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Abstract: Polypharmacy as a result of combating co-infections, or combination therapy for better efficacy and reducing 

the emergency of drug resistance, is on the increase in the African clinical setting in the advent of HIV/AIDS, and tuber-

culosis (TB) co-infections, and increasing incidences of malaria and other tropical infections. The clinicians and pharma-

cists are therefore faced with the challenge of prescribing drugs in combinations that are likely to result in severe adverse 

effects or compromising treatment success. The aim of this study was, therefore, to develop a simple stand alone or net-

work based experimental computational tool to assist doctors and pharmacists in detecting drug combinations likely to re-

sult in undesirable metabolism based drug-drug interactions (DDIs) and offer alternate safe prescription options. The 

mechanism of most drug-drug interactions is through inhibition and induction of drug metabolising enzymes. Models for 

the prediction of reversible and irreversible inhibitors of the major drug metabolising enzyme system, cytochrome P450, 

were used in developing the pharmacoinformatic tool. These models enable the prediction of likely in vivo drug-drug in-

teractions from in vitro data. In vivo drug-drug interaction data from the literature was also loaded into the software to 

validate the system and to give clinical guidance on specific drug-drug interactions. In this first phase of the project, focus 

was on medications used in the treatment of HIV/AIDS, TB, malaria and other diseases common in Africa. The prototypic 

tool was based on a Standard Query Language (SQL) database with DELPHI 6.0 as the user interface. Its user friendly 

pages lead the doctor or pharmacist through drug combination entry functions and gives warning if an interaction is likely. 

Subsequent actions enable the operator to retrieve more information on the mechanism of interactions, the quantitative 

measure of the interaction, access to published abstracts on studies, and possible prescription options to minimise DDIs. 

The software currently has data for 50 drugs used in the design and focuses on the treatment of tropical diseases in addi-

tion to classical cases of drug-drug interactions involving other general classes of drugs. The tool can be distributed on 

Compaq Disk (CD) and be run on any Personal Computer (PC) on windows. We have successfully developed a pharma-

cokinetic-based tool with a potential to assist clinicians and pharmacists in detecting and rationalizing DDIs. The tool has 

proved very useful as a teaching tool on DDIs by using the more advanced functions that explore the performance of cur-

rent drug-drug interactions prediction models. From the available literature, it is clear that more studies need to be done to 

establish the prevalence and mechanisms of DDIs in the treatment of infectious diseases. We are now adding more data, 

validating the tool and finally testing the acceptability of this tool among clinicians and pharmacists for routine use.  

INTRODUCTION 

 In clinical practice, drug prescription error is a common 
occurrence [1,2] and it results in sub-therapeutic dosing or 
adverse drug reactions (ADRs). Studies carried out in the 
United States of America (USA) by the Committee on Qual-
ity of Health Care in America (CQHCA) revealed that 44 
000 to 98 000 deaths occurring annually are due to medica-
tion errors and 7 000 of the total deaths are due to ADRs [3]. 
It was also estimated that, over 350 000 ADRs occur yearly 
in United States nursing homes [4]. Again, a retrospective 
analysis at two London hospitals

 
found that 11% of admitted 

patients experienced adverse events where 48% were judged 
to be preventable and 8% led

 
to death [5]. All these studies 

have given us a hint that the situation might be worse in  
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developing nations where medical expertise and infrastruc-
ture are underdeveloped. 

 The increased demand for pharmacotherapeutic agents in 
infectious disease co-infections has introduced complexity in 
the treatment and management of patients in resource limited 
nations [6]. In the treatment and management of such cases, 
drug combinations are inevitable as they help in the rapid 
eradication of causative pathogen, minimize emergence of 
drug resistant parasites and lead to quick patient recovery. 
However, each drug provides both therapeutic and toxic ef-
fects, thus making physicians worry about safety in the si-
multaneous use of many drugs. Polypharmacy predisposes 
patients to adverse drug reactions (ADRs) or adverse drug 
events (ADEs) emanating from drug-drug interactions 
(DDIs) [7,8].  

