,m3,m4} and a2= 
{m5,m6,m7,m8}, o1={m1,m2,m4},o2={m1,m2,m7}.From Eq.(4), 
we finally know that P(o1|a1)=1,P(o1|a2)=0，P(o2|a1)=2/3, 
P(o2| a2)=1/3. 

Definition 4 For atomic attacks and attack evidence, the 
vector l=( l1 l2 … lj) is employed to describe their 
causation. In it, lj actually represents the causation between 
aj and ol, and RDS( lj) eventually conveys the result of lj. If 
there exists the causation of two, then the value of RDS( lj) 
will equal to 1. Else it equals to 0. Further more, we utilize 

lj=( l1, l2,… lj) to describe the posterior probability of 
atomic attacks corresponding to l, and we use lj to convey 
above posterior probability. By Eq. (3), we know 
P(ol|aj)=n/s(n,s, the number of elementary operations corre-
sponding to ol). So, the Eq. (5) is as follows based on the 
Bayes' theorem: 

j l j

lj j l

l
j

l

p(a ).p(o | a )
l = p(a | o ) =

p(o )
kp(a ) s

= .

p(o ) nl

          (5) 

To calculate lj, we must know the prior probability of aj 
and P(ol). In fact, it has already happened when we observed 
ol from monitoring system. So P(ol)=1. In this case, if the 
value of max( ) equals to lm, there will be the result that am 
produces ol. Here we give Algorithm 1 (causal relation de-
tection algorithm, CRDA) to determine their causation. 

The uppermost essence of procedure determining the 
causation is described as follows: During the inner loop 
FOR….DO (05-10), it begins to calculate the posterior prob-
ability of aj which there exists causation between ol and aj; 
then the maximum value among above posterior probability 
is taken for the result of detection causation (11); in 13 line, 
the causation denoted by R(ol-aj) is pushed into . By run-
ning Algorithm 1, we will obtain the atomic attacks from  
based on observed attack evidence. 

4. MODELING ATTACK MODEL WITH BAYESIAN 
NETWORK AND CVSS 

To efficiently and synthetically identify potential vulner-
abilities, we built the system architecture of attack model and 
model BAG by analyzing transitions of system states and 
improved an algorithm generating attack graphs. 

4.1. System Architecture of Attack Model 

The result carrying out an atomic attack successfully is 
one transition of system states. So we keep the process ex-
ploiting vulnerabilities regard as transitions of system states. 
Under the prerequisite of network attacks, only if attackers 
carry out attack action and obtain privileges, can system 
states be transited. And there will be attack evidence with it. 
Hence, Let STS=(precondition, aj, postcondition, vi, ol) be 
transitions of system states. In STS, the precondition denotes 
preconditions of atomic attacks. And it consists of permis-
sions for source host dst_access and destination host. The 
sr_l_dst is the connection of source host and destination 
host. The postcondition denotes results of states transitions, 
and it means the ascension of attackers’ ability. In this sec-
tion, the ability will be represented by attackers’ privileges 
which includes None, User, Root. Fig. (3) is the model of 
System State Transition. 

The process attacking networks commonly includes a se-
ries of complex changes of system states carried out in the 
order loop of staging attacks and accessing to the host privi-
leges consecutively. And it will not stop until the attacker 
access to the most important privileges. During it, there will 
be simultaneously attack evidence. So we can build the net-
work model based on observed attack evidence and the pri-
mary steps are as follows: 

First, it begins a collection of attack evidence, atomic at-
tacks and vulnerabilities existing in networks and establishes 
the corresponding lists of them. Second, it must find out all 
possible atomic attacks yet obtained privileges by attackers 

Algorithm 1. Causal relation detection algorithm ( ). 

 



956        The Open Cybernetics & Systemics Journal, 2015, Volume 9 Hui et al. 

and attack evidence so that we can identify vulnerabilities as 
much as possible by analyzing vulnerabilities. Finally, it 
should be added to the attack model. The attack model is as 
Fig. (4). 

4.2. Bayesian Attack Graph 

Definition 5 Bayesian Attack Graph A Bayesian Attack 
Graph is a tuple BAG=(T,W, ,E,C), where 

(1) T=V A O. T is the set of different types of nodes 
consisted of BAG. V=V0 Vd. V0 denotes the set of initial 
states of nodes and Vd denotes the set of accessible states of 
nodes within BAG. For any t V A, either the value of it is 
True or False. Here, we let Pre(t) be the parent set of node t 
and Post(t) be the subset of node t. 

