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Abstract: It is well known that a displacement interface reflects the intermixing extent of two-phase fluids. Optimization 
of displacing and fluids’ property parameters is the key to achieve good cementing quality according to the displacement 
interface shape. In previous literatures, the model for the steady displacement interface shape in inclined wells only takes 
the factor of annular azimuthal angle into account, but not including annular radium term, which is imperfect. In this 
paper, by comprehensively analyzing the effects of both azimuthal angle and annular radium on the displacement interface 
shape, we establish a modified model for the steady displacement interface shape in inclined wells with eccentric annuli 
on the basis of a 2D Hele-Shaw displacement model, which will be more suitable for describing the actual displacement 
interface shape. From the modified model, we obtain: When density difference is smaller, the position of interface front is 
on the external casing wall of the annular wide side; otherwise, it will occur on the wellbore wall of the annular narrow 
side under a greater density difference. The displacement interface length in inclined wells with eccentric annuli is 
decreased and then increased with the increase of density difference, which indicates that there does exist an optimal 
density difference to make the interface length minimum. For a certain casing’s eccentricity, the optimal density 
difference in inclined wells is gradually decreased with deviation angle. When meeting the conditions of pressure stability 
and anti-leak, a greater density difference can obtain better displacement effect for vertical wells, otherwise, a smaller 
density difference can be good for horizontal wells. 
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1. INTRODUCTION 

 A displacement interface reflects the intermixing extent 
of two-phase fluids in cement. A longer interface means that 
more displacing fluids become contaminated. When the 
interface length gets out of control, that is to say, maintains 
growth, the accident that the interface trailing edge cannot 
return out the cementing segment at the end of cement 
operation may happen, as a result, which decreases the 
displacing efficiency [1, 2]. There is no doubt that a bad 
annular cementing quality can lead to any of the following: 
blowout, leakage at surface, destruction of subsurface 
ecology, potential contamination of freshwater, delayed or 
prevented abandonment, as well as loss of revenue. 
Therefore, decreasing the interface length is the premise to 
enhance the cementing quality. 
 For inclined wells, the displacement interface becomes 
more complex because of its unique loading conditions: (1) 
Casing tends to move toward the wellbore low side due to its 
own gravity, which creates a narrow annular clearance. 
Because of the greater resistance for fluid flow through the 
narrow clearance, it is easier for slurry to advance through 
the wide clearance on the wellbore up side. As a result, the 
interface will become longer and more complex; (2) There 
always exists a density difference between cement slurry and 
drilling mud. Heavy slurry tends to flow toward the wellbore 
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low side and light drilling mud always gathers in the up side, 
leading to the advancement of cement slurry in the wellbore 
up side and drilling-mud retention in the low side. Analysis 
on the two reasons, we can find that the effects of casing’s 
eccentricity and fluids’ density differences on the 
displacement interface are opposite, which is different with 
vertical wells [3, 4]. 
 S.H. Bittleston et al. divided the displacement situations 
into steady displacement, unsteady displacement and drilling 
fluid channel [5-13] (which was verified by S. 
Malekmohammadi in laboratory experiments [14]). Besides, 
they established a calculation model for the displacement 
interface shape. Unfortunately, the calculation model was 
not perfect. It only took the effect of annular azimuthal angle 
on the interface shape into consideration, but not including 
annular radius. They thought the interface at different radium 
had the same shape for a certain azimuthal angle. The theory 
was suitable for the vertical well. However, for inclined 
wells, because of the driving force generated by the density 
difference between slurry and drilling fluid depending on 
fluids’ positions, the driving force was a function of 
azimuthal angle and annular radius, the interface shape 
changed with annular radium could not be neglected. 
 In this paper, on the basis of a Hele-Shaw displacement 
model, we establish a modified model for the steady 
displacement interface shape in inclined wells with eccentric 
annuli which includes the annular radium term. The 
modified model lays a good foundation for analyzing the 
effects of density difference and deviation angle on interface 
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shape, besides, provides a basis for the optimization of 
displacing parameters and fluids’ property parameters during 
inclined well cementing. 