 Scientifically, a number of clinically significant DDIs 
occur at the metabolic level. Metabolic drug-drug interaction 
results in decreased therapeutic effect, generation of toxic 
metabolites due to enzyme induction or increased substrate 
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plasma concentration above its therapeutic index to toxic 
levels due to enzyme inhibition. The impact of DDIs is re-
vealed through withdrawals of mibefradil, sirovudine, 
astemizole and cisapride from the pharmaceutical market [9].  

 Increased understanding of biochemical pathways of 
drug metabolism and development of in vitro methods to 
identify chemical entities that may cause clinically signifi-
cant DDIs has aided in the screening for safer lead com-
pounds at preclinical stage. Even though this is the case, 
drug combinations are unavoidable but some drug-drug in-
teractions can be prevented. Recent investigations in the use 
of drugs have shown that most of DDIs can be prevented 
through identification of compounds that have in vitro inhi-
bition constant (Ki) of less than 1 M. These chemical enti-
ties result in clinically significant DDIs due to enzyme inhi-
bition [10]. Categorically, compounds with Ki value above 
10 M were considered as weak inhibitors. Furthermore, 
efforts are being made to quantitatively predict the magni-
tude of in vivo DDIs using in vitro data. However, although 
very useful, these predictions are being implemented at pre-
clinical levels of drug discovery. Most antiparasitic drugs 
where discovered and introduced on to the market without 
knowledge of this data and continue to be used without cau-
tion with respect to the potential for drug-drug interactions. 
Towards addressing this shortcoming, retrospective in vitro 
screening of antiparasitic drugs for inhibitory and inductory 
effects on CYP450s were carried out in our laboratory [11-
13]. There is, however, still a big gap in clinical evaluation 
of some of the potential DDI that might arise in the use of 
various combinations of drugs in the treatment and/or pro-
phylaxis of TB, malaria, HIV/AIDS and other infectious 
diseases.  

 Though efforts have been made to assist physicians in 
handling large patient data and decision making, the avail-
able computer based decision support systems like CPOEs 
offer fragmented data [14,15]. In order to address these defi-
ciencies in health care, the aim of this work was to develop a 
computer based pharmacoinformatic tool for use in the pre-
diction of drug-drug interaction. Our target groups are clini-
cians and pharmacists. In this work, CYP450-drug interac-
tions were used as the basis of predicting in vivo DDIs after 
oral drug administration. Published in vivo data that supports 
interaction between particular drug combinations was incor-
porated. Doctors and related users will be assisted in the se-
lection of safer alternative drugs if their first option is not 
suitable. In addition, the tool will also be used for teaching 
purposes in preclinical pharmacokinetic concepts towards 
the prediction of DDIs and appropriate dose estimate utiliz-
ing in vitro and in vivo data. Other studies with the same 
scope exist and they focus on the compilation of a DDI data-
bases [16-18]. The major differences with our study are algo-
rithms used and inclusion of drugs mostly used Africa, e.g. 
antiparasitic drugs. 

 In the African setting, internet connectivity is generally 
slow and expensive making web-based applications unsuit-
able and unfriendly for some users. However, this can be 
rectified through our efforts to make the software suitable for 
both standalone and local area network applications with the 
possibility of data synchronizations. In order to appreciate 
most of the functionalities, we recommend hands on use of 
the prototypic tool both in preclinical and clinical settings.  

MATERIALS AND METHODS 

Data Collection 

 Literature sources were assembled including databases, 
symposia abstracts and original publications on drug-enzyme 
or drug-drug interaction for both mechanism based and re-
versible inhibition (Data for the 50 compounds included in 
this study is available as supplementary material on request). 
Sources with validated in vitro methods and having the fol-
lowing parameters as well as mechanism of inhibition were 
considered:  

 Inhibition constants (Ki) 

 Maximal inactivation rate at saturating inhibitor con-
centration (kinact)  

 Inhibitor concentration at which half maximal inacti-
vation rate is achieved (kI)  

 First order rate constant for in vivo gut enzyme deg-
radation (kdegrad.gut) 

 First order rate constant for in vivo liver enzyme deg-
radation (kdegrad.hep)  

In vivo parameters considered 

 Fraction unbound in plasma (fu) 

