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Abstract: Some researchers, for example, Koop [1], and Sims [2], have advocated for Bayesian alternatives to unit-root 

testing over the classical approach using the augmented Dickey-Fuller test (ADF). This paper studies the power of what 

Koop [1] has called the “Objective” Bayesian approach to unit-root testing. Koop’s “objective” Bayesian test is interesting 

in light of the call by Phillips [3, 4] for more objective Bayesian analysis of time series. We apply the “objective” 

Bayesian unit-root test to a study of long-run purchasing power parity (PPP) in the post-Bretton Woods era and also 

Monte Carlo simulations. Overall, contrary to the favorable simulation results obtained by Koop [1], our results suggest 

that the “objective” Bayesian test is biased in favor of trend-stationarity. We conclude that, at least for the “objective” 

Bayesian test, it is not better than the classical ADF approach in unit-root tests, and because of its bias, the “objective” 

priors suggested by Koop [1] is not appropriate, and we do not recommend its use. 
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1. INTRODUCTION 

 The question of how best to characterize the growth 

component of macroeconomic time series has been hotly 

debated since the publication of the study by Nelson and 

Plosser [5]. The most widely held view before 1982 was that 

most macroeconomic time series could be characterized as 

trend-stationary (TS) series. Nelson and Plosser’s study 

called into question that widely held view by demonstrating 

that thirteen out of fourteen USA macroeconomic time series 

in their study contained a unit root, and thus were difference-

stationary (DS) series. Although the debate is far from 

settled,
1
 a related debate is concerned with the statistical 

techniques to use in testing between TS and DS series. 

Several economists, e.g., DeJong and Whiteman [7], Koop 

[1], and in particular, Sims [2], and Sims and Uhlig [8], have 

advocated forcefully for Bayesian alternatives over the more 

traditional classical approach such as the augmented Dickey-

Fuller (ADF) tests [9] in unit-root testing. These economists 

cited several advantages of the Bayesian approach over the 

classical approach. For example, it is well known that ADF 

tests have low power against plausible alternatives, 

especially against trend-stationary alternative. The Bayesian 

approach, on the other hand, would reveal that both the unit 

root and the trend-stationary hypotheses would receive 

similar posterior probabilities. Thus, the Bayesian approach 

provides a more reasonable summary of sample information 

than the classical approach. Another problem with the 

classical unit-root tests is the discontinuity of the classical 

asymptotic theory when there is a unit root (see Sims [2] 
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1 For a recent contribution to the debate, see Murray and Nelson [6]. 

especially for a good discussion of this point). The Bayesian 

approach, on the other hand, since it is based on the 

likelihood function, does not have the same discontinuity 

problem. Finally, Koop [10] has also pointed out that, in the 

classical approach, the small sample critical values, which 

are used frequently, could very often differ substantially 

from the asymptotic critical values. The Bayesian approach, 

on the other hand, since it is conditional on the observed 

sample, provides exact small sample results. Indeed, an 

entire issue of the Journal of Applied Econometrics [11] was 

devoted to a discussion of these and other issues. 

 Despite the apparent advantages of the Bayesian 

approach over the classical approach in unit-root testing, 

only a relatively small number of studies have appeared 

using the Bayesian approach. The reasons may be that the 

Bayesian approach requires a likelihood function and the use 

of prior information. The perception is that other than for the 

simplest cases, the Bayesian approach is computationally 

burdensome, and the use of prior information is by far the 

most controversial. Phillips [3, 4] identified the need for 

priors as the biggest obstacle to Bayesian analysis and 

argued for more objective Bayesian analysis in time series. 

 In this paper, we study what Koop [1] has called the 

“objective” Bayesian test. Koop’s [1] Bayesian unit-root test 

is based on the work of Zellner and Siow [12]. There are 

several features of this approach that make it attractive for 

economists looking for an alternative to the classical unit-

root tests. First, it is computationally simple. Second, it 

requires informative priors, thus avoiding the problems 

associated with using non-informative priors, which are 

frequently improper. Third, it does not require significant 

subjective prior information, only that all competing 

hypotheses have equal prior probability, leading Koop [1] to 

call this an “objective” Bayesian test. 



72    The Open Economics Journal, 2009, Volume 2 Francis W. Ahking 

 Koop’s [1] Bayesian test appears to address one of the 

biggest criticisms of Bayesian econometrics and is very 

much in the spirit of Phillips’s [3, 4] call for more objective 

analysis in Bayesian time series. However, the reliability of 

Koop’s [1] Bayesian unit-root test, and in particular, whether 

or not it provides a better alternative to classical unit root 

tests, and how appropriate are his objective priors are 

questions that have not been examined extensively. Koop [1] 