(2) W is the probability of ol which is produced by aj. For 
w W, it’s a tuple of (n,m). n denotes the number of ele-

mentary operations in ol which is observed by monitoring 
system and m is the number of elementary operations within 
aj equals to n corresponding to ol. In Fig. (2), for example, 
n(o2)=3 and m(a1,o2)=2, so the value of w(a1,o2) equals to 
m(a1,o2)/ n(o2)=2/3. 

(3) (BAG) {P(t) P(t|Pre(t))}, is the set of probability 
distribution on nodes within BAG. 

(4) E ([(V0 Vd) A] [A (V0 Vd)] [A O]), denotes 
the set of directed edges associated with nodes in BAG. 

(5) C denotes the constraints that must be satisfied for the 
BAG, where 

a) For any node t A, their parent nodes represent within 
BAG as logical OR-nodes and satisfy with the constraint 
(Pre(t) V0) (Post(t) Vd) 

b) For any node t V, their parent nodes represent within 
BAG as logical AND-nodes and satisfy with the constraint 
( t  A) (Post(t) A); 

c) For any node t T, it always satisfies with the norma-
tive constraint of probability measure, namely 

(BAG) {P(t) P(t|Pre(t)) [0,1]. 

Algorithm 2 is used to generate Bayesian Attack Graph 

automatically. Its’ procedure is described as follows: First, it 

provides a process initializing all nodes and parameters 

within BAG (1-3). The 1
st
 line sets up a list of privileges by 

calling the MARKPLACE process and gives a blank state to 

BAG. It also gives the attackers access to Root. In line 2~3, it 

creates a queue in network state and adds the init_state to the 

queue to initialize the BAG. Pseudocodes4-16 is the second 

stage with loops. The 4
th

 line provides an outer loop to ex-

tract nodes from init_state. Pseudocodes5-13 is an inner 

loop. For any nodes in the init_state, we traverse all atomic 

attacks associated with it in the A_list(5). If the atomic attack 

attacks the node according to CVEDB(6), it will find out the 

attack evidence produced by it from the O_list(7~8) and 

sr_access

dst_access

sr_l_dst

aj vi

None

User

Root

ol
 

Fig. (3). System state transition. 
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Fig. (4). System architecture of attack model. 
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make them the node T(11~12)and their edges E(9). The loop 

will continue until the init_state is null. Finally, it will add 

above nodes T and edges E to BAG and return the BAG even-

tually (17~18). 

According to the real-time observed attack evidence, Al-
gorithm 2 can automatically generate Bayesian network con-
sisted of nodes of atomic attacks, attack evidence and vul-
nerabilities and show vulnerabilities existing in networks, 
which makes it effectively identify potential vulnerabilities. 

When generating BAG by running Algorithm 2, there will 
be two issues: 1) Privileges, such as User, are the fallout 
exploiting vulnerabilities, but will not be a type of nodes in 
its own right; 2) There are relationships of one-to-one corre-
spondence among vulnerabilities, atomic attacks and attack 
evidence each other, but it can't display the relationship what 
reflects their causation in BAG. So, we make up rules allevi-
ating above drawbacks. 

 We name nodes of vulnerabilities as “vulnerability 
number(vi)”. For example, CVE575(v1) means the vulner-
ability v1 within networks is Buffer Overflow.  

 We name privilege as “access level(Host)”. For exam-
ple, R(H0) means that attackers have obtained the Root 
privilege from Host0. 

 We name nodes of privileges as “access level(Host)_ 
aj_vulnerability(vi)”. For example, R(H0)_a2_ CVE575(v1) 
means attackers will attack vl using a2 when he has obtained 
the Root privilege from Host0 by exploiting Buffer Overflow 
Vulnerability. 

 We name nodes of attack evidence as “ai_vl_ol”. For 
example, a2_ v1_o1 means that it will produce o1 when Buffer 
Overflow (v1) within networks is exploited by a2. 

5. ASSESSMENT OF THREAT WITH BAG 

We must targeted give priority to dealing with vulner-
abilities posing a worst threat to systems considerably in 
different cost and severity. Here, we define DVT and formu-
las to quantifying the severity of vulnerabilities. 

5.1. Probability of nodes in BAG with CVSS 

Definition 6 The degree of vulnerability threat (DVT) is 
a function mapping each vulnerability in BAG to probability 

interval [0,1], described mathematically p: V [0,1]. It can 
be used to measure the level of privilege attackers will obtain 
by exploiting vulnerabilities. The larger of its value, the 
higher of the level of privilege is and the more severe of vul-
nerabilities are. 

The BAG could be effectually utilized to assess the sever-
ity of vulnerabilities within networks. To accurately measure 
DVT, it is prioritized and necessary to assign self-probability 
of atomic attack node s(aj) and vulnerability node s(vi), 
which their self-probability are from the attribute “Access-
Complexity” of CVSS. For any vulnerability, the value of its 
self-probability is commonly steadfast. So we make the rule 
that s(vi) equals to 1.0. The values of s(aj) in our network are 
as Table 1. 

