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Abstract: In addition to the initial mechanical damage, traumatic brain injury (TBI) induces a series of secondary insults, 

such as, but not limited to, excitotoxicity, metabolic disruption, and oxidative stress. Neuroprotective strategies after TBI 

have traditionally focused on cellular preservation as the measurable endpoint although multiple lines of evidence indicate 

that even with significant neuronal sparing deficits remain at both the cellular and behavioral level. As such, the 

development of therapies that can effectively confer both neuronal sparing and post-injury functional benefit is critical to 

providing the best treatment options for clinical TBI. Targeting dopaminergic signaling pathways is a novel approach in 

TBI that provides benefits to both neuronal survival and functional outcomes. Dopamine, like glutamate, can cause 

oxidative stress and significant cellular dysfunction when either depleted or over-expressed, and also plays an important 

role in central nervous system inflammation. The purpose of this review is to discuss dopamine in acute TBI and the role 

that dopaminergic therapies have as neuroprotective strategies. 
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INTRODUCTION 

Traumatic Brain Injury: The Problem 

 Traumatic brain injury (TBI) is a heterogeneous and 
complex condition composed of acute, sub-acute, and 
chronic pathologies [1, 2]. Animal models of brain injury, 
including controlled cortical impact (CCI) [3, 4] and fluid 
percussion (FP) [5], have provided insight into the cellular 
and mechanical mechanisms of central nervous system 
(CNS) dysfunction and cell death. These insights afford the 
opportunity for the examination of valuable treatment 
strategies [6, 7] and a better understanding of persistent 
deficits [4, 5, 8-10]. Unfortunately, many of the 
neuroprotective strategies employed in experimental TBI 
research have not translated successfully to the clinic [11, 
12]. Potential reasons for poor translation of basic research 
results to the clinic include, but are not limited to, 1) the 
complexities of multi-system traumas typically seen in 
clinical settings [13, 14], 2) a compromised blood brain 
barrier [15, 16], 3) potential drug toxicities and side effects 
[17, 18], and 4) incomplete preclinical evaluations. 
Strategies that target glutamatergic excitotoxicity acutely to 
provide neuronal sparing have proven particularly difficult 
given the important function of glutamate signaling in 
cellular potentiating, learning, and memory [19-22]. To 
address these issues, multiple studies have utilized 
paradigms designed to inhibit cell death pathways with the 
intent of reducing the level of acute neuronal loss after injury 
[23, 24]. However, this strategy has often met with varied 
success due to persistent cellular dysfunction even when 
significant cell sparing is present [17, 25]. The failure of  
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these paradigms indicates that different approaches for the 
treatment of acute TBI are needed. The benefits of 
dopaminergic (DAergic) targeted strategies are well-
established in rehabilitation and chronic treatment paradigms 
[24, 26, 27]. Here we provide support for dopamine (DA) as 
a viable target in acute TBI. 

Acute Alterations in Dopaminergic Systems Following 
TBI 

 Multiple brain regions are affected by acute TBI 
including, but not limited to, the hippocampus [28, 29], 
frontal cortex (FC) [5, 30], and striatum [31]. These three 
regions are particularly important because of their role in 
attention, executive function, learning, and memory [32-36]. 
Each of these four cognitive realms can be significantly 
impaired after TBI [37-42]. While the brain generally 
functions through the interaction of multiple regions, the 
hippocampus, FC, and striatum are unique in that DA, 
through interactions with glutamate, is required for neuronal 
potentiation in each area [43-46]. However, tissue damage 
after TBI is not limited to discrete brain regions. Diffuse 
axonal injury in white matter tracts along with gray matter 
damage [47-50] further complicates the clinical presentation 
of acute brain injury. The widespread disruption of neuronal 
projections has implications for all neurotransmitter systems, 
including DA. 