2. THE MODIFIED HELE-SHAW MODEL IN 
INCLINED WELLS WITH ECCENREIC ANNULI 

2.1. Hele-Shaw Physical Model for Cementing 
Displacements 

 A Hele-Shaw modeling approach derived by S.H. 
Bittleston et al. in 2002 is appropriate when analyzing 
cementing displacement on the scale of annular gap. We 
consider a simplified version of the model. The 
simplification that we make is that the annulus is locally 
uniform in the axial direction, i.e., over a length scale that is 
long in comparison to the azimuthal scale. 
 Dimensionless spatial coordinates are (φ, ξ )∈(0, 1)×(0, 
Z). Here, φ is the azimuthal coordinate with φ =0 denoting 
the wide side of the annulus and φ =1 the narrow (lower) 
side. The flow is assumed symmetric about φ=0, and thus 
only half the annulus is considered. This assumption implies 
that the narrow side of the annulus is always lying on the 
lower side of the well. The ξ-coordinate measures axial 
depth upwards along the annulus, as shown in Fig. (1). Here, 
Z denotes the length of the section of well to be cemented 
and typical lengths of cemented sections are of the order of 
hundreds of meters. 
 For the process of slurry displacing drilling mud in an 
inclined wells with eccentric annuli, so as to simplify the 
theoretical model deduction, we assume that: 
• Slurry and drilling fluid are characterized as 

Herschel-Bulkley fluids. 
• The wellbore is a regular circle shape and its radium 

is the same at each azimuthal angle. 
• Two-dimensional flow only along axial and azimuthal 

directions is considered. 
• Slurry has a direct contact with drilling fluid between 

which there is no spacer fluid. 

• The weight of the casing acts in such a way that the 
narrow side of the annulus will be found on the lower 
side of the well. 

• Steady displacement can be obtained under our 
chosen slurry’s performance parameters. 

2.2. The Modified Hele-Shaw Model for Inclined Well 
Cementing Displacements 

2.2.1. N-S Equation for Fluids on the Displacement 
Interface 

 During cementing displacements, the force of slurry 
displacing drilling fluid includes the pressure p* which is 
provided by pumps lying on oilfield surface and the driving 
force caused by the density difference. For vertical wells, it 
is obviously seen that the density difference force is equal in 
a wellbore cross section because there is no plumb altitude 
difference. However, for inclined wells, the size of density 
difference force depends on the fluids’ positions in the 
wellbore cross section, i.e., the plumb altitude from the 
wellbore up wall where pressure zero is. It is certain that the 
altitude changes with azimuthal angle and annular radium. 
Unfortunately, the Hele-Shaw model derived by S.H. 
Bittleston et al. is not successfully taken into account. So, a 
modified Hele-Shaw model during inclined well cementing 
is needed. 
 As shown in Fig. (2), the plumb altitude of A from the 
wellbore up wall (pressure zero) in an inclined wellbore 
cross section is given by: 

  
h* = r0

* − r* cosπϕ( )sin a   (1) 

 The azimuthal driving force caused by density difference 
is given by: 

  
Mϕ

* = ρ1
* − ρ2

*( )g* r0
* − r* cosπϕ( )sin a   (2) 

 The axial driving force caused by density difference is 
given by: 

  
Mξ

* = ρ1
* − ρ2

*( ) r0
* − r* cosπϕ( )g* cosa   (3) 

 
Fig. (1). Hele-Shaw physical model for cementing displacement. 
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Fig. (2). The driving force caused by density difference in the 
inclined well annulus. 