 Fraction of the substrate metabolized in the gut (Fg) 

 Fraction of hepatic clearance subject to metabolic 
inhibition (fm) and fractional contribution of hepatic to 
total clearance (fh)  

 Fraction absorbed from the gut (fa) 

 Absorption rate constant (ka) 

 Elimination rate constant (kel) 

 Time to reach peak plasma concentration (Tmax) 

 For in vitro studies, types of enzymatic models used are 
also important, for example, hepatocytes, subcellular frac-
tions and recombinant enzymes have different pros and cons 
in their predictive value of in vivo DDIs. There was a bias 
for drugs used in the treatment of tuberculosis, malaria and 
HIV/Aids in addition to other well-known drug-drug interac-
tions for non-infectious diseases.  

Scaling Models 

Competitive Inhibition 

 For competitive inhibition, the following model which 
has been previously derived for extrapolation of in vitro to in 
vivo prediction of drug-drug interaction was incorporated 
[19,20]. The model was applicable to all other CYPs except 
CYP3A4. 
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 Where CLcontrol/CLinhibitor is the ratio of oral clearance of 
the drug in the absence and presence of inhibitor respec-
tively, Iin.vivo is the in vivo concentration of inhibitor and 
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AUCinhibitor/AUCcontrol is the ratio of oral clearance of the drug 
in the presence and absence of inhibitor respectively. Iin,vivo 
represents various concentrations tested: maximum plasma 
concentration (Cmax); unbound maximum plasma concentra-
tion (fu x Cmax); maximum concentration of the inhibitor at 
entrance to the liver (Iin,max) and unbound, maximum concen-
tration of the inhibitor at entrance to the liver (fu x Iin,max) 

 For CYP3A4, there was gut enzyme activity considera-
tion and the following equation was used [21]. 
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 Where Fg.inhibitor/Fg.control is the intestinal wall extraction 
ratio in the presence of the inhibitor in comparison to its ab-
sence.  

Mechanism Based Inhibition 

 The following model was considered for all other CYPs 
except for CYP3A4 [21,22]. 
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 For CYP3A4, there was gut enzyme activity considera-
tion and the following equation was used. 
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Estimation of Input Parameters 

Fraction of Drug Metabolized by Specific Enzyme  

 An estimate of CYP2C9, CYP2C19 or CYP2D6 contri-
bution to substrate metabolism was predicted using equation 
5 [23].  
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 From the above equation, CLpocypPM represents oral clear-
ance in poor metabolizers, and CLpocypEM in extensive me-
tabolizers. This was done where there was no published data. 
ka, if not given, was estimated from the equation (6) as pre-
viously illustrated by Ito et al, 1998 [24]. The result of the 
calculation must be less than 0.1 min

-1
 which is the maxi-

mum absorption rate constant assuming first order kinetics 
[25]. 
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Inhibitor Concentration Available to Enzyme In Vivo 

 Various concentrations can be chosen e.g., unbound, 
maximum concentration of the inhibitor at entrance to the 
liver with or without consideration of free fraction. However, 
the concentration of the inhibitor in the portal vein (Iin.max) 
was estimated using the following equation as previously 
described [26]. 
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 The value of liver blood flow used was 1470ml/min [24]. 
Multiplication of equation (7) with fu gives the maximum 
unbound concentration of the inhibitor at entrance to the 
liver. 

 For CYP3A4 inhibitors, effect on the intestinal wall 
extraction was estimated through the following equation 
[23]. 
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 CLint.g inhibitor/ CLint.g.control represented the first pass intrin-
sic clearance, and was estimated as follows for competitive 
inhibition [27]. 
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 Mechanism based inhibition was estimated using equa-
tion 10 after modification of equation 9. 
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 Iinvivo.g refers to the concentration of inhibitor available to 
the gut wall absorption site after an oral dose of inhibitor. 
The dose for estimating the value of the term was estimated 
through dividing total daily dose by the frequency. The con-
centration can be estimated as follows using value of 
248ml/min [28]. 
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The Pharmacoinformatic Tool Design and Development 

a. System Analysis 

 This is the step where we investigated the applicability of 
computers in solving the problem. As elaborated in the dis-
cussion, medication errors are higher in cases where paper 
work is being relied upon.  