 Loss of DAergic innervating fibers from the ventral 
tegmental area and substantia nigra alter synaptic structure 
and dendritic complexity within the striatum and FC [51-53]. 
Furthermore, both antipsychotic and CNS stimulant drugs 
that exert activities on DA terminals have been shown to 
partially improve changes in synaptic and dendritic structure 
in multiple disorders including Parkinson’s disease (PD), 
attention deficit hyperactivity disorder, and schizophrenia 
[54-56]. In particular, chronic treatment with CNS stimulants 
such as amphetamine and methylphenidate (MPD) has been 
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shown to increase dendritic complexity and enhance synaptic 
plasticity in the striatum and FC [57, 58]. While TBI shares 
commonalities with other DAergic-mediated disorders in 
terms of cognitive dysfunction and the associated benefits 
gained by stimulant therapy, there have been few detailed 
studies of TBI-induced changes in DA structure. What is 
known is that TBI increases tyrosine hydroxylase (TH), the 
rate-limiting enzyme in DA synthesis, in the rat frontal 
cortex at 28 days post-injury [59]. The increase in TH 
protein most likely enhances DA synthesis via the 
phosphorylation of TH, which effectively increases its 
activity and is also upregulated after TBI [60]. In contrast, 
DA beta hydroxylase (DBH) protein, which is the enzyme 
that converts DA to other catecholamines, is not altered after 
TBI suggesting that the increase in TH predominantly affects 
DAergic axons [59]. Modest increases in TH protein after 
severe TBI have also been observed in the striatum with a 
similar temporal profile [61]. Changes in expression of TH 
protein suggest an alteration in DA-relevant structures within 
the FC and striatum that provides a viable synergistic target 
in addition to molecular signaling events known to be altered 
in DA systems after TBI. 

 Following experimental TBI, catecholamine systems are 
dysregulated [62-65]. Transient increases in DA levels have 
been appreciated acutely and sub-acutely in a variety of 
different brain regions [62] including the striatum [64, 65] 
and frontal cortex [65]. Beyond DA tissue levels, there have 
also been recognized increases in striatal DA metabolism 
acutely as measured by dihydroxyphenylacetic acid 
(DOPAC)/DA ratios [65]. Elevations in catechol-O-methyl-
transferase expression, an enzyme involved in the 
deactivation and breakdown of multiple catecholamines, 
including DA, begin as early as 24 hours after TBI and 
persist for up to 14 days in the microglia of the injured 
hippocampus [66]. Although DA levels increase acutely in 
many brain regions, TH activity is upregulated at chronic 
time points in the prelimbic and infralimbic cortices [60], as 
well as in the substantia nigra and FC [59, 61]. The increase 
in TH activity at later time points is consistent with data 
showing reduced levels of DA in the injured cortices 2 
weeks post-injury [64]. Alterations in DA receptor systems 
have further elucidated this dissociation between acute and 
chronic DAergic responses to TBI. Transient decreases in 
DA D1 receptor binding have been shown to occur 
immediately following injury [67], but do not persist 
chronically. 

Implications of Acute Dopamine Increases Following TBI 

Dopamine and Cell Death 

 DA is a critical neurotransmitter for the normal function 
of the hippocampus, FC, and striatum [68-70]. It is 
particularly important for both long-term potentiation (LTP) 
and long-term depression (LTD) [71-73]. However, like 
glutamate, DA is carefully regulated by the CNS and 
alterations can lead to significant cellular dysfunction and/or 
death [74]. Dysregulation of DA levels or death of DAergic 
neurons that induce low DA states can lead to some of the 
symptoms of schizophrenia and PD [75, 76]. Conversely 
high levels of DA are also implicated in symptoms 
associated with schizophrenia and cause significant 
dysfunction in working memory (WM) and learning [77, 78]. 

 DA, like glutamate, can also be a potent excitotoxic agent 
[79]. For example, high levels of DA in the synaptic cleft 
can be rapidly oxidized to form DA semiquinone/quinine 
[80]. In addition, oxidized DA via monoamine oxidase 
(MAO) activity [81] or redox cycling [82] can induce the 
generation of hydrogen peroxide and superoxide causing 
significant oxidative stress. 6-hydroxydopamine (6-OHDA) 
has been used as a classical neurotoxin in PD as injection 
into sensitive brain regions can lead to cellular death within a 
few days [83, 84]. Furthermore, DA signaling at the DA D2 
receptor can induce increases in intracellular Ca