 The gradient of azimuthal driving force in the ϕ  

direction is equal to the partial derivative of 
 
Mϕ  forϕ , 

which is given by: 

  

∂Mϕ
*

∂ϕ
=
∂ ρ1

* − ρ2
*( )g* r0

* − r* cosπϕ( )sin a⎡
⎣

⎤
⎦

∂ϕ
= π ρ1

* − ρ2
*( )sinπϕ sin a

 (4) 

 AE is length derived from r projecting in axial direction. 
CD is a reference length which represents the deviation 
extent of displacement interface from vertical direction. If 
deviation angle a is certain, the reference length is 
unchangeable. So, we take the ratio of AE to CD as the 
gradient of axial driving force, which is given by: 

  

∂M
ξ

*

∂ξ
=
∂ ρ1

* − ρ2
*( ) r0

* − r* cosπϕ( )g* cosa⎡
⎣

⎤
⎦

∂ξ

= ρ1
* − ρ2

*( )g* cosa
AE
CD

=
ρ1

* − ρ2
*( ) r0

* − r* cosπϕ( )g* cosa

2ro

 (5) 

where Mϕ
∗  and Mξ

∗  represent the azimuthal and axial 
driving force caused by density difference respectively, 
MPa. ρ1

*  and ρ2
*  represent the actual density of slurry and 

drilling fluid respectively, g/cm3. g*  is the gravitational 
acceleration, 9.81m/s2. r0

*  is the actual wellbore radium, m. 
r*  represents the actual distance of any point A on the 

displacement interface from wellbore center, m. πϕ  is the 
azimuthal angle, rad. a is the deviation angle, °. 
 After mechanism analysis of fluids on the displacement 
interface, we can obtain the dimensionless N-S equation as 
follows: 

  

− ∂p
∂y

= 0

− 1
ra

∂p
∂ϕ

+
∂τϕ ,y

∂y
+ πΔρr sinπϕ sin a

St* = 0

− ∂p
∂ξ

+
∂τξ ,y

∂y
−
Δρ ro − r cosπϕ( )cosa

2ro ⋅St* = 0

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

  (6) 

2.2.2. Deviation of   S


 

 In the Hele-Shaw physical model (Fig. 1), we assume 
that slurry and drilling fluid are characterized as Herschel-
Bulkley fluids. Also, the motion of fluids on the 
displacement interface satisfies N-S equation. So, we can 
obtain: 

  

∂
∂y

η
∂vs

∂y
⎡

⎣
⎢

⎤

⎦
⎥ =

1
ra

∂p
∂ϕ

− πΔρr sinπϕ sin a
St*   (7) 

  

∂
∂y

η
∂ws

∂y
⎡

⎣
⎢

⎤

⎦
⎥ =

∂p
∂ξ

+
Δρ ro − r cosπϕ( )cosa

2ro ⋅St*   (8) 

 The flows we consider are therefore two-dimensional and 
the flow variables have been averaged across the annular gap 
H(φ, ξ). Using conditions of no-slip at the annulus walls to 
get the continuity equation: 

  

∂
∂ϕ

H v⎡
⎣

⎤
⎦ +

∂
∂ξ

Hra w⎡
⎣

⎤
⎦ = 0   (9) 

 According to the continuity equation (9), the average 
velocities in the azimuthal and axial directions can be 
expressed respectively by: 

0

1 H

sv v dy
H

= ∫ , 0

1 H

sw w dy
H

= ∫  
 By integrating (7) and (8) three times on y, we get: 

   
v = − 1

ra

∂p
∂ϕ

− πΔρr sinπϕ sin a
St*

⎡

⎣
⎢

⎤

⎦
⎥

1
H

y
η y( )y

H

∫0

H

∫ dydy  (10) 

   
w = − ∂p

∂ξ
+
Δρ ro − r cosπϕ( )cosa

2ro ⋅St*

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
H

y
η y( )y

H

∫0

H

∫ dydy  (11) 

where, the integrand on the right-hand side is zero in an 
unyielded region of the flow, i.e., η→∞  in such regions. It 

follows that the vector of averaged velocities 
  

v,w( )  is 

parallel to the 
 
ϕ ,ξ( )  plane to the vector   G
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G

= − 1

ra

∂p
∂ϕ

+ πΔρr sinπϕ sin a
St* ,− ∂p

∂ξ
−
Δρ ro − r cosπϕ( )cosa

2ro ⋅St*

⎛

⎝
⎜

⎞

⎠
⎟ 	  

 This is the vector of modified pressure gradient. 