Table 1. Basic score of CVSS. 

Attribute of CVSS Level S(aj) 

Low 0.71 

Medium 0.61 Access Complexity 

High 0.35 

5.2. Hierarchical threats of vulnerabilities 

More generally, the probability of nodes in Bayesian 
network associate with the attribute of its parents and itself. 
In this section, for any node t within Bayesian network, we 
assume that the number of nodes that are independent of 
each other is K in the set pre(t) and the array d[i]( 1 i k) 
refers to the node number. Based on Bayes' theorem: 

  
P(t) = (t | pr(t)) = p(t | pr t( ) , pr t( ) t)       (6) 

Considering the logical relation dt among its parents, the 

probability of node tis defined as Eq. (7): 

{ }

k k
P( d[i] ) = P(d[i])           dt = AND        

i=1i=1
p(t) = 

k k
p( d[i] ) = 1 - P(d[i])   dt = OR

i=1i=1

    (7) 

Definition 7 For any t T(BAG) within BAG, the absolute 

probability p(t) is defined as follows: 

Algorithm 2. Bayesian attack graph generation algorithm BAGA. 
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To accurately calculate DVT considerately in attack evi-

dence, we discuss the probability distribution of 3 kinds of 

nodes. (1) root nodes. Root nodes represent one kind of 

nodes that have been successfully exploited in the beginning 

state of networks. So the actual probability 

p(t)=1.0.(2) t A. The probability of atomic attacks associ-

ates with its parents, attacks evidence and itself. So the ac-

tual probability is p(t)= )(/)|(
1

)]([)( ll optop
k

i
idpts

=
. 

(3) t  V0 Vd AND t root. The probability of vulnerabili-

ties exploited successfully associates with its parents, and 

itself. So the actual probability is 

  
s ( t ) [1 (1 p ( d ( i )))

i=1

k

]
. 

Because of the risk and crime cost, only the path maxi-
mizing the success rate exploiting vulnerabilities may be 
selected to reach destination nodes by attackers eventually. 
Hence, we define the function of DVT based on Definition4 
and Definition6 as Definition8: 

Definition 8 Given BAG=(T W E C), for any node 

t V0 Vd, pmax represents its DVT and pmax=s(t) MAX 

{
)(

)]([

tp

idP

| d(i) is a parent of node t and i=1,2,3, k}. 

In fact, p[d(i)]/p(t) is the largest success rate exploiting 
vulnerabilities among all nodes of p[d(i)]. So pmax can be 
used to measure the most possible threats of vulnerabilities 
exploited successfully. 

6. IMPLEMENTATION AND EXPERIMENTAL  
RESULTS 

6.1. Implementation and Network Configuration 

In this section, the validity of our method is verified by a 
simulation. Fig. (5) shows a sample network, which will be 
used to demonstrate the implementation of our method. 

Network Configuration: Experimental network is sepa-
rated internal network and external network by Firewall1. 
The internal network includes the secured area of M1, M2, 

  

Fig. (5). Example experimental network.  
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Fig. (6). The bayesian attack graph. 
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M3, which are separated by firewall each other. The external 
network includes the Internet and several hosts which pro-
vide services as Fig. (5), and the attack host0 is the destina-
tion host. 

6.2. Experimental Results 

Vulnerabilities within networks will enable an attacker to 
gain control of hosts. In this section, the vulnerabilities and ser-
vers within the sample network are shown in Table 2 and the 
BAG generated by running Algorithm 2 is shown in Fig. (6). 

With the growing of intrusion for networks, the ability of 
attackers obtaining higher permissions is continuously im-
proved. Within networks, the IDS deployed on the mirror 
port can detect potential intrusion behavior and analysis host 
permissions gained by attackers by collecting and analyzing 
various network data. To hierarchically assess the severity of 
vulnerabilities, we will introduce several parameters in the 
experimental process as Table 3. 

Table 3. Parameters of running experiment. 

Test N qR qU qN 

1 100 0.4 0.4 0.2 

2 200 0.5 0.3 0.2 

3 300 0.6 0.3 0.1 

The number of atomic attacks N: It represents the 
number of intrusion behavior which has recorded by the IDS 
in an experiment. 

