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Abstract: Since the first work about neuronal desensitization mediated by vanilloids, performed back in the 1970’s, major 

advances have been made in the elucidation of TRPV1 role in the genitourinary (GU) tract. The receptor distribution in 

the GU tract was unveiled. Both in vivo and in vitro studies brought new insights on TRPV1 physiology. The role of 

TRPV1 in bladder function in both normal and pathological states was clarified. All these data allowed the development 

of effective TRPV1 antagonists which not only confirmed the role of TRPV1 in micturition dysfunction but also 

suggested new approaches for the treatment of GU pathologies. 
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1. TRPV1 EXPRESSION IN THE GU TRACT 

 The presence of a vanilloid receptor in the GU tract was 
first forwarded to explain the increased bladder frequency 
and pain produced by capsaicin application to the urinary 
bladder [1-3]. Radioactive resiniferatoxin (RTX) binding to 
the pig urinary bladder showed for the first time the presence 
of the presumed receptor [3]. However, it was necessary to 
wait for the cloning of TRPV1 gene to get a more accurate 
picture of the receptor in the GU tract [4]. By doing 
immunohistochemistry reactions against the receptor protein, 
TRPV1 has been found to be expressed in varicose nerve 
plexus, throughout the GU mucosa and muscular layer [5-9]. 
In the rat urinary bladder, the great majority of the TRPV1 
imunorreactive (TRPV1-IR) fibres are peptidergic [5, 10], 
contain protease activated receptors (PARs) [11], and have a 
complete co-localization with TRPA1 [10]. 

 Besides being expressed in the nervous system, TRPV1 
has also been found in urothelial cells of rodents [7, 10] and 
humans [8, 12]. Urothelial TRPV1 differs, however, from 
the neuronal TRPV1 receptor in some aspects. For instance, 
it is known that neuronal TRPV1 transcription is NGF-
dependent, increasing in the presence of this trophic factor 
[13]. However, urothelial TRPV1 mRNA levels are not 
altered by an increase in NGF levels [12]. Human urothelial 
TRPV1 activation by capsaicin desensitizes [12], in contrast 
with the rodent receptor [7]. 

2. TRPV1 CONTRIBUTION TO GU FUNCTIONS IN 

NORMAL AND PATHOLOGICAL CONDITIONS 

 The role of TRPV1 in normal urinary bladder activity is 
still unclear. While Charrua and co-workers did not find any  
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differences between bladder function of anaesthetised wild 
type and TRPV1 KO mice [14], Birder and co-workers 
observed that urethane-anaesthetised TRPV1 KO presented 
fewer voiding contractions, with a great percentage 
presenting overflow incontinence [15]. Furthermore, these 
same authors described that awake TRPV1 KO mice 
presented non-voiding contractions which were absent in 
their WT littermates [15, 16]. Similarly confounding 
observations were obtained after the administration of 
TRPV1 antagonists to intact bladder: while low doses of the 
TRPV1 antagonist GRC-6211 had no effect on rat bladder 
contractility, doses above l mg/kg of weight transiently 
blocked bladder reflex activity [17]. As the effect of high 
doses of this TRPV1 antagonist was absent in TRPV1 KO 
mice, it is tempting to hypothesize that TRPV1 has some 
mechanoreceptive properties [17]. Alternatively, TRPV1 
interaction with TRPV4 may be required to express TRPV4 
mechanosensitive properties [18, 19]. 

 Neuronal TRPV1 expression is enhanced in patients that 
suffer from a variety of GU tract disorders, such as 
interstitial cystitis (IC, also known as bladder painful 
syndrome, BPS), neurogenic (NDO) and idiopathic detrusor 
overactivity (IDO) [20-23]. In bladders of IC patients there is 
an increase in TRPV1-expressing nerve fibres coursing in 
the suburothelium, when compared with the controls [20]. 
This increase has a positive correlation with the visual 
analogue pain score [20]. Changes in TRPV1 expression in 
the urothelium of IC patients are less clear. However, it is 
tempting to suggest that urothelial TRPV1 might be involved 
in the excess of ATP release from the urothelium of IC 
patients [21]. TRPV1 activation induces ATP release from 
human urothelial cells [12]. ATP can then activate P2X3-
expressing nociceptive bladder afferents coursing underneath 
the urothelium [24]. 