 Assuming that the flow is simply a Poiseuille flow in the 
Hele-Shaw physical model, we can establish the relationship 
between pressure drop and flow rate which is represented by 
the stream function Ψ : 

  
−raGϕ = ∂p

∂ϕ
−
πraΔρr sinπϕ sin a

St* =
ra χ ∇aΨ( ) +τY H( )

∇aΨ
∂Ψ
∂ξ

  (12) 

  
Gξ = − ∂p

∂ξ
−
Δρ ro − r cosπϕ( )cosa

2ro ⋅St* =
χ ∇aΨ( ) +τY H( )

∇aΨ
1
r a

∂Ψ
∂ϕ

  (13) 

 We set 
   
S

= raGξ ,−raGϕ( ) , which can describe the 

relationship between the stress and flow rate of fluid on the 
displacement interface. Finally, we obtain that: 

   
S

= −ra

∂p
∂ξ

−
raΔρ ro − r cosπϕ( )cosa

2ro ⋅St* ,
∂p
∂ϕ

−
πraΔρr sinπϕ sin a

St*

⎛

⎝
⎜

⎞

⎠
⎟  (14) 

where, St* represents the Stoke number, which is defined as 

  St* = τ * ρ*g*H * .  ra  represents the dimensionless mean 
radium in the inclined well annulus. p is the dimensionless 
pressure. Δρ  is the dimensionless density difference.   r0  is 
the dimensionless wellbore radium.  r  represents the 
dimensionless distance of any point A on the displacement 
interface from wellbore center.  τ

*  represents the larger shear 
stress of slurry and drilling fluid.  ρ

*  represents the larger 

density of slurry and drilling fluid.   H *  is the mean half-gap 
width, m. H is the dimensionless mean half-gap width, which 
is defined as   H = ra (1+ ecosπϕ) . 

 The continuity equation is satisfied using a stream 
function: 

 

∂Ψ
∂ϕ

= ra Hw，
 
− ∂Ψ
∂ξ

= Hv   (15) 

where v  and w  are the dimensionless averaged velocities in 
the azimuthal and axial directions, respectively. Ψ  is a 
stream function. 

 When satisfying 
  
S

≥

raτY

H
, the displacing fluid maintains 

flowing. We can obtain the   S


 expressed by stream function 
Ψ : 

   

S

=

raχK ∇aΨ( )
∇aΨ

+
raτ K ,Y

H ∇aΨ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

1

1
ra

∂Ψ
∂ϕ

, ∂Ψ
∂ξ

⎛

⎝⎜
⎞

⎠⎟

= ∂Ψ
∂ϕ

χK ∇aΨ( )
∇aΨ

+
τ K ,Y

H ∇aΨ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

1

, ∂Ψ
∂ξ

raχK ∇aΨ( )
∇aΨ

+
raτ K ,Y

H ∇aΨ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

1⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

 (16) 

where, 

( ) ( )
( )
( )

2 1
,

2
,

2
= 0

12 /

K K

K

m m
K K Y

a K Km
KK K K K Y

mH
m Hm H

τχ χ χ
κ χ τ

+ + ⎡ ⎤+
∇ Ψ + >⎢ ⎥++ ⎢ ⎥+ ⎣ ⎦ . 

[ ]1 1 22
x x x= −  

where K represents fluids’ types, 1 is the slurry and 2 is the 
drilling fluid. χ  denotes the excess of pressure gradient over 
the critical value 

  
τ K ,Y H . 

  
τ K ,Y  represents the dimensionless 

yield stress of fluid K. Km  represents the power-law index of 
fluid K.  κ K is the dimensionless consistency of fluid K. 

 If smoothness of the interface is assumed, the tangential 
derivative of p along the interface will also be continuous: 

  

1
ra

∂p
∂ϕ

+ ∂p
∂ξ

∂h
∂ϕ

⎡

⎣
⎢

⎤

⎦
⎥

2

1

= 0   (17) 

 Equation (17) allows us to use (12) and (13) to eliminate 
the pressure, i.e., 

  

[
χ1 ∇aΨ( ) +τ1,Y H

∇aΨ
−
χ2 ∇aΨ( ) +τ 2,Y H

∇aΨ
](
∂Ψ
∂ξ

− 1
ra

∂Ψ
∂ϕ

∂h
∂ϕ

)+

π
St* Δρr sinπϕ sin a − cosa

2roSt* Δρ(ro − r cosπϕ)⎡⎣ ⎤⎦
∂h
∂ϕ

=0

  (18) 

where 
  
h ϕ ,r,t( )  represents the kinematic condition for the 

interface. 