b. System Design  

 The design of the system was initially done on paper with 
all the relevant stages and data processing outlined clearly. 
The mathematical algorithms were detailed in simple Eng-
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lish language for easy of programming. At this stage, we 
evaluated the appropriateness of the available databases and 
programming languages. A simple and robust tool was pro-
posed. 

c. Development  

 Collected published data was added into the correspond-
ing tables developed in SQL server 2005. Each table had a 
unique identifier, the key. Depending on the need, tables 
were linked together through creation of fields that contain 
same data e.g., the table with drugs’ common profiles had 
each drug assigned a numerical value which was then linked 
to its available dosage forms under the table with different 
fields of dosage forms. This process was done through utili-

zation of SQL commands. The databases architecture created 
allowed addition, retrieval, storage, back up and audit trail 
among other features anticipated in all commercial software. 
The user interface was created using DELPHI 6.0 which was 
also the programming language. The database and the user 
interface were linked through a data link utility. 

d. Relevance of the Tool 

 The medical relevance of the tool was tested on selected 
5 pharmacists and 5 doctors who have an interest in research. 
The selection bias was because the types of drugs incorpo-
rated into the software were the only ones where published 
data was available to ease in the evaluation of the predic-
tions. 

a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (1). a). An illustration of the screen from AiBST’s pharmacoinformatic tool that appears during drug prescription. b). An illustration of 

the screen from AiBST’s pharmacoinformatic that appears during capturing of dosage details. 
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Assumptions 

• The value of Ki was equated to half the IC50 for 
competitive inhibition if Km equals to substrate 
concentration 

• The fold increase in exposure of the affected drug is 
related to Ki, Iin.vivo and the fraction of clearance of the 
affected drug that occurs via metabolism of the 
inhibited CYP (fm.fh) 

• Equal enzyme activity for either in vitro or in vivo  

• Fraction absorbed (fa) was assumed to be 1 for rapidly 
absorbed drugs. In cases where the values were 
published, factors considered were: dosage form; 
manufacturer; study population (age groups) 

• All the estimation of the fold increase exposure of the 
affected drug were made assuming a 70kg individual  

RESULTS 

 Development of the software was done successfully. 
When the user logs into the system, a default page appears. 
The only difference from Fig. (1) is that, the small popped 
up windows where the physician or pharmacist captures 
drugs and dosage details will not be displayed but are only 
prompted by the user. 

 During routine drug prescription or dispensing by doctors 
and pharmacist respectively, if they add at least two poten-
tially interacting drugs, a warning is given (Fig. 2) followed 
by a detailed description of interaction (Fig. 3). The interac-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). An illustration of a warning given when two potentially interacting drugs are co-prescribed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). A page that details mechanism of interaction, alternatives, fold-increase in exposure of affected drug. 
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Fig. (4). a). Illustration of how different inhibitor concentrations can be analyzed and their corresponding effect on the accuracy of prediction. 

b). Different fold increase in exposure of affected drug due to different inhibitor concentrations. 

tion is one-to-many. This means, interaction will be tested on 
all the drugs already prescribed. The pair in which we have 
major interactions will be shown in test outcome table. De-
tails of interactions of the added drug with the drug already 
prescribed can be retrieved through clicking page header, test 
details, which is next to page header - test outcome. Analysis 
of different inhibitor concentration was also done to come up 
with the one that give better prediction on the fold increase 
in exposure of affected drug when compared with in vivo 
published data (Fig. 4). Maneuvering of all the pages as 
highlighted in all figures was done by 5 pharmacists and 5 

doctors who expressed support for the enormous potential of 
the tool in the medical community. At this stage, they rec-
ommended that the tool be used as a teaching tool awaiting 
further validation and capturing of commonly used drug 
combinations. Should this tool finally find its way into the 
medical field the best targets recommended are doctors. 