2+
 release 

and activation of calcium dependent kinases and 
phosphatases important for cell death signaling [85-87]. 
Animal models of TBI consistently produce widespread 
excitotoxic damage and increased amounts of oxidative 
stress in a number of different brain regions [88, 89]. 
DAergic fibers have been shown to modulate striatal 
glutamatergic excitotoxicity [90, 91]. The initial increases in 
DA observed post-TBI may precipitate excitotoxic 
disruption and oxidative damage to DAergic cellular 
function that leads to the observed alterations in DA kinetics 
and decreased evoked DA release at later time-points [92]. 
Furthermore, following ischemia there is a 500 fold increase 
in DA concentrations within the striatum [93]. Striatal 
ischemia has also been appreciated following experimental 
TBI [31]. Interestingly, depleting DAergic projections into 
the striatum prior to the ischemic insult is neuroprotective 
[94], suggesting that DA can be neurotoxic. 

Dopamine and Acute Cellular Dysfunction 

 Following TBI there are known alterations in 
intracellular calcium release [95, 96], glutamatergic receptor 
function [23, 97], and alterations in the function of Na/K 
ATPase [98]. Levels of excitatory amino acids (e.g. 
glutamate and aspartate) and acetylcholine are markedly 
increased acutely in injured rats [99]. Metabolic activity is 
also increased resulting in adenosine triphosphate (ATP) 
depletion [100]. In hypoxia-ischemia, there is increased 
expression and phosphorylation of the N-methyl-D-
aspartatic acid receptor (NMDA) NR1 subunit at the DA 
dependent serine-897 site [101]. At 6-12 hours following 
TBI there is a recognized decrease in both NR1 and NR2 
subunit expression [102]. DA plays an important role in the 
regulation of the Na/K ATPase, cellular metabolism, calcium 
release, and the NMDA receptor through dopamine cAMP 
regulated phosphoprotein 32 kDa (DARPP-32) and protein 
phosphatase-1 (PP-1) [103, 104]. DAergic and glutamatergic 
signaling pathways intersect within the FC and striatum to 
modify the phosphorylation of DARPP-32, thereby altering 
downstream PP-1 activity [104]. In hippocampal neurons, 
DA acting on D1 receptors can modify the activity of striatal 
enriched protein (STEP), which contributes to PP-1 activity 
within the hippocampus [105, 106]. PP-1 regulates nuclear 
transcription through cAMP response element binding 
protein (CREB) phosphorylation [107] and also plays a role 
in the phosphorylation of the Na/K ATPase and the NMDA 
NR1 subunit [106, 108]. In addition to the affect on PP-1, 
DA forms a tight signaling relationship with adenosine via 
D2-A2a receptor interactions that can directly control 
intracellular calcium release [109, 110]. 

 The DARPP-32 protein is directly acted upon via 
calcineurin. Calcineurin activity helps regulate the 
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phosphorylation of DARPP-32 at the threonine-34 site 
contributing to its control over PP-1 activity [103]. The 
induction of calcineurin activity [111] following TBI and the 
alterations in calcineurin subunit distribution [112, 113] 
make DA a potential key contributor to therapeutic 
interventions that act through calcineurin activation or 
inhibition. 

 The contribution of DA to intracellular signaling 
molecules within the hippocampus, FC, and striatum places 
DAergic regulation at the center of multiple neuroprotection 
strategies and contributes to the promising future of DAergic 
therapies for acute dysfunction following TBI. 

Dopamine and CNS Inflammation 

 Strategies to reduce neuronal inflammation in TBI have 
provided benefits in neuronal sparing and functional 
outcomes [114-116]. However, difficulties remain due to 
concerns over the potential neuroprotective role of 
inflammatory cells and worries over what side effects direct 
inhibition of inflammation may cause [117, 118]. 