3. THE MODIFIED MODEL FOR STEADY 
DISPLACEMENT INTERFACE SHAPE IN INCLINED 
WELLS WITH CONCENTRIC ANNULI 

3.1. Description of Fluids’ Positions on the Displacement 
Interface 

 Fluids of each position on the displacement interface are 
driven by different forces, especially on the wellbore low 
side where fluid is under greater driving force caused by 
density difference. As a result, local advance of the 
displacement interface happens. In order to describe the 
fluids’ motion on the interface exactly, i.e., the interface 
evolution, we introduce a kinematic equation. After applying 
scaling arguments and averaging across the gap, we obtain 
the kinematic condition for the interface, denoted by 
= ( , , )h r tξ ϕ , as follows: 

 

∂h
∂t

+ v
ra

∂h
∂ϕ

= w   (19) 

  h(ϕ ,r,t)=g(ϕ ,r)+ wt   (20) 

 From Equ. (19), we can see the positions of fluids’ on the 
displacement interface depend on two parts: (1) Distance that 
the entire interface moves. In time t, fluids’ positions change 
 wt . (2) Interface changes itself in the axial direction because 
of the driving force caused by density difference. We express 
the variation of fluids’ positions as   g(ϕ ,r) . In our research, 
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  g(ϕ ,r)  can reflect the interface shape. Greater absolute 
value of   g(ϕ ,r)  means the displacement interface is longer. 
It is well known that the intermixing extent of two-phase 
fluids (slurry and drilling fluid) becomes more severe, which 
results in worse displacement effect. However,   g(ϕ ,r)  will 
be unchangeable until the steady displacement arrives. 

3.2. Establishment of the Modified Steady Displacement 
Interface Shape Model 

 Assuming that the well is uniform in the ξ -direction and 

that a constant flow rate is pumped, we get   ra = w = 1 . Whilst 
for the displacement interface tracking, we introduce a frame 
of reference (z, φ) where  z = ξ − t  is moving with the mean 
speed of the flow, (=unity). The interface separates slurry, 
the lower displacing fluid, from drilling mud. We consider a 
long domain 

  
z ∈ −L, L( ) , with the steady interface centred at 

  z = 0 . We denote the interface position in the moving frame 
by: 

  
z = g ϕ ,r( ) = h ϕ ,r,t( )− t  

and write the stream function Ψ  as: 

  
Ψ = Φ +ϕ + e

π
sinπϕ   (21) 

i.e., Φ  is the stream function in the moving frame. Equation 

(18) allows us to use (20) and (21) to eliminate ∂Ψ
∂ϕ

, ∂Ψ
∂ξ

 

and 
 

∂h
∂ϕ

. Finally, we obtain the continuity condition at the 

interface: 

  

χ1 ∇a (Φ +ϕ + e
π

sinπϕ)
⎛
⎝⎜

⎞
⎠⎟
+τ1,Y H

∇a (Φ +ϕ + e
π

sinπϕ)
−

χ2 ∇a (Φ +ϕ + e
π

sinπϕ)
⎛
⎝⎜

⎞
⎠⎟
+τ 2,Y H

∇a (Φ +ϕ + e
π

sinπϕ)

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

× ∂Φ
∂z

− ∂Φ
∂ϕ

+1+ ecosπϕ
⎛
⎝⎜

⎞
⎠⎟
∂g
∂ϕ

⎡

⎣
⎢

⎤

⎦
⎥

− 1
St*

Δρ ro − r cosπϕ( )cosa
2ro

∂g
∂ϕ

=

− 1
π
Δρr sinπϕ sin a

St*

 (22) 