himself has provided some limited simulation results on the 

size and power of the “objective” Bayesian unit-root test, 

and has obtained mostly favorable results. The one major 

drawback however is that Koop used a data generating 

model (DGM) which is identical to the one used by DeJong, 

Nankervis, Savin, and Whiteman [13], and test statistics of 

this DGM are dependent on the initial starting value.
2
 There 

is no optimal way to determine the appropriate starting 

value, however. In addition, we are not aware of any other 

published studies that have examined the power of the 

“objective” Bayesian unit-root test. Thus, the reliability of 

the “objective” Bayesian unit-root test is very much an 

opened question. In this paper, we seek to study the two 

related questions of reliability and the appropriateness of the 

objective priors by providing a Monte Carlo study of the 

power of Koop’s [1] “objective” Bayesian unit-root test. We 

will use a less restrictive DGM and will also conduct our 

simulations using different sample sizes and parameter 

values. We start our empirical analysis by applying the 

“objective” unit-root test to a study of long-run purchasing 

power parity (PPP) to see how this test would perform in 

actual empirical application. This is also motivated by the 

fact that frequently, the usefulness of an empirical test is 

determined, to a large extent, by how well it performs in 

actual application. Next, we perform a number of 

simulations to assess the power of the test and thus provide 

information on both the usefulness of the test and the 

appropriateness of the “objective” priors. 

 As we will argue below (see footnote 4), however, even-

though we assign equal prior probability to all the competing 

hypotheses, the unit-root hypothesis actually receives the 

highest prior probability. We provide a brief discussion of 

Koop’s [1] “objective” Bayesian unit-root test in the next 

section. We present our empirical results on long-run PPP in 

section 3. We study the properties of the “objective” 

Bayesian unit-root test using Monte Carlo simulations in 

section 4. Finally, our summary and conclusions are in 

section 5. 

2. KOOP’S “OBJECTIVE” BAYESIAN APPROACH 

 The modeling objective of the Bayesian approach is not 

to reject or fail to reject a hypothesis based on a pre-

determined level of significance, but to determine how 

probable a hypothesis is relative to other competing 

hypotheses. There are several ways of comparing hypotheses 

                                                             
2 Specifically, the test statistics is dependent on the “standardized initial 

displacement”, which, according to DeJong, Nankervis, Savin, and 

Whiteman [13], “measures the distance (in units of the innovation standard 

deviations) between the initial value
0
y and the trend line”, where

0
y is the 

initial value of the generated time series ty . 

using Bayesian methods. The most common method is to 

calculate posterior odds ratios for various competing 

hypotheses based on prior and sample information. This 

gives the researcher the odds in favor of one hypothesis 

relative to other competing hypotheses. The objective in 

Koop’s “objective” Bayesian approach is to find the linear 

model that would best describe the time series, 

q = (q1, q2 , ... , qT ) ' . We consider three hypotheses: 

H1 :   qt = 0 + i

i=1

k

qt i + k+1t + 1t ,         (1) 

H2 :  qt = 0 + i

i=1

k

qt i + 2t , ( k+1 = 0)         (2) 

H3 :  

qt = 0 ( i

i=2

k

) qt 1

( i ) qt 2
i=3

k

k qt (k 1) + 3t

,        (3) 

           ( i

i=1

k

= 1, k+1 = 0)  

where t = a linear deterministic time trend; and 

jt , j = 1, 2, 3  is a serially uncorrelated error process with 

zero-mean and constant variance. 

 Hypothesis 1 (H1)  is the null model. It hypothesizes a 

trend-stationary auto-regressive process of order k , i.e., a 

trend-stationary AR(k) process. H2  hypothesizes a 

stationary AR(k) process, while H3  hypothesizes an AR(k) 

process with a unit root. Note that both H2  and H3  are 

special cases of H1  with linear restrictions (given in 

parentheses next to the respective equations), imposed on the 

null model. The trend-stationary hypothesis is included 

because it is the leading alternative to unit-root non-

stationarity in macroeconomics time series. The stationary 

alternative is also included to see how well the “objective” 

Bayesian test can distinguish between non-stationary series 

and stationary series with a high degree of persistence, as is 

frequently encountered in macroeconomic time series. 

 We compare the three hypotheses, based on both prior 

and sample information, by calculating the posterior odds 

ratios: 

K1 j =
P(H1)P(H1 | q)

P(H j )P(H j | q)
, j = 2, 3 ,          (4) 

where P(H1) / P(H j )  is called the prior odds ratio, 

and
  
P(H

i
| q) = P(

i
| H

i
)L(

i
| q, H

i
)d

i
, i = 1, 2, 3 , is the 

posterior probability that Hi , i = 1, 2, 3 , were true given the 

sample data q , P( i | Hi )  and 
  
L(

i
| q, H

i
)  are the prior 

density for 
 i

, and likelihood function, respectively, under 
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each hypothesis, and  is a vector of parameters. Thus, the 

posterior odds ratio gives the ratio of the probabilities of the 

two hypotheses being true given the sample data.
3
 On the 

assumption that all three hypotheses have equal prior 

probability,
4
 i.e., P(H1) = P(H2 ) = P(H3) , equation (4) 

reduces to 

K1 j =
P(H1 | q)

P(H j | q)
, j = 2, 3 .           (5) 

 Following Koop [1], we calculate the posterior odds ratio 

for testing a set of exact linear restrictions with a formula 

suggested by Zellner and Siow [12]. The Zellner-Siow 

posterior odds ratio is calculated approximately as: 

K1 j
( 0.5 / [(r +1) / 2])(v / 2)r /2

(1+ rF / v)(v 1)/2 , j = 2, 3 ,        (6) 

where [ ]  = the Gamma function, v = T – n, T = the total 

number of observations, n = the number of regressors in the 

null model, r = the number of linear restrictions tested, and F 

= the usual F-statistics for testing the set of linear 

restrictions. After we obtained the posterior odds ratios, we 

can then calculate the posterior probability for each of the 

three hypotheses. We apply the “objective” Bayesian test to 

a study of long-run PPP in the next section. 