Attack rate q: It represents the percentage of atomic at-
tacks used to obtain a level of privilege. It will include three 
kinds of attack rate: Root rate (disproportionately, set qR), 
User rate (disproportionately, set qu) and None rate (dispro-
portionately, set qN). Root rate means that the percentage of 
atomic attacks used to obtain Root privilege is qR and 
qR=n(Root)/[n(Root)+ n(User)+ n(None)]. Like that, 
qu=n(User)/[n(Root)+ n(User)+ n(None)] and qN 
=n(None)/[n(Root)+ n(User)+ n(None)] . Considering the 
relation of Attack rate and the level of privilege, we will as-

sume that only if the value of pmax (vi) is between qU+qN and 
qU+qN+qR (intervally, pmax(vi) [qU+qN, qU+qN+qR]), can at-
tackers enable to obtain the Root privilege. And likewise, we 
know pmax(vi) [qU+qN, qN] for User privilege and pmax(vi) [ 
qN, 0] for None privilege. 

Fig. (7) graphically shows DVT within networks. The 
blue line represents DVT. The minimum of Root privilege is 
represented by qR with purple line and the ceiling is 1.0. The 
minimum of User privilege is represented by qN with red line 
and the ceiling is represented by qU with black line. The ceil-
ing of None privilege is represented by qN and the minimum 
is 0. For example, if pmax(vi) [qR,1.0], we think that attack-
ers will obtain Root privilege by exploiting vi. 

 

Fig. (7). The severity of vulnerabilities. 

In Fig. (7), vulnerabilities are hierarchically divided into 
3 groups. (1) v1, v2, v6. Their values of DVT are in the inter-
val [0.6,1.0] and they will be exploited by attackers to obtain 
Root privilege in networks. (2) v3, v5. Their values of DVT 
are in the interval [0.4,0.6] and they will be exploited by 
attackers to obtain User privilege in networks. (3) v4. Its 
value of DVT is in the interval [0,0.4] and attackers will not 
obtain privilege by exploiting it in networks. In crosswise 
comparison, if we sort by severity of vulnerabilities, the or-
der of v1,v2,v6 should be v1,v6,v2. And likewise, the order of 

Table 2. Vulnerability information of host. 

Secured 

Area 
Node Host Vulnerability Service CVE 

Type of Privi-

lege 

Score of Access 

Conexity 

MB V1 
Host 1/ 

Host 2 

Unintended Content Loading 

Vulnerability 

RSH/ 

HTTP/SQL 

CVE-2013-

0095 
Non/User 0.71 

V2 
Web  

Server 

Buffer overflow in the  

authentication function 
HTTP 

CVE-2002-

1123 
User 0.71 

V3 
Mail  

Server 

Remote code execution in 

SMTP 
SMTP 

CVE-2007-

0994 
User/Root 0.61 M1 

V4 
DNS  

Server 

Col Element Remote Code 

Execution Vulnerability 
DNS 

CVE-2012-

1876 
Non/User/Root 0.61 

V5 
Host 0/ 

DATA 

Cross-site scripting (XSS) 

Vulnerability 
HHS/FTP 

CVE-2013-

7064 
Root 0.35 

M2 

V6 
SQL 

Server 

Unspecified vulnerability in the 

MySQ 
SQL 

CVE-2014-

2440 
User/Root 0.35 
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v3,v5 should be v3,v5. Further more, in longitudinal compari-
son, if we sort by severity of vulnerabilities, the order of 
them should be v1,v6,v2, v3,v5, v4. So we can draw a conclu-
sion from Fig. (7) that the priority to dealing with vulner-
abilities is v1,v6,v2, v3,v5, v4. 

Fig. (8) graphically shows the result of assessment to the 
overall security of networks. There are overall three lines: 
black line represents the threshold threatening to destination 
host; red line A represents the trend that the DVT of v6 has 
with the growing of atomic attacks when Host0 is taken for 
the destination host; blue line B represents the trend that the 
DVT of v6 has with the growing of atomic attacks when 
Host0 is not taken for the destination host. 

 

Fig. (8). The overall security of target network. 

The line A shows that the DVT of v6 first becomes larger 
and then tends to stability. It demonstrates that for the non-
destination host, attackers don’t try to obtain privilege with 
higher level. So, the trend of overall security of networks in 
the situation will be the same as the line A. The B shows that 
the DVT of v6 has been growing until it is more than thresh-
old. It suggests that the attacker will try to obtain the highest 
authority of destination host. Therefore, our method can sup-
port the network early warning for managers so that they will 
make a clear decision. 

CONCLUSION 

The paper proposes a method to evaluate overall security 
risk of networks and severity of vulnerabilities simultane-
ously by using Bayesian network and CVSS. The method is 
practical in the assessment of them, as well as determination 
of the causation between atomic attacks and attack evidence. 
By running it, we can give the different priority to dealing 
with vulnerabilities and support the network early warning 
for managers so that they will make a clear decision. 

For future work, we will further study on the uncertainty 
within networks and verify the effectiveness of our method 
in more complex networks. 
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