 Setting  Φ = 0  and   e = 0  (concentric annulus) gives that 
Ψ =ϕ . Hence 

  
∇aϕ = 1 , we simplify Equ. (22), integrate it 

for ϕ  and set   g(π 2,r)  to zero. Finally, the displacement 
interface shape is obtained: 

  

g(ϕ ,r) = 2ro tan a ln
A+ cosa

2ro ⋅St* Δρ ro − r cosπϕ( )

A+ cosa
2ro ⋅St* Δρro

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

  (23) 

where: 
  
A = χK 1( ) + τ K ,Y

H
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥2

1

 

4. THE MODIFIED MODEL FOR STEADY 
DISPLACEMENT INTERFACE SHAPE IN INCLINED 
WELLS WITH ECCENTRIC ANNULI 

 In this section, we show that it is also possible to derive 
an analytical solution for Equ. (22) in the case that 0e ≠
(eccentric annulus) by means of a regular perturbation 
expansion. When applying this method, casing’s 
concentricity is regarded as an equilibrium state. Then we 
give the casing a slight perturbation to make it deviate from 
the equilibrium and reach an eccentric state finally. By 
solving the perturbation term we can get some information 
about the eccentric state. 

 Establishment process of the interface shape model in an 
eccentric annulus is as follows: Two variables of stream 
function Ф (z, φ) and interface shape g(φ, r) in the steady 
displacement are expanded into asymptotic series 
respectively. The asymptotic series expressions are with 
respect to perturbation term e. Then we neglect the higher-
order (more than one) term for e in asymptotic series 
expansion and get two linear functions. Finally, we substitute 
two linear functions into the constraint condition (Equ. 22) 
that the stream function and interface shape satisfy. With the 
method of separation of variables and integration for g ϕ∂ ∂
, the steady interface shape model in an eccentric annulus 
can be obtained. 

 The partial derivative of interface shape   g(ϕ ,r)  in 
concentric annulus for ϕ  is given by: 

  

∂g
∂ϕ

=
π St*( ) ⋅ Δρr sinπϕ sin a

χK 1( ) +τ K ,Y H⎡⎣ ⎤⎦2

1
+ cosa

2ro ⋅St* ⋅ Δρ ro − r cosπϕ( )
  (24) 

 From the above Equ. (24), if 
  
[χK (1)+τ K ,Y / H ]2

1 >> Δρ / St*  

in the denominator, the value   (∂g ∂ϕ )→ 0 . We can impose 
that the requirement of the zeroth order steady state shape is 

 
O e( ) . This requirement is equivalent to assuming that: 

  

π St*( ) ⋅ Δρr sinπϕ sin a

χK 1( ) +τ K ,Y H⎡⎣ ⎤⎦2

1
+ cosa

2ro ⋅St* ⋅ Δρ ro − r cosπϕ( )
= O(e)   (25) 

 The asymptotic series expansion of stream function 

  
Φ z,ϕ( )  and interface shape   g(ϕ ,r)  with respect to 

eccentricity e is given respectively by: 
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Φ z,ϕ( ) = eΦ1 z,ϕ( ) + e2Φ2 z,ϕ( ) +   (26) 

   
g(ϕ ,r) = eg1 ϕ ,r( ) + e2g2 ϕ ,r( ) +   (27) 

 We substitute Equ. (26) and (27) after neglecting the 
higher-order term into (22) and linearize it, to give: 

  

0 = e
χ1 1,1( ) +τ1,Y − χ2 1,1( )−τ 2,Y( ) ∂Φ1

∂z
ϕ ,0( )− ∂g1

∂ϕ
⎛
⎝⎜

⎞
⎠⎟

− 1
St*

Δρ r0 − r cosπϕ( )cosa
2r0

∂g1

∂ϕ

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

+ 1
π
Δρr sinπϕ sin a

St* +O e2( )

 (28) 

 Note that, because of the zeroth order 
 
O e( ) , both terms 

above have the same order. Rearranging we have: 

  

∂g1

∂ϕ
= 1

e

π St*( ) ⋅ Δρr cosπϕ sin a

χK 1( ) +τ K ,Y H⎡⎣ ⎤⎦2

1
+ cosa

2ro ⋅St* ⋅ Δρ ro − r cosπϕ( )