DISCUSSION 

 The harnessing of the growing field of information tech-
nology into various disciplines has gained much recognition 
and popularity over the past decades. Large amounts of data 
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generated in the medical fraternity from drug discovery to 
clinical practice often leaves physicians with a tough task to 
handle. It is documented that only a small percentage of 
clinically relevant data that is churned is utilized during rou-
tine practice [29]. A number of decision support systems 
have been developed to match the increase in the amount of 
data although it calls for a well articulated plan and distinct 
leadership to achieve success. Most medical informatics 
tools available are mainly to capture and analyze patient 
medical data. The few that capture drug-drug interactions, 
act as electronic version of the hard copies and have been 
shown to be medically useful in minimizing medication er-
rors [30,31]. Software developed to predict these DDIs exist 
but are utilized by pharmaceutical companies where they are 
mainly for drug discovery and development [32]. Most of the 
software is password protected, and the available trial  
versions do not give a full understanding the pharmaco-
kinetics and pharmacodynamic basis of how the interaction 
is picked.  

 In this study, we are mainly focusing on the clinical ap-
plication rather than early phases of drug discovery. Fur-
thermore, we have addressed the issue of both published and 
unpublished drug-drug interaction since there is a growing 
need for evidence-based therapeutic approach (Fig. 3; Fig. 
5). These issues make our software different from those al-
ready available on the market. Even though a bigger study is 
yet to be done to test the user friendliness of the interface, 
savings in time to access DDI data , relevance of warnings 
and adoption recommendations, tests by a few selected doc-
tors and pharmacists is showing a positive result in that di-
rection. It doesn’t require wide knowledge and expertise in 
computers, though basic literacy is important. Information 
retrieval can simply be done through clicking page headers. 
When the physician or pharmacist logs on in the software, 
during addition of prescription drugs, dosage details are cap-
tured through a small activated window as shown in Fig. (1). 
Because the user can make mistakes, which is common in 
the medical field [1,2], the captured drug prescription details 

are shown on the left corner of the page output allowing for 
quick and easy editing to make corrections.  

 If more than one drug is captured and there is a potential 
for interaction, an interrupting warning message is displayed 
(Fig. 2). This is important function because it alerts the phy-
sician who would otherwise fail to recognize the message if 
it is shelved or highlighted on other parts of the interface. 
The message is followed by description of mechanism of 
interaction, alternative drugs and approaches, and the inter-
acting drugs coupled with the fold increase in the exposure 
of the affected drug (Fig. 3). It is hoped that physicians as 
well as pharmacist will benefit from this output both as a 
teaching tool and in optimal patient health care delivery. 
Displaying of alternative drugs is based on the magnitude of 
increase in exposure of affected drug due to the effector. If 
an alternative to the effector drug causes a higher magnitude, 
it can not be displayed. This helps in eliminating the trial-an-
error approach in choosing alternatives, which is a common 
practice during routine drug prescription. Detection and 
minimization of potential DDIs is extremely important in 
patient care since it reduces chances of adverse drug reac-
tions and events which have been demonstrated to cause 
ADR, death and result in increased health care costs [5]. Fur-
ther developments and the use of this tool is hoped to lead to 
improved interaction between doctors and pharmacists when 
potential DDIs have been detected in order to give correct 
drug doses and/or drug combinations to patients. 

 There is still an on going debate on the best estimate of 
the correct concentration of the inhibitor available to the 
drug metabolizing enzyme to use in the models for the pre-
diction of DDIs [27]. Preliminary analysis of different con-
centrations was done as highlighted (Fig. 4). Recent studies 
and so far indicated in our prediction tool (Fig. 4), show that 
better predictive accuracy can be achieved when the un-
bound concentration of the inhibitor entering the liver from 
the portal vein was used. We have therefore used this as a 
default concentration for calculations. The user can also 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). A page that shows a retrieved referenced abstract of in vivo drug-drug interaction and fold changes in exposure of affected drug. 
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learn how the interaction varies with change in inhibitor 
concentration as highlighted (Fig. 4) through the use of drop 
down menu. This also educates users on the possibility of 
under-prediction or over-prediction when protein binding is 
taken or not taken into account for the various models. The 
tool will therefore be responsive to the ongoing advances in 
research where the role of drug transporters could be impor-
tant for making better and successful DDI predictions. 