 DA can act as a potent inflammatory agent within the 
CNS. In PD it has long been known that excessive DA or 
glutamate can induce a pro-inflammatory environment [119]. 
Inflammatory factors are further augmented in PD by L-
DOPA supplementation, which can further exacerbate ERK 
activation and increase interleukin-1  (IL-1 ) production 
[120, 121]. In TBI, blocking IL-1  is beneficial [114]. There 
is also recognized vulnerability of DAergic neurons to the 
inflammatory cascade [122, 123], which may be partially 
explained by the fact that microglia possess DA receptors 
that appear to stimulate migration and activation to DAergic 
brain regions [124]. It has also been shown that drugs with 
DAergic action can reduce inflammation (e.g. buproprion) 
within the CNS [125]. This suggests that while endongenous 
DA can activate inflammatory pathways, activation of DA 
receptors with therapeutics may still provide reductions in 
inflammation. This dual nature of DAergic signaling also 
demonstrates the complexities of DAergic signaling that 
need to be better understood as therapies targeting DA move 
towards clinical application. 

Targeting Dopamine Directly: Benefits to Outcome 

 Clinical studies concerning DAergic agonists 
traditionally have examined DA enhancement therapies in 
the chronic or recovery phases after TBI. MPD, a DA 
transporter inhibitor, has been shown to benefit memory and 
attention in TBI patients when administered chronically 
[126]. The administration of amantadine hydrochloride 
(AMH) [127] and bromocriptine [128] during the recovery 
phase have also demonstrated improvement in cognitive 
outcomes. Few studies have examined the clinical 
effectiveness of providing DA enhancement therapies 
acutely or sub-acutely (i.e. within days to weeks) after TBI, 
but of those that have been conducted, the results are 
promising. For example, providing MPD within the first 
month of injury improves recovery of attention and memory 
[129]. Because of its action on multiple catecholamines 
including DA [130, 131] AMH has received attention as an 
acute therapeutic. Specifically, the administration of AMH 
within the first week of TBI reduces patient agitation [132], 

improves the Glasgow coma score [133], and decreases 
measures of lipid peroxidation [134]. 

Experimental Evidence: Dopamine Agonists 

 The majority of experimental studies examining the 
effectiveness of DAergic therapies following TBI have 
utilized chronic administration paradigms. In most cases the 
treatments began within the first day of injury and continued 
with daily administrations until the completion of behavioral 
assessments (i.e. 21 days). The direct affects of acute 
administration are therefore unclear. However these studies 
provide compelling evidence for targeting DAergic systems 
in an acute phase. 

 MPD has demonstrated neuroprotection against the 
neurotoxic effects of methamphetamine and perhaps also 
Parkinson's [135]. Additionally, experimental models 
utilizing a MPD treatment paradigm demonstrated cognitive 
benefit after either cortical ablation or cortical impact 
injuries [136, 137]. Specifically, a single administration of 
MPD followed by significant symptom relevant experience 
(i.e. beam walking experience) enhanced recovery of motor 
function following sensorimotor cortex lesions [136]. 
Moreover, daily MPD treatments beginning as late as 24 
hours after TBI in rats reveal significantly less spatial 
memory performance deficits vs saline treatment [137]. 
Daily treatment with MPD (5 mg/kg) after cortical impact 
injury resulted in improved DA overflow and Vmax 
compared to controls [138]. These data suggest that potential 
mechanisms for the benefits observed with MPD after TBI 
include restoration or improvement of DA synthesis and/or 
release of DA from DAergic terminals. 

 Amphetamine (AMPH) use in experimental models of 
TBI and selective cortical injury models has also been shown 
to accelerate recovery. The positive benefits of AMPH have 
been reported in FPI [139] and selective lesion studies [140-
143]. AMPH treatment has been shown to reduce the 
accumulation of free fatty acids and lactate in the cortex and 
hippocampus following FPI [139] and attenuate decreases in 
cerebral glucose utilization [144]. Moreover, AMPH may 
produce benefits through its ability to induce hippocampal 
brain derived neurotrophic factor following brain injury [57]. 
This is not surprising given that AMPH treatment is known 
to induce dependent plasticity and synaptogenesis [54] and 
has been strongly linked to plastic alterations following brain 
injury [145, 146]. 