+
χK 1,1( ) +τ K ,Y H( )⎡

⎣
⎤
⎦2

1 ∂Φ1

∂z
ϕ ,0( )

χK 1( ) +τ K ,Y H⎡⎣ ⎤⎦2

1
+ cosa

2ro ⋅St* ⋅ Δρ ro − r cosπϕ( )

 (29) 

 Equ. (29) indicates that the first term is simply the 
concentric annular solution. The second term represents the 
effect of eccentricity. 
where: 

  
ΦK ϕ ,z( ) = 1+

χK ,H 1,1( )−τ K ,Y

′χK 1,1( )
⎛

⎝
⎜

⎞

⎠
⎟ −1+

coshα K L+ z( )
coshα K L

⎛

⎝
⎜

⎞

⎠
⎟

sinπϕ
π

ϕ ,z( )∈ΩK
 

  
α k

2 =
π 2 ′χK 1,1( )

χK 1,1( ) +τ K ,Y

> 0  

 According to the expression of 
 
∇aΨ , we can obtain the 

partial derivative of  χK  with respect to 
 
∇aΨ  and the 

partial derivative of 
  
χK ,H  with respect to H, which are given 

respectively by: 

  

χK
' =

− χK +τ K ,Y H( )
2 χK +τ K ,Y H( )− H mK +2

kK
mK

⋅ χK
mK +1 − H mK +2

kK
mK

⋅
τ K ,Y

H
⋅ χK

mK

  (30) 

  

χK ,H =

H mK χK
mK +1τ K ,Y

mK +1( )kK
mK χK +τ K ,Y H( ) −

2τ K ,Y

H 2 −
mK + 2( ) χK +τ K ,Y H( )

H

H mK +2χK
mK +1

mK + 2( )kK
mK χK +τ K ,Y H( ) +

mK +1( ) χK +τ K ,Y H( )
χK

− 2

  (31) 

 Finally, We substitute  Φ1  into Equ. (29), simplify and 
integrate to give the interface position: 

  

g(ϕ ,r)=2ro tanβ ln
A+ cosa

2ro ⋅St* Δρ ro − r cosπϕ( )

A+ cosa
2ro ⋅St* Δρro

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

− ln
A+ cosa

2ro ⋅St* Δρ ro − r cosπϕ( )

A+ cosa
2ro ⋅St* Δρro

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

×

e
π 2

1
Δρr

2roSt*

cosa
P χK ,τ K ,Y ,mK( )

K=1,2
∑ χK +τ K ,Y( )α K tanhα K L

⎡

⎣
⎢

⎤

⎦
⎥

  (32) 

 
Fig. (3). Contour lines of g(φ,r) under different density difference for e=0.3，a=45º. 
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where: 

( ) ( ) ( )( ) ( )( )
( ) ( )

2 2 21 2 2 1 1 2
, ,

1 2
Y Y

Y
Y

m m m m m
P m

m m
χ χτ τ

χ τ
χ χ τ

+ + + + + + +
=

+ + +⎡ ⎤⎣ ⎦  

5. ILLUSTRATIVE RESULTS OF THE 
DISPLACEMENT INTERFACE SHAPE 

 We take deviation angle a=45º and a=75º as examples. 
When calculating the displacement interface shape based on 
Equ. (32), for a chosen deviation angle a, we change the 
density difference from 0.1 g/cm3 to 0.8 g/cm3 and maintain 
casing’s eccentricity 0.3 unchangeable. Basic parameters that 
we use for calculation are shown in Table 1. The calculation 
results are shown in Figs. (3, 4). 
 As shown in Fig. (3) and Fig. (4), g(φ, r) is changing 
with annular azimuthal angle and radium. Because of setting 
g(π/2, r) to zero, g(φ, r) has both positive and negative 
values. In our research, positive g(φ, r) represents the 
interface here which moves ahead of that in the annulus 
center, otherwise, behind the center interface. It is certain 
that larger absolute value of g(φ, r) means the interface here 
is further away from that in the annulus center. We define 
g(φ, r)max as the maximum g(φ, r), which represents the 
interface front and g(φ, r)min is the minimum g(φ, r), which 
represents the interface trailing edge. There is no doubt that 