 In patients with involuntary bladder contractions during 
bladder filling of neurogenic and non-neurogenic origin, 
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nerve fibres and urothelial cells in the urinary bladder were 
shown to overexpress TRPV1 [22, 23]. In addition to 
promoting involuntary bladder contractions, TRPV1 has 
been suggested to initiate sensory input that leads to urgency 
to urinate, a disabling lower urinary tract symptom that 
precedes urinary incontinence [25, 26]. Furthermore, TRPV1 
expression in the trigonal mucosa was inversely correlated 
with bladder volume at which patients have their first 
sensation to void [27, 28]. 

3. TRPV1 MODULATION DURING GU TRACT 
DISORDERS 

 TRPV1 can be directly activated by lipidic pro-
inflammatory molecules [29-34]. In fact, the TRPV1-
mediated effect of anandamide during cystitis it is thought to 
contribute to bladder overactivity and pain symptoms. 
Nevertheless, endovanilloids are weak TRPV1 activators in 
the urinary bladder when compared to capsaicin and 
resiniferatoxin [34]. This might be overcome by TRPV1 
sensitization [35]. It is known that in order for vanilloids to 
activate TRPV1 the receptor needs to be phosphorylated by 
Ca

2+
/calmodulin-dependent protein kinase (CaMKII) [36]. In 

vitro phosphorylation by protein kinase A (PKA) or protein 
kinase C (PKC) also leads to TRPV1 sensitization [36]. 
Receptors, such as protease-activated receptor 2 and 5-
hydroxytryptamine 7 receptor, are known to sensitize 
TRPV1 receptor via PKA-mediated phosphorylation [37, 
38]. Furthermore, group II metabotropic glutamate receptors 
[39] or mu opioid receptors [40, 41] are known to inhibit 
TRPV1 activation by modulation of the cAMP/PKA 
pathway. Receptors, such as bradykinin receptor [42-47], 
purinergic receptors [48-51], tyrosine kinase receptor A (trk 
A) [52-54], among others, are known to sensitize TRPV1 
receptor through a PKC-dependent mechanism. Additionally, 
phospholipase C (PLC) and phospholipase A2 (PLA2) 
activation mediated by bradykinin receptor, may lead to the 
production of arachidonic acid metabolites which may 
activate TRPV1 receptor [55-57]. 

 Phosphatidylinositol-4, 5-bisphosphate (PtdIns (4, 5) P2) 
has a dual effect on TRPV1. It sensitizes the receptor in the 
presence of high concentration of agonist [58, 59] and 
inhibits the receptor at low concentration of that agonist [60, 
61]. TRPV1 receptor can also be sensitized when ATP binds 
to the receptor [62], increasing the response to further 
stimulus [62]. 

 TRPV1 levels in neuronal cells are known to be 
increased during inflammation in general [63] and in cystitis 
in particular [64]. The increase of TRPV1 protein levels in 
dorsal root ganglia cells that accompanied inflammation 
does not seem to be accompanied by an increase of TRPV1 
mRNA suggesting a post-translational regulation [63, 65]. 
Curiously, the receptor translation does increase in urothelial 
cells upon inflammation [12] suggesting different regulating 
mechanisms in neuronal and non-neuronal cells. 

 TRPV1 expression in membranes may be regulated by a 
SNARE-dependent trafficking of the protein docked in 
synaptic vesicles in the cytoplasm [66]. Indeed, an increase 
in TRPV1 trafficking from the cytoplasm to neuronal 
membrane, through a PKC-mediated mechanism was shown 
to occur during inflammation [66]. This might suggest that 
part of the TRPV1 receptor is kept inactive inside synaptic 

vesicles in neuronal terminals [66]. TRPV1 trafficking to the 
membrane is also thought to be PKA dependent, since point 
mutation of putative sites of PKA phosphorylation almost 
abolished TRPV1 cytoplasmic membrane expression [67]. 
The phosphoinositide 3-kinase (PI3K)-dependent pathway 
may be another mechanism that promotes TRPV1 trafficking 
to the membrane [68, 69]. 