3. TESTING FOR LONG-RUN PPP 

 The theory of Purchasing Power Parity (PPP) occupies a 

central place in international economics. It is a key building 

block of the monetary models of exchange rate 

determination. In the flexible-price monetary model of 

exchange rate (e.g., Frenkel [14]), PPP is assumed to hold 

continuously. In the sticky-price monetary model (e.g., 

Dornbusch [15]), because of sticky prices in the short run, 

PPP does not hold, but is a maintained assumption for the 

long run. Recent empirical tests of PPP have mainly focused 

on the long run given that there are frequent large and 

persistent deviations from PPP. The question of interest is 

whether deviations from PPP are transitory or permanent. 

Thus, the empirical tests generally take the form of testing 

for stationarity of the real exchange rate. If deviations from 

PPP are transitory, we would expect the time series of the 

real exchange rate to be stationary. In this case, PPP holds 

for the long run. On the other hand, the finding of a unit-root 

non-stationary time series of the real exchange rate would 

                                                             
3 Koop [1] also considered what he called the g-prior approach. This 

approach, however, requires the subjective input by the researcher on the g 

values, and thus is less “objective” than the approach considered here. 
4 One could argue that even-though the three competing hypotheses have 

equal prior probability, the unit-root hypothesis is the most favored, and the 

trend-stationary hypothesis is the least favored. For example, the prior 

probability for the unit-root hypothesis, i.e., = 1  is 33.33 percent, while 

the stationary interval (0 < < 1) also receives 33.33 percent prior 

probability, distributed uniformly in that interval, resulting in each point in 

that interval receiving extremely low prior probability. For the trend-

stationary hypothesis, however, the 33.33 percent prior probability, in 

addition to being distributed on the stationary interval, must also be 

distributed on the infinite interval of values that the time-trend coefficient 

may take. 

imply that deviations from PPP are permanent, and PPP does 

not hold. 

 There is a vast empirical literature on long-run PPP using 

a variety of empirical techniques and approaches.
5
 Examples 

from recent studies include Diebold, Husted, and Rush [18] 

using the autoregressive fractionally integrated moving-

average approach, Engel and Kim [19] using a long span of 

data that mixed both fixed and flexible exchange rate data, 

O’Connell [20] using panel data, Murray and Papell [21] 

using a structural-break adjusted approach, and Ahking [17] 

using a non-parametric approach. Unfortunately, the results 

have been largely inconclusive and also not very robust, 

especially using data from the post-Bretton Woods era (see 

the surveys by Rogoff [22], and Sarno and Taylor [16]). 

Only a few empirical studies have used a Bayesian approach, 

however (see, for example, Schotman and Van Dijk [23], 

Whitt [24], and Ahking [25]). Given the alleged advantages 

of using the “objective” Bayesian unit-root test discussed 

above, we present in this section a study of long-run PPP 

using the “objective” Bayesian unit-root approach. 

 We define the real exchange rate in natural logarithm 

form as: 

qt = et + Pt
* Pt , 

where qt  is the natural logarithm of the real exchange rate, 

et  is the natural logarithm of the nominal exchange rate, 

defined as the domestic currency price of one unit of foreign 

currency, and Pt (Pt
*)  is the natural logarithm of an index of 

the domestic (foreign) price level. A test for long-run PPP is 

a test of whether or not qt  is a stationary time series. The 

source of our data is SourceOECD, and consist of the OECD 

G-7 countries - the U.S., the U.K., Canada, Germany, Italy, 

France, and Japan. Our data consist of monthly observations 

from April 1973 to February 1999 for the G-7 countries, and 

are not seasonally adjusted. The sample ends when several of 

the G-7 countries became part of the Euro zone. Nominal 

exchange rates are bilateral and are monthly averages. In all 

cases, we use the consumer price index as our measure of the 

average price level. Thus, we have a total of twenty-one real 

exchange rates in our sample.
6
 

 We start our empirical tests by first presenting our test 

for unit-root using the ADF test. The ADF unit-root test 

results will provide a comparison to our Bayesian approach 

to unit-root testing. The ADF regression actually estimated 

is: 

qt = 0 + qt 1 + i qt i +

i=1

l

l+1t + t ,         (7) 

                                                             
5 Sarno and Taylor [16] provided a good survey on the recent literature on 

long-run PPP and a summary of the more recent empirical results on long-

run PPP can be found in Ahking [17]. 
6 The bilateral nominal exchange rates available have the U.S. dollar as the 

base currency, i.e., foreign currency per U.S. dollar. Non-U.S. dollar based 

exchange rates are computed as cross-rates. This assumes cross-rate equality 

except for transaction costs. This is probably a valid assumption for the G-7 

countries. Alternatively, as long as the measurement error is a stationary 

process, our tests for unit-root will not be affected. 
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where t = a linear deterministic time trend, and t  is a 

serially uncorrelated error process with zero mean and 

constant variance. We have included a linear deterministic 

time trend since several researchers have found that the 

stochastic processes of some of the real exchange rates in our 

study could not be adequately modeled without the inclusion 

of a linear deterministic time trend (see Cheung and Lai [26], 

and Koedijk, Schotman, and Van Dijk [27] for examples). 