 In fact, in the medical community pharmacists are not 
obliged or mandated by any law to alter prescribed drugs but 
can communicate with the prescriber. Under normal circum-
stances, patients can either send a relative or a child to pur-
chase medications on their behalf, it becomes difficult for a 
pharmacist to know the drugs the patient might also be tak-
ing in addition to the one being dispensed. With this in mind, 
pharmacist may not be able to detect potential drug-drug 
interaction. So the best targets are doctors who came face to 
face with the patient during disease diagnosis and subsequent 
drug prescription, and this has been recommended by physi-
cians and doctors. This recommendation supports our hope 
of leading to improved interaction between doctors and 
pharmacists when potential DDIs have been detected in or-
der to give correct drug doses and/or drug combinations to 
patients. In addition, the sparse antiparasitic data that we 
have uploaded undermines proper validation and routine 
clinical use. 

 In conclusion, the tool has the potential to quantitatively 
predict potential DDIs and could be used by pharmacists and 
doctors in the minimization of potential DDIs based adverse 
drug reactions if more in vitro and in vivo data has been 
added and validated. However more work needs to be done 
to include DDIs due to induction and irreversible enzyme 
inhibition or through inhibition of other enzymes not consid-
ered in this study.  

SUMMARY LIST 

 What was known before our work 

• The qualitative and quantitative nature of drug-drug 
interaction. 

• The contribution of drug prescription error to adverse 
drug events. 

• Need for simple, reliable and easily accessible drug 
interaction databases. 

 Contribution of our work 

• Detection of potential drug-drug interaction among 
ARVs, antitubercular and antiparasitic drugs. Most 
databases do not include most antiparasitic drugs. 

• The continued need for simple computer-based deci-
sion support systems with ability to predict potential 
interaction among given combinations of drugs at 
clinical level. 

• Clinical decision support systems with functions on 
how the decision is reached help in teaching physi-
cians and pharmacist on how to detect potential drug-
drug interaction and this improves their knowledge. 

• Assistance in picking alternative drugs during drug 
prescription minimizes the trial-and-error approach, 
and saves time. 

• Electronic systems which enable clinicians to easily 
access published scientific data improve interaction 
between researchers and medical personnel. 

ACKNOWLEDGEMENTS 

 Mr Chancemore is gratefully acknowledged for his input 
in the development of the software; and International, Clini-
cal, Operational, and Health Services Training Award (ICO-
HRTA) for the fellowship grant for Simbarashe Zvada ad-
ministered through Biomedical Research Training Institute 
(BRTI), Harare. We also like to thank doctors and pharma-
cists who participated in the pilot study. The study was sup-
ported by the African Institute of Biomedical Science and 
Technology (AiBST) Grant 005. 

REFERENCES 

[1] Gurwitz, J.H.; Field, T.S.; Judge, J.; Rochon, P.; Harrold, L.R.; 
Cadoret, C.; Lee, M.; White, K.; LaPrino, J.; Erramuspe-Mainard, 

J.; DeFlorio, M.; Gavendo, L.; Auger, J.; Bates, D.W. The inci-
dence of adverse drug events in two large academic long-term care 

facilities. Am. J. Med., 2005, 118(3), 251-258. 
[2] Marschner, J.P.; Thurmann, P.; Harder, S.; Rietbrock, N. Drug 

utilization review on a surgical intensive care unit. Int. J. Clin. 
Pharmacol. Ther., 1994, 32(9), 447-451. 

[3] CQHCA: Institute of Medicine, Washington, D.C.: To err is hu-
man: building a safer health system. National Academy Press, 

2000. 
[4] Gurwitz, J.H.; Field, T.S.; Avorn, J.; McCormick, D.; Jain, S.; 

Eckler, M.; Benser, M.; Edmondson, A.C.; Bates, D.W. Incidence 
and preventability of adverse drug events in nursing homes. Am. J. 