 TRPV1 can also be modulated by its own splice variants. 
The human TRPV1 splice variant, TRPV1b, produces a 
negative-dominant effect on TRPV1 activity [70, 71]. In vivo 
experiments conducted in rodents showed that there is a 
decrease in the neuronal expression of TRPV1b during 
cystitis [65]. Since TRPV1 mRNA levels were unchanged 
[65], it is tempting to hypothesize that increased TRPV1-
responsiveness might also be derived from the reduction of 
the expression of inactive splice variants. 

4. TRPV1 DESENSITIZATION FOR MANAGEMENT 

OF GU DISORDERS 

 As mentioned before, patients with NDO or IDO have an 
excess of TRPV1 in the urinary bladder [22, 23]. Involuntary 
detrusor contractions associated with spinal cord injury are 
triggered by sensory input conveyed by TRPV1 expressing 
C-fibres that project to the sacral level of the spinal cord 
[72]. Therefore, TRPV1 receptor desensitization has been 
investigated to treat patients with NDO, mainly of spinal 
cord origin [73, 74]. As TRPV1 excess is also present in the 
bladder of patients with other forms of detrusor overactivity 
[23, 24] and a similar reflex was observed in experimental 
models of IDO [75], TRPV1 desensitization by intravesical 
application of vanilloids has also been extensively 
investigated in patients that suffer from IDO [25]. 

 Among vanilloids that can be used intravesically, 
resiniferatoxin (RTX) is less pungent than capsaicin although 
equally effective in inducing TRPV1 desensitization [76]. 
Therefore, RTX was the selected vanilloid to treat, by 
intravesical route, both neurogenic and idiopathic detrusor 
overactivity [25, 26, 76-85]. RTX treatment reduces the density 
of TRPV1 expressing fibres [23, 86] and TRPV1 expression in 
urothelial cells [87] and caused a marked increase in the bladder 
capacity of these patients as well as a marked decrease in the 
number of episodes of urinary incontinence associated with 
detrusor overactivity. 

 Intravesical vanilloids have also been investigated to 
reduced pain and urinary frequency of IC/BPS patients [88-
91] who, as mentioned above, also overexpress the receptor 
[20]. However, contradictory information about the effect of 
RTX in IC patients has been presented by other authors [92]. 
Differences in RTX outcome in different studies might result 
from different ways of preparing and storage of RTX. This 
compound is highly unstable in plastic containers so the 
efficacy of the solution is lost within a few hours of its 
preparation. 

5. TRPV1 ANTAGONISTS 

 Pharmacological blockade or genetic ablation of the 
TRPV1 receptor demonstrated that this receptor is essential 
for the development of bladder overactivity and noxious 
input in cystitis [14, 17]. The administration of the new oral 
specific TRPV1 antagonist GRC-6211 has reduced bladder 
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hyperreflexia in both acute and chronic bladder inflammation 
models [17]. Furthermore, GRC-6211 administration 
reversed the increase in spinal c-Fos expression in animals 
with acute inflammation [17]. 

 TRPV1 receptor is also thought to be involved in the 
increase in reflex activity associated with spinal cord 
transection [72, 73], chronic bladder outlet obstruction [75] 
and idiopathic bladder overactivity [25].

 
The TRPV1 role in 

the increased spinal micturition reflex after chronic spinal 
cord transection is further supported by the effect of specific 
TRPV1 antagonists [93]. Application of the TRPV1 
antagonist GRC-6211 decreased, in a dose dependent 
manner, the voiding frequency in rats with bladder 
overactivity caused by chronic spinalization [93]. 

 To be therapeutically useful, researchers must still 
address the effects of TRPV1 antagonists on body 
temperature and acute thermal sensation. Although not 
observed with GRC-6211 in animal models [17], other 
TRPV1 antagonist was shown to cause severe hyperthermia 
by mobilizing blood from visceral circulation [94]. In 
addition, it is unclear if the decrease of peptide release in 
peripheral tissues might facilitate arterial vasoconstriction 
precipitating ischemic heart problems [95]. Nevertheless, 
once these setbacks are solved, the future of TRPV1 
antagonist in GU dysfunction is expected to be shining. 
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