Furthermore, since the time series of real exchange rates 

typically show evidence of a trend, the trend-stationary 

hypothesis offers an alternative to the unit-root hypothesis as 

the source of the non-stationarity in the data. The linear 

deterministic time trend in the real exchange rate is generally 

interpreted as representing systematic differences in 

productivity growth between tradable and non-tradable 

goods in the two countries (see Cheung and Lai [26] for a 

discussion). Thus, the presence of a linear deterministic time 

trend in the real exchange rate time series is generally not 

interpreted as a violation of long-run PPP.
7
 The lag length 

for the lagged first-differences is determined by using a 

general-to-specific method recommended by Ng and Perron 

[30] and Perron [31]. We start by estimating Equation (7) 

with a pre-determined maximum lag length of 12 and 

sequentially drop the last included lag if it is not statistically 

significant at the 10% significance level. If, however, the lag 

length determined is the same as the maximum lag length, 

we start over with a maximum lag length of 14.
8
 

 Table 1 reports the empirical results using the ADF test 

where we also report results of estimating Equation (7) 

without a linear time trend. Column 2 reports the lag length 

selected for each real exchange rate, columns 3 and 4 report 

the t-statistic for the hypothesis H0 : = 0  without and with 

a trend, respectively. We use the 5% and the 10% critical 

values from Fuller [32] and the lag-adjusted critical values 

for exact sample size from Cheung and Lai [33]. Long run 

PPP would require the rejection of the null hypothesis. From 

Table 1, column 3, we see that there are only three cases out 

of twenty one that the null hypothesis is rejected when 

Equation (7) is estimated without a trend, and five cases out 

of twenty one (column 4) when a trend is included. The 

results are as expected and consistent with earlier other 

studies using the ADF tests. The evidence against long-run 

PPP is rather strong without the inclusion of a time trend and 

slightly better when a time trend is included. 

 Table 2 presents the results of the “objective” Bayesian 

tests. In order to focus on the three main hypotheses, we use 

a non-Bayesian method to determine the lag length.
9
 Since it 

                                                             
7 Other researchers, Papell [28], and Culver and Papell [29], for example, 

argued that the presence of a linear deterministic time trend is inconsistent 

with long-run PPP, however. 
8 We have also tried other methods of lag-length determination, e.g., 

Akaike’s Information Creteria. While the lag lengths determined tend to be 

much shorter, they do not produce significantly different results than those 

reported in Tables 1 and 2, however. 
9 We use a non-Bayesian method, since the number of hypotheses increases 

rather rapidly if the same Bayesian approach is used to determine the lag 

lengths. This reduces the number of alternative hypotheses we need to 

consider and allow us to allocate the entire prior probability to the three 

hypotheses in question which are what we are most interested in. To check 

the robustness of our Bayesian results, we have also used a uniform four 

is not clear how best it is to determine the lag length for an 

equation such as equation (1), we keep it simple by starting 

with a lag length of one, and then two, and so on, and 

stopping when we obtain a white-noise error process.
10

 We 

also experimented with using a uniform lag of four for all the 

real exchange rates, the results are consistent with those 

reported in Table 2. 

Table 1. Univariate ADF Test Results 

 

Real Exchange Rate l  t( )  without Trend t( )  with Trend 

Canada/U.S. 12 -1.373  -2.025 

U.K./U.S. 11  -2.594** -2.725 

Germany/U.S. 10 -2.331 -2.472 

Italy/U.S. 10 -2.507 -2.545 

Japan/U.S. 11 -1.932 -2.731 

France/U.S. 3 -2.249 -2.244 

U.K./Canada 11 -2.014 -2.719 

Germany/Canada 10  -2.642** -2.660 

Italy/Canada  1+ -2.057  -3.298** 

Japan/Canada 11 -1.779  -3.416** 

France/Canada 5 -2.329 -2.663 

Germany/U.K. 12 -2.196 -2.793 

Italy/U.K. 11 -2.356 -2.351 

Japan/U.K. 10 -2.035 -2.595 

France/U.K. 1 -2.273 -2.630 

Italy/Germany 2 -1.654 -1.917 

Japan/Germany 8 -1.668  -3.598* 

France/Germany 9  -3.066**  -4.499* 

Japan/Italy 3 -2.433 -3.101 

France/Italy 3 -1.966 -1.991 

France/Japan 8 -1.983  -3.791* 

Note: *,** Denote the rejection of the null hypothesis at the 5% and the 10% 

significance levels, respectively. 
+ The lag length is 10 for the Canadian dollar/lira real exchange rate when estimated 

without a linear time trend. 