g(φ, r)max- g(φ, r)min is the entire displacement interface 
length. It is known that a longer interface means more 
displacing fluid becomes contaminated. When the interface 
becomes too long, it might be that the trailing edge of the 
interface fails to reach a designed cementing segment at the 
end of cementing operation, which reduces displacement 
effectiveness and adversely affects cementing quality and 
well integrity. Compared to g(φ, r) under different density 
differences, we can find: 
(1) At each point of annulus, there exists a big difference 

among g(φ, r) although the annular azimuthal angle is 
equal. We conclude that the displacement interface 
shape is not only related to azimuthal angle but also 
to the distance of fluids from the wellbore center, 
which is not involved in previous literatures. 

(2) When the density difference is smaller, the driving 
force cannot overcome the resistance in the annular 
narrow side, which results in slurry advancing in the 
annular wide side. The position of g(φ, r)max is on the 
external casing wall of the annular wide side. 
However, when the density difference is greater, the 
opposite results will occur. The position of g(φ, r)max 
is on the wellbore wall of the annular narrow side. 

(3) The displacement interface length in inclined wells 
with eccentric annuli is decreased firstly and then 
increased with the increase of density difference. The 

 
Fig. (4). Contour lines of g(φ,r) under different density difference for e=0.3，a=75º. 

 

Table 1. Basic Parameters for Calculation 
 

Wellbore  
Diameter/m 

Casing’s External  
Diameter/m 

Flow Rate  
m3/min 

Power-Law Index Consistency/Pa·sn Yield Stress/Pa Drilling Fluid’s 
Density/g/cm3 Slurry Drilling Fluid Slurry  Drilling Fluid Slurry  Drilling Fluid 

0.2159 0.1397 1.5 0.58 0.85 1.2 0.24 8 4 1.3 
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extent and position of slurry’ advancing depends on 
the combined effect of density difference and casing’s 
eccentricity. Because the effects of density difference 
and casing’s eccentricity on the interface shape are 
opposite, there exists an optimal density difference 
which can make the interface length minimum. 

(4) The optimal density differences for a=45º and a=45º 
are 0.7g/cm3 and 0.5g/cm3 respectively. It can be seen 
that the optimal density difference in inclined well 
gradually decreased with deviation angle. Therefore, 
a greater density difference can obtain better 
displacement effect for vertical wells when meeting 
the conditions of pressure stability and anti-leak. 
Otherwise, a smaller density difference can get better 
displacement effect for horizontal wells. 

6. CONCLUSIONS 

 In this paper, by comprehensively analyzing the effects of 
both azimuthal angle and annular radium on the displacement 
interface shape, we establish a modified model for steady 
displacement interface shape in inclined wells with eccentric 
annuli, which will be more suitable for describing the actual 
displacement interface shape in cementing. Based on this 
model, we can analyze the change of displacement interface 
shape with deviation angle, casing eccentricity and density 
difference; moreover, determine what conditions make the 
interface length minimum. This model provides a basis for 
optimization design of displacing fluids’ parameters during 
inclined well cementing. 
 According to our research, we can conclude that the position 
of slurry fingering and the intermixing extent of two-phase 
fluids depend on the relative effects between casing eccentricity 
and density difference. A smaller density difference obviously 
results in slurry advancing in the annular wide side. The 
position of interface front is on the external casing wall of 
annular wide side. Otherwise, a greater density difference 
causes slurry advancing in annular narrow side and the position 
of interface front is on the wellbore wall of the annular narrow 
side. The opposite results show that the displacement interface 
length is decreasing firstly and then increased with the increase 
of density difference. There does exist an optimal density 
difference to make the interface length minimum. 
 For a certain casing’s eccentricity, the optimal density 
difference in inclined wells is gradually decreased with 
deviation angle. When meeting the conditions of pressure 
stability and anti-leak, greater density difference can obtain 

better displacement effect for vertical wells, otherwise, smaller 
density difference can be good for horizontal wells. 
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