 An important caveat to the AMPH studies is that while 
AMPH increases the levels of all monoamines [147], the 
beneficial effects of AMPH on motor recovery have only 
been reproduced following intraventricular administration of 
norepinephrine [148]. This finding does not rule out a 
positive role for DA facilitation with AMPH treatment on 
other cognitive processes, but simply suggests that DA-
mediated benefits on motor recovery may not be due simply 
to increases in DA release. Support for this assertion comes 
from studies showing that the DA receptor antagonist, 
haloperidol, blocks the beneficial effects of AMPH treatment 
[149, 150]. 

 Experimental use of AMH has also shown benefit 
following TBI. Daily treatment with AMH (10 mg/kg) 
showed significant improvements in spatial memory 
performance compared to saline treated controls [151]. 
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 Bromocriptine, a specific D2 receptor agonist, has 
demonstrated neuroprotective effects against glutamate 
induced toxicity in rat cortical neurons [152]. Treatment with 
bromocriptine (5 mg/kg) after cortical injury enhanced both 
WM and reference memory in a Morris water maze task 
[153]. A follow-up study [154] demonstrated that 
bromocriptine-treated rats exhibited enhanced spatial 
learning and also displayed increased hippocampal neuronal 
protection following TBI compared to vehicle-treated 
controls. Bromocriptine has also been shown to reduce lipid 
peroxidation, a measure of oxidative damage [154]. 

To Antagonize or Not to Antagonize 

 Unfortunately, there remains some ambiguity regarding 
the benefits of DAergic antagonists in ischemic and TBI 
conditions. In an ischemic insult both DA D1 receptor 
agonists and antagonists have shown protection [155, 156] as 
have agonists and antagonists of DA D2 receptors [157, 
158]. There remains a similar concern over the use of DA 
antagonists following TBI as there is with glutamatergic 
antagonists. Because DA is necessary for both LTP and 
LTD, which are cellular events required for learning and 
memory, substantially antagonizing DAergic signaling may 
worsen outcomes. This is substantiated in the TBI literature 
by studies showing that the antipsychotics risperidone and 
haloperidol, both of which act as D2 receptor antagonists, 
worsen cognitive outcomes in rats when provided once daily 
for 19 days beginning 24 hours after cortical impact injury 
[6, 159]. 

 Studies have also shown positive improvements in WM 
and spatial memory with both early [160] and late [161] 
administration of DA antagonists. For example, Kobori and 
Dash (2006) [161] demonstrated that a single administration 
of the DA D1 antagonist (SCH23390) at 14 days post-injury 
in rats improved WM. Tang et al. (1997) [160] showed an 
improvement in functional recovery with D2 receptor 
specific antagonists when given immediately post-injury and 
a synergistic effect when combined with D1 receptor 

antagonism in mice. Given that both haloperidol and 
risperidone have a higher affinity for the D2 receptors [162, 
163], it may be that specific blockade of D2 receptors is the 
event most associated with negative outcomes when 
antagonized at later time-points. 

Flanking the Problem 

 In addition to directly targeting DAergic receptors, there 
are multiple therapeutics that indirectly affect the DAergic 
pathway that have demonstrated significant neuroprotective 
properties [164]. The monoamine-oxidase B (MAO-B) 
inhibitor selegiline, which increases DA levels by inhibiting 
DA breakdown in the synaptic cleft, has been shown to 
protect against 1-methyl-4 phenylpyridinium (MPP

+
) toxicity 

in cell culture [165] and reduce DAergic cell loss in 1-
methyl 4-phenyl 1, 2, 3, 6 tetrahydropyridine (MPTP) treated 
animals [166]. Selegiline has also been shown to reduce the 
levels of free radical generation by DA [167] and to reduce 
DBH immunoreactivity in the hippocampus [168]. 
Moreover, delayed (24 hours after injury) and chronic (days 
1-7) administration of selegiline (l-deprenyl) following FPI 
has been reported to improve cognitive performance in a 
water maze task [168]. Lastly, selegiline has also been 
reported to reduce TBI-induced apathy in adults when given 
chronically [169]. 