 

 What we find striking is that, of the three hypotheses, the 

trend-stationary hypothesis receives the highest posterior 

probability in all cases except for the Japanese yen/German 

mark real exchange rate. In that case, the stationary 

hypothesis receives the highest posterior probability. The 

French franc/German mark real exchange rate also deserves 

mention because it is the only case where the trend-

stationary and the stationary hypotheses receive 

approximately the same posterior probabilities. Interestingly, 

these are the same two real exchange rates that Cheung and 

Lai [26] have found to be well characterized by stationary or 

                                                                                                        
lags for all the real exchange rate series. The results are not very different 

from those reported in the paper. 
10 Our later simulation results also suggest that the results in Table 2 are 

unlikely the result of the choice of the lag-length. 
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trend-stationary processes using the conventional ADF tests. 

The unit root hypothesis, on the other hand, receives no 

significant posterior probability. In sum, the Bayesian results 

strongly support the hypothesis that the real exchange rates 

are trend-stationary AR processes. Or, put differently, the 

restrictions on the null model are not strongly supported by 

the data. Thus, according to the “objective” Bayesian unit-

root test, the results support long-run PPP. 

Table 2. Posterior Probabilities 

 

Real Exchange Rate k  Trend Stationary Stationary Unit Root 

Canada/U.S. 11 0.83 0.14 0.03 

U.K./U.S. 2 0.84 0.06 0.10 

Germany/U.S. 2 0.91 0.06 0.03 

Italy/U.S. 2 0.91 0.05 0.04 

Japan/U.S. 2 0.85 0.11 0.04 

France/U.S. 2 0.93 0.04 0.02 

U.K./Canada 2 0.74 0.20 0.06 

Germany/Canada 2 0.92 0.04 0.03 

Italy/Canada 2 0.53 0.29 0.17 

Japan/Canada 2 0.70 0.25 0.05 

France/Canada 2 0.89 0.07 0.04 

Germany/U.K. 2 0.80 0.15 0.05 

Italy/U.K. 2 0.87 0.04 0.09 

Japan/U.K. 3 0.89 0.07 0.04 

France/U.K. 2 0.83 0.09 0.08 

Italy/Germany 2 0.83 0.14 0.04 

Japan/Germany 2 0.21 0.65 0.15 

France/Germany 2 0.39 0.36 0.25 

Japan/Italy 2 0.63 0.18 0.18 

France/Italy 2 0.91 0.07 0.02 

France/Japan 3 0.65 0.24 0.11 

Note: The posterior probabilities may not sum to one because of rounding. 

 

 The two empirical approaches present rather different 

conclusions concerning long run PPP. One way to resolve 

this is to assess the reliability of each empirical approach. 

There is already a body of literature that suggests that 

classical unit-root tests such as the ADF tests have low 

power against plausible alternatives such as trend-stationary 

alternative (e.g., Hakkio [34], DeJong, Nankervis, Savin, and 

Whiteman [13]). Not much, however, is known about the 

power of the “objective” Bayesian unit-root test. As we 

mentioned earlier, Koop [1] presented some limited 

simulation results that suggest that the “objective” Bayesian 

unit-root test has fairly good power. We have also 

mentioned, however, that the test statistics used in Koop’s 

simulations are dependent on the initial starting value of the 

DGM. Thus, Koop’s simulation results are rather limited in 

its usefulness, and the general reliability of the “objective” 

Bayesian unit-root test cannot be said to have been 

established. In the next section, we will investigate the 

reliability of the “objective” Bayesian results by performing 

a number of simulations that are more general that those 

presented by Koop [1]. 

4. THE POWER OF THE “OBJECTIVE” BAYESIAN 
UNIT-ROOT TEST 

 In this section, we perform a number of Monte Carlo 

experiments to study the power of the “objective” Bayesian 

unit-root test. This will allow us to assess the reliability of 

our results in Section 3, investigate the usefulness the 

“objective” Bayesian approach in empirical application, and 

whether or not it is better than the classical ADF approach in 

unit-root tests. The power of the “objective” Bayesian unit-

root test in these experiments is defined as the percentage of 

time that the hypothesis corresponding to the DGM receives 

the highest posterior probability in repeated samples. The 

greater the percentage, the greater the power. For all our 

experiments, we use a DGM of the following form: 

yt = + yt 1 + t + ut , ut ~ iid N(0, u
2 ) , 

where = ( , , ) is a vector of coefficients. Since the test 

statistics of our DGMs depend only on , for the first 

experiment, we use 

= (0.059317, 0.95 0.99, 0.0000201) , 

ut ~ iid N(0, 0.000564) , and  varies from 0.95 to 0.99, in 

increment of 0.01. Thus, the data generating model is a 

trend-stationary AR(1) process. The constant, the time-trend 

coefficient, and the variance of the error process are averages 

from estimating the null model (Equation 1) with data from 

the twenty-one real exchange rate series. Thus, they 

represent economically plausible parameters. The values of 

 that we choose are also based on what we consider to be 

plausible alternatives for monthly series. For example, Sims 

[2] argued that for monthly data, it is reasonable to 

concentrate the prior odds on the interval (0.98, 1) as 

opposed to, say (0.5, 1). Second, there appears to be a 

consensus among economists that deviations from long-run 

PPP have a half-life of about three to five years (see e.g., 

Abuaf and Jorion [35], Rogoff [22]).
11

 According to Caner 

and Kilian [36], this corresponds to a  value of 0.98 and 

0.99, respectively, for a half-life of three and five years, 

using monthly data. In sum, we believe that the parameter 

values that we choose for our Monte Carlo experiment are 

economically plausible. 