Med., 2000, 109(2), 87-94. 
[5] Vincent, C. Principles of risk and safety. Acta Neurochir. Suppl., 

2001, 78, 3-11. 
[6] Joint United Nations Programme on HIV/AIDS (UNAIDS) and 

World Health organisation (WHO): EpiReport 2006. http:// 
data.unaids.org/pub/EpiReport/2006/2006_EpiUpdate_en.pdf. (ac-

cessed July 11, 2007). 
[7] Jacubeit, T.; Drisch, D.; Weber, E. Risk factors as reflected by an 

intensive drug monitoring system. Agents Actions Suppl., 1990, 29, 
117-125. 

[8] Leape, L.L.; Bates, D.W.; Cullen, D.J.; Cooper, J.; Demonaco, H. 
J.; Gallivan, T.; Hallisey, R.; Ives, J.; Laird, N.; Laffel, G.; et al. 

Systems analysis of adverse drug events. ADE Prevention Study 
Group. J. Am. Med. Assoc., 1995, 274(1), 35-43. 

[9] Huang, S.M.; Lesko, L.J. Drug-drug, drug-dietary supplement, and 
drug-citrus fruit and other food interactions: what have we learned? 

J. Clin. Pharmacol., 2004, 44(6), 559-569. 
[10] Lin, J.H.; Lu, A.Y. Inhibition and Induction of Cytochrome P450 

and the clinical Implications. Clin. Pharmacokinet., 1998, 35(5), 
361-390. 

[11] Bapiro, T.E.; Egnell, A.C.; Hasler, J.A.; Masimirembwa, C.M. 
Application of higher throughput screening (HTS) inhibition assays 

to evaluate the interaction of antiparasitic drugs with cytochrome 
P450s. Drug Metab. Dispos., 2001, 29(1), 30-35. 

[12] Bapiro, T.; Andersson, T.; Otter, C.; Hasler, J.; Masimirembwa, C. 
Cytochrome P450 1A1/2 induction by antiparasitic drugs: dose-

dependent increase in ethoxyresorufin O-deethylase activity and 
mRNA caused by quinine, primaquine and albendazole in HepG2 

cells. Eur. J. Clin. Pharmacol., 2002, 58(8), 537. 
[13] Li, X.-Q.; Bjorkman, A.; Andersson, T.B.; Ridderstrom, M.; Ma-

simirembwa, C.M. Amodiaquine clearance and its metabolism to 
N-desethylamodiaquine is mediated by CYP2C8: A new high affin-

ity and turnover enzyme-specific probe substrate. J. Pharmacol. 
Exp. Ther., 2002, 300(2), 399-407. 

[14] Cavuto, N.J.; Woosley, R.L.; Sale, M. Pharmacies and prevention 
of potentially fatal drug interactions. J. Am. Med. Assoc., 1996, 

275(14), 1086-1087. 
[15] Smalley, W.; Shatin, D.; Wysowski, D.K.; Gurwitz, J.; Andrade, 

S.E.; Goodman, M.; Chan, K.A.; Platt, R.; Schech, S.D.; Ray, W.A. 
Contraindicated use of cisapride: impact of food and drug admini-

stration regulatory action. J. Am. Med. Assoc., 2000, 284(23), 
3036-3039. 



16    The Open Drug Metabolism Journal, 2009, Volume 3 Zvada et al. 

[16] Bonnabry, P.; Sievering, J.; Leemann, T.; Dayer, P. Quantitative 

drug interactions prediction system (Q-DIPS): a computer-based 
prediction and management support system for drug metabolism in-

teractions. Eur. J. Clin. Pharmacol., 1999, 55(5), 341-347. 
[17] Carlson, S.P.; Ragueneau-Majlessi, I.; Levy, R.H. In: Drug-Drug 

Interactions; Rodrigues, A.D. Ed.; New York: Marcel Dekker, Inc., 
2001; Vol. 116, pp. 549-563. 

[18] Rodrigues, A.D.; Winchell, G.A.; Dobrinska, M.R. Use of in vitro 
drug metabolism data to evaluate metabolic drug-drug interactions 

in man: the need for quantitative databases. Br. J. Clin. Pharma-
col., 2001, 41(4), 368-373. 