 Another MAO-B inhibitor, rasagiline, has been shown to 
protect against glutamatergic excitotoxicity [170]. Much like 
selegiline, rasagiline has shown efficacy in TBI. Specifically, 
when given to mice 5 min after a closed head injury 
rasagiline reduced edema and improved both motor function 
and spatial memory [171]. 

 DA agonists, such as pramipexole and ropinirole, that 
possess a hydroxylated benzyl ring structure have proven 
antioxidant capacity [172] and demonstrated neuronal 
protection [173]. Both also have anti-apoptotic properties not 
linked to their actions on DA receptors [174] and 
neuroprotective benefits against oxidative stress that is 
partially mediated by DA receptor binding [175]. 

 

Fig. (1). Dopamine (DA) is a tightly regulated system that has potential negative consequences with increased or decreased dopaminergic 

tone. Several studies assessing DA report an increase immediately after TBI and a significant decrease at later stages. Therapeutic strategies 

should consider the implications of this bi-phasic response in DA systems after TBI. 
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Furthermore, pramipexole and ropinirole have been shown to 
have some neurotrophic properties leading to upregulation of 
brain derived and glial-cell derived growth factors [176]. In 
an experimental 28-day ischemia model, pramipexole given 
1 hour post-injury reduced the post-ischemic loss of 
nigrostriatal DA neurons [177]. Clinically, there is evidence 
that pramipexole is beneficial after pediatric TBI when 
administered 1 month following injury in low-response 
patients [178]. 

CONCLUSION 

 The role that DA plays acutely following TBI is complex 
(Fig. 1). Whether the initial increase is neurotoxic or an 
attempt to restore functional circuitry damaged by the 
mechanical insult is unclear. However, LTD in DAergic 
signaling systems would suggest that the initial rise in DA 
tissue levels is a pathologic consequence of acute brain 
injury similar to the increased release of glutamate. A 
dramatic rise in DA within the CNS has multiple 
consequences including increased oxidative stress, induction 
of inflammatory signals, increased intracellular calcium, and 
signaling alterations caused by changes in intracellular 
signaling molecules. Taken together DAergic induction 
immediately post-TBI would appear to be detrimental. 
However, such an assertion is a dangerous over 
simplification of DA dysfunction. Much like glutamate, the 
blockade of DAergic signaling cascades can have serious 
detrimental side effects. What does appear to be clear is that 
acute administration of D1 receptor antagonists and D2 
receptor agonists are beneficial after brain trauma. This is 
consistent with the role DA plays at the synapse. Many D2 
receptors are located pre-synaptically and actually decrease 
DA release thus reducing the levels of potential oxidative 
stress [179, 180]. Furthermore DA targeted drugs, such as 
the MAO-B inhibitors, which act to increase DA levels, but 
reduce DAs metabolism, exert neuroprotective effects. 

 While significant research remains to be done on the role 
DA plays in acute brain injury, DAergic targeted therapies 
show real promise in addressing the concerns represented by 
acute brain injury and providing significant functional 
benefits. 
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ABBREVIATIONS 

6-OHDA = 6-Hydroxydopamine 

AMH = Amantadine Hydrocholride 

AMPA = -amino-3-hydroxyl-5-methyl-4-isoxazole- 
   proprionate 

AMPH = Amphetamine 

ATP = Adenosine Tri-Phosphate 

CCI = Controlled Cortical Impact 

CREB = cAMP response element binding protein 

DA = Dopamine 

DARPP-32 = Dopamine, cAMP regulated  
   phosphoprotein 32 kDa 

DBH = Dopamine beta hydroxylase 

ERK = Extracellular regulated kinase 

FC = Frontal cortex 

FPI = Fluid Percussion Injury 

IL-1  = Interleukin 1  

MAO-B = Monoamine oxidase B 

MPD = Methylphenidate 

MPP+ = 1-methyl-4-phenylpyridinium 

MPTP = 1-methyl 4-phenyl 1, 2, 3, 6  
   tetrahydropyridine 

NMDA = N-methyl-D-aspartate 

PD = Parkinson’s Disease 

PP-1 = Protein Phosphatase-1 

STEP = Striatal Enriched Protein 

TBI = Traumatic Brain Injury 

TH = Tyrosine Hydroxylase 
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