 For all our simulations, we first generate 

T +100 observations, where T  is the actual sample size 

used in our simulations, and discard the first 100 

observations to avoid the initialization problem. All 

experiments are replicated 5,000 times for each  value. We 

start our simulation by letting T = 311 , which corresponds 

to the sample size of our real exchange rates. The results are 

reported in the upper panel of Table 3. The results reveal a 

                                                             
11 A recent paper by Murray and Papell [21] has shown that the half-life 

estimates are extremely unreliable, however. 
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surprising pattern. For 0.95 < < 0.98 , the trend-stationary 

hypothesis receives the highest posterior probability the 

greatest proportion of the time. The power of the test 

increases from = 0.95  and peaks at = 0.97 . At 

= 0.99 , however, the unit-root hypothesis receives the 

highest posterior probability the largest proportion of the 

time, suggesting an extremely low power of the “objective” 

Bayesian test at this value of . 

Table 3. (a) Data Generating Model: yt = 0.059317 + yt 1

0.00000201t+ut, ut ~ iid N(0,0.000564)  

 

Proportion of Times that a Hypothesis Receives the 

 Largest Posterior Probability 

 Trend Stationary Stationary Unit Root 

0.99  3.64  0.02 96.34 

0.98 68.18 16.36 15.46 

0.97 73.00 14.80 12.20 

0.96 66.76 10.30 22.94 

0.95 55.44  6.16 38.40 

    

 

(b) Data Generating Model: yt = 0.059317 + yt 1+ut, ut ~ iid 

N(0,0.000564) 

 

Proportion of Times that a Hypothesis Receivesthe  

Largest Posterior Probability  

 Trend Stationary Stationary Unit Root 

1.00 67.22 32.32  0.46 

0.99  5.08  0.10 94.82 

0.98 75.26  3.84 20.90 

0.97 79.76  2.16 18.08 

0.96 69.60  1.36 29.04 

0.95 56.34  0.52 43.13 

 

 We perform a second experiment using a DGM model 

with = (0.059317, 0.95 1.00, 0.0) , i.e., an AR(1) 

model, and ut has the same properties as the first experiment. 

In this experiment, however, we vary  from 0.95 to 1.00, 

in increment of 0.01. Thus, the DGM is a stationary AR(1) 

model for 0.95 < < 0.99 , and a random-walk with drift 

model when 
 

= 1 . The results are reported in the lower 

panel of Table 3. Interestingly, for 0.95 < < 0.99 , the 

results mirror the results reported in the upper panel of Table 

3. This, perhaps, is not surprising since the effect of the time 

trend is extremely small, thus making the two DGMs almost 

the same. At = 1.00 , the trend-stationary hypothesis 

receives the highest posterior probability the largest 

percentage of the time, followed by the stationary 

hypothesis, while the unit-root hypothesis receives the 

highest posterior probability less than 1% of the time. 

 The results in Table 3 are not very encouraging to the 

“objective” Bayesian unit-root test. First, for 

0.95 0.98 , it cannot distinguish between a highly 

persistent trend-stationary model from a highly persistent 

stationary AR model. There appears to be a bias in favor of 

the trend-stationary model. At = 0.99  the unit-root 

hypothesis is favored regardless of the DGM used. When the 

DGM is a random-walk with drift model, the “objective” 

Bayesian unit-root is biased in favor of the trend-stationary 

model. Thus, just as the classical ADF test is criticized 

frequently for its bias in favor of finding an unit root, it 

appears that the “objective” Bayesian unit-root test can also 

be criticized for its bias in favoring trend-stationarity. Given 

the Monte Carlo results, it is impossible to draw any 

conclusions regarding long-run PPP since the underlying 

DGMs of the real exchange rates are unknown. Thus, the 

simulation results suggest that, because of its low power 

against plausible alternatives, the “objective” Bayesian unit-

root test does not provide a better statistical approach than 

the classical ADF test in unit-root testing. 

 We also perform a number of additional Monte Carlo 

experiments to determine if the “objective” Bayesian unit-

root test may be sensitive to sample size, the size of the 

constant, or the size of the trend coefficient. We use the same 

two DGMs as earlier but with ut ~ iid N(0, 1) , and again 

generate T +100 observations for the simulations. In 

particular, we use sample sizes of T  = 60, 240, 720, which 

are approximately the sample sizes of post-war annual, 

quarterly, and monthly data, respectively. For the constant 

term, we use = 1, 0, and -1, and for the trend-stationary 

model, we use  = 0.05, and -0.05. We perform simulations 

for all possible combinations of  T , ,  and , using both 

the AR(1) and the trend-stationary AR(1) DGMs. All 

experiments are also replicated 5,000 times. 

  For both the trend-stationary AR(1) and the AR(1) 

DGMs, the results are not very sensitive to the constant and 

the trend coefficient that we use but are sensitive to the 

sample size. Rather than reporting the large number of 

results, we will instead report in Tables 4 and 5 only the 

representative results. Table 4 shows the results for the 

trend-stationary AR(1) DGM with = (1.00, 0.95 0.99, 0.05) . 