[19] Brown, H.S.; Ito, K.; Galetin, A.; Houston, J.B. Prediction of in 
vivo drug-drug interactions from in vitro data: impact of incorporat-

ing parallel pathways of drug elimination and inhibitor absorption 
rate constant. Br. J. Clin. Pharmacol., 2005, 60(5), 508-518. 

[20] Galetin, A.; Burt, H.; Gibbons, L.; Houston, J.B. Prediction of 
time-dependent CYP3A4 drug-drug interactions: impact of enzyme 

degradation, parallel elimination pathways, and intestinal inhibi-
tion. Drug Metab. Dispos., 2006, 34(1), 166-175. 

[21] Wang, Y.H.; Jones, D.R.; Hall, S.D. Prediction of cytochrome 
P450 3A inhibition by verapamil enantiomers and their metabo-

lites. Drug Metab. Dispos., 2004, 32(2), 259-266. 
[22] Mayhew, B.S.; Jones, D.R.; Hall, S.D. An in vitro model for pre-

dicting in vivo inhibition of cytochrome P450 3A4 by metabolic in-
termediate complex formation. Drug Metab. Dispos., 2000, 28(9), 

1031-1037. 
[23] Venkatakrishnan, K.; Obach, R.S. In vitro-in vivo extrapolation of 

CYP2D6 inactivation by paroxetine: prediction of nonstationary 
pharmacokinetics and drug interaction magnitude. Drug Metab. 

Dispos., 2005, 33(6), 845-852. 
[24] Ito, K.; Iwatsubo, T.; Kanamitsu, S.; Ueda, K.; Suzuki, H.; Sugi-

yama, Y. Prediction of pharmacokinetic alterations caused by drug-

drug interactions: metabolic interaction in the liver. Pharmacol. 

Rev., 1998, 50(3), 387-412. 
[25] Oberle, R.L.; Chen, T.S.; Lloyd, C.; Barnett, J.L.; Owyang, C.; 

Meyer, J.; Amidon, G.L. The influence of the interdigestive migrat-
ing myoelectric complex on the gastric emptying of liquids. Gas-

troenterology, 1990, 99(5), 1275-1282. 
[26] Kanamitsu, S.; Ito, K.; Sugiyama, Y. Quantitative prediction of in 

vivo drug-drug interactions from in vitro data based on physiologi-
cal pharmacokinetics: use of maximum unbound concentration of 

inhibitor at the inlet to the liver. Pharm. Res., 2000, 17(3), 336-343. 
[27] Obach, R.S.; Walsky, R.L.; Venkatakrishnan, K.; Gaman, E.A.; 

Houston, J.B.; Tremaine, L.M. The utility of in vitro cytochrome 
P450 inhibition data in the prediction of drug-drug interactions. J. 

Pharmacol. Exp. Ther., 2006, 316(1), 336-348. 
[28] Rostami-Hodjegan, A.; Tucker, G.T. In silico simulations to assess 

the in vivo consequenses of in vitro metabolic drug-drug interac-
tions. Drug Discov. Today Tech., 2004, 1, 221-448. 

[29] Grol, R.; Grimshaw, J. From best evidence to best practice: effec-
tive implementation of change in patients' care. Lancet, 2003, 

362(9391), 1225-1230. 
[30] Kaushal, R.; Barker, K.N.; Bates, D.W. How can information tech-

nology improve patient safety and reduce medication errors in chil-
dren's health care? Arch. Pediatr. Adolesc. Med., 2001, 155(9), 

1002-1007. 
[31] Bates, D.W.; Cohen, M.; Leape, L.L.; Overhage, J.M.; Shabot, 

M.M.; Sheridan, T. Reducing the frequency of errors in medicine 
using information technology. J. Am. Med. Inform. Assoc., 2001, 

8(4), 299-308. 
[32] Proctor, N.J.; Tucker, G.T.; Rostami-Hodjegan, A. Predicting drug 

clearance from recombinantly expressed CYPs: intersystem ex-
trapolation factors. Xenobiotica, 2004, 34(2), 151-178. 

 

 
 

Received: June 02, 2008 Revised: September 29, 2008 Accepted: November 07, 2008 

 

© Zvada et al.; Licensee Bentham Open 
 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License 

(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the 

work is properly cited. 