For T = 60, the “objective” Bayesian unit-root test cannot 

easily distinguish between the trend stationary and the 

stationary hypotheses. Its power, however, increases 

gradually as  approaches 0.99. For the two larger samples, 

the power of the “objective” test drops off significantly. That 

is, the proportion of times that the hypothesis that 

corresponds to the DGM receiving the largest posterior 

probability actually decreases as the sample size increases. 

This is in contrast to classical statistics, where generally the 

power of a test increases as the sample size increases as the 

bias due to small sample diminishes. For 0.95 0.98 , 

the stationary hypothesis receives the largest posterior 

probability the largest percentage of the time. For = 0.99 , 



“Objective” Bayesian Unit-Root Test The Open Economics Journal, 2009, Volume 2    77 

the “objective” test favors the unit-root hypothesis almost 

100 percent of the time. Thus, for the two larger samples, 

there is a bias in favor of the stationary hypothesis, except 

when = 0.99  where the unit-root hypothesis is favored. In 

summary, the results in Table 4 show that the “objective” 

Bayesian unit-root test has very low power when the DGM is 

a trend-stationary process. 

Table 4. Data Generating Model:  = (1.00,0.95 0.99,0.05), 

ut ~ iid N(0,1) 

 

T= 60 

 

Proportion of Times that a Hypothesis Receives  

the Largest Posterior Probability 

 Trend Stationary Stationary Unit Root 

0.99 51.00 33.40 15.60 

0.98 49.52 48.68 1.80 

0.97 48.06 50.90 1.04 

0.96 45.40 53.52 1.08 

0.95 43.98 55.10 0.92 

 

T = 240 

 

Proportion of Times that a Hypothesis Receives  

the Largest Posterior Probability  

 Trend Stationary Stationary Unit Root 

0.99 0.10 0.00 99.90 

0.98 49.02 50.72 0.26 

0.97 38.74 61.24 0.02 

0.96 26.26 73.74 0.00 

0.95 16.10 83.90 0.00 

 

T = 720 

 

Proportion of Times that a Hypothesis Receives  

the Largest Posterior Probability:  

 Trend Stationary Stationary Unit Root 

0.99 0.00 0.00 100.00 

0.98 13.64 86.36 0.00 

0.97 2.04 97.96 0.00 

0.96 0.06 99.94 0.00 

0.95 0.00 100.00 0.00 

 

 Turning now to Table 5 where we use an AR(1) DGM 

with = (1.00, 0.95 1.00) , we see that the power of 

the “objective” Bayesian test is extremely low. For T = 60 

and T = 240, there is a clear bias in favor of the trend 

stationary hypothesis, and also for T = 720 

when 0.98 1.00 . The unit root hypothesis is favored 

when 0.95 0.97 for T = 720. Again, just as the results 

in Table 4, the power of the “objective” Bayesian unit-root 

test also decreases as the sample size increases. 

Table 5. Data Generating Model:  = (1.00,0.95 1.00), ut ~ 

iid N(0,1) 

 

T = 60 

 

Proportion of Times that a Hypothesis Receives the  

Largest Posterior Probability 

 Trend Stationary Stationary Unit Root 

1.00 51.00 46.66 2.34 

0.99 59.94 32.44 7.62 

0.98 69.16 20.52 10.32 

0.97 70.88 17.22 11.90 

0.96 70.62 15.30 14.08 

0.95 71.42 13.66 14.92 

 

T = 240 

 

Proportion of Times that a Hypothesis Receives the  

Largest Posterior Probability  

 Trend Stationary Stationary Unit Root 

1.00 64.80 34.58 0.62 

0.99 75.02 11.24 13.74 

0.98 82.92 7.22 9.86 

0.97 81.78 4.30 13.92 

0.96 76.80 3.58 19.62 

0.95 68.22 2.08 29.70 

 

T = 720 

 

Proportion of Times that a Hypothesis Receives the  

Largest Posterior Probability  

 Trend Stationary Stationary Unit Root 

1.00 74.92 24.86 0.22 

0.99 63.38 1.16 35.46 

0.98 71.60 1.34 27.02 

0.97 43.58 4.20 52.22 

0.96 15.00 0.00 85.00 

0.95 2.60 0.00 97.40 

 

 Finally, we are also interested in knowing whether or not 

the power of the “objective” Bayesian test would change if 

the DGM is less persistent. We repeat our simulations for the 

three sample sizes with the AR(1) DGM, for = 1.00, and 

= 0.70, 0.75, 0.80, 0.85, 0.90 . The results are shown in 

Table 6. Once again, the power of the “objective” Bayesian 
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test is extremely low. For the smallest sample size, the 

“objective” Bayesian test favors either the trend-stationary 

hypothesis or the unit-root hypothesis. For the two larger 

sample sizes, the unit-root hypothesis is favored most of the 

time. We again observe that the power of the “objective” 

Bayesian unit-root test decreases with the sample size. 

Table 6. Data Generating Model:  = (1.00, ), ut ~ iid N(0,1) 

 

T = 60 

 

Proportion of Times that a Hypothesis Receives the  

Largest Posterior Probability  

 Trend Stationary Stationary Unit Root 

0.90 66.38 6.94 26.68 

0.85 55.70 3.24 41.06 

0.80 40.68 2.22 57.10 

0.75 24.28 2.20 73.52 

0.70 12.92 0.04 87.04 

 

T = 240 

 

Proportion of Times that a Hypothesis Receives the  

Largest Posterior Probability  

 Trend Stationary Stationary Unit Root 

0.90 14.18 0.04 85.78 

0.85 0.46 0.00 99.54 

0.80 0.00 0.00 100.00 

0.75 0.00 0.00 100.00 

0.70 0.00 0.00 100.00 

 

T = 720 

 

Proportion of Times that a Hypothesis Receives the  

Largest Posterior Probability 

 Trend Stationary Stationary Unit Root 

0.90 0.00 0.00 100.00 

0.85 0.00 0.00 100.00 

0.80 0.00 0.00 100.00 

0.75 0.00 0.00 100.00 

0.70 0.00 0.00 100.00 

 

 The simulation results in this section lead us to several 

conclusions. First, regardless of the DGMs used, the 

“objective” Bayesian unit-root test has rather low power. 

Moreover, the general tendency is to favor the trend-

stationary hypothesis. Second, the test statistics are sensitive 

to the sample size. Contrary to what one would expect that 

the power of the test to increase with the sample size as the 

small sample bias diminishes, the power of the “objective” 

Bayesian unit-root test actually decreases with the sample 

size increases. Thus, our simulation results show that the 

“objective” Bayesian unit-root test is rather unreliable and 

certainly does not provide an improvement over the classical 

approach in unit-root test. 

5. SUMMARY AND CONCLUSIONS 

 Researchers generally agree that the Bayesian approach 

offers a useful alternative to the classical approach in 

empirical modeling. In unit-root testing, Sims [2], Sims and 

Uhlig [8], and Koop [1, 10] have advocated the Bayesian 

approach over the classical ADF tests. Phillips [3, 4] 

identified the need for subjective priors as one of the 

criticisms of the Bayesian approach, and called for more 

objective Bayesian analysis. Koop [1] offered the 

“objective” Bayesian unit-root test which requires less 

subjective input from the researcher, is computationally 

simple, and thus offers an attractive alternative to the 

classical approach in unit-root testing. Koop [1] offered 

some limited simulation results on the size and power of the 

“objective” Bayesian unit-root test, and found them to be 

mostly favorable. Except for Koop’s [1] paper, by and large, 

the power of the “objective” Bayesian unit-root test is 

unknown. In this paper, we study the power of Koop’s 

“objective” unit-root test. We use a general DGM, conduct 

the simulations using different sample sizes and different 

parameter values. Our objective is to provide more evidence 

on the reliability of the “objective” Bayesian unit-root test. 

In particular, we are interested in whether or not it provides a 

better alternative to the classical ADF unit-root test, and 

whether or not the use of “objective” priors is appropriate. 

 We first test for long-run PPP using both the classical 

ADF and the “objective” Bayesian tests. The results with the 

classical ADF offer little support for long-run PPP. Our 

“objective” Bayesian results, on the other hand, provide a 

stark contrast to the ADF results. In all cases, the hypothesis 

of an unit root does not receive significant posterior 

probability. Rather, sample information appears to strongly 

support the hypothesis of trend-stationarity for all cases 

except the Japanese yen/German mark real exchange rate 

where the sample information suggests a stationary time 

series. The French franc/German mark real exchange rate is 

the other case where the stationary hypothesis receives 

significant posterior probability. 

 Next, we study the power of the “objective” Bayesian 

test with Monte Carlo simulations first using parameter 

values suggested by the real exchange rate sample data and 

then using more general parameter values. The results are 

not very encouraging. In particular, using economically 

plausible parameters for monthly data of real exchange rates 

for our DGMs, we find that the “objective” Bayesian test 

cannot distinguish between a trend-stationary AR model 

from a stationary AR model when the time trend effect is 

relatively small, and the time series is highly persistence. 

The bias is in favor of finding a trend-stationary model. 

When = 0.99 , the “objective” Bayesian test is biased in 

favor of a unit-root. On the other hand, when the DGM is a 

random-walk with drift model, the test is biased in favor of 

the trend-stationary hypothesis. Additional simulations also 



“Objective” Bayesian Unit-Root Test The Open Economics Journal, 2009, Volume 2    79 

suggest that the “objective” Bayesian test is sensitive to 

sample sizes, where the power actually decreases as the 

sample size increases. 

 In summary, contrary to Koop’s [1] findings, our 

simulation results suggest that the “objective” Bayesian unit-

root test is not a reliable test since there is a bias in favor of 

finding a trend-stationary model. Our application to a test of 

long-run PPP clearly demonstrated the danger of using the 

“objective” Bayesian unit-root test in empirical testing. 

Thus, we conclude that there is no evidence to suggest that 

the “objective” Bayesian test is better than the classical ADF 

tests in unit-root tests. We see nothing here to recommend its 

use in unit-root testing. Thus, unfortunately, while there is a 

need for more objective analysis of Bayesian time series, 

Koop’s “objective” Bayesian test does not appear to move us 

closer to that goal. 
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