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Abstract: Growth hormone (GH) therapy is associated with improved neurobehavior, leading to the question whether GH 

crosses the blood-brain barrier (BBB) from blood after its release there from the pituitary, or whether GH exerts CNS 

effects by secondary mediators, particularly insulin-like growth factor (IGF)-1. GH release from the pituitary is controlled 

not only by hypothalamic factors, but also by ghrelin that is mainly produced in the stomach and uses its unique structure 

to interact with the BBB. This review summarizes studies of the permeation of GH, IGF-1, and ghrelin across the BBB, 

and discusses them in the context of neuroendocrine regulation. Exogenous GH has a half-life of approximately 3.8-7.6 

min in mouse blood and shows a slow non-saturable permeation across the BBB, with 26.8 % remaining intact in the 

brain 20 min after intravenous delivery. IGF-1 crosses the BBB by saturable transport mediated by its receptors, and its 

interactions with the BBB are greatly affected by serum binding proteins. The interactions of ghrelin with the BBB appear 

to be dependent on species and show directionality. The BBB provides regulatory compartmentalization to fine-tune the 

CNS actions of GH and its related hormones. 
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1. WHY STUDY BBB PERMEATION OF GH AND 

RELATED HORMONES 

 As the use and abuse of both GH and IGF-1 are 

increasing, and concern about the potential misuse of ghrelin 

is rising [1-3], it is important to revisit how these hormones 

enter the brain. It is clear that they exert robust CNS effects. 

For example, GH supplementation can increase 

concentration and memory [4-6], and in children with 

Prader-Willi syndrome it improves sleep [7]. The blood-

brain barrier (BBB) provides a regulatory interface to 

modulate the permeation of these small protein hormones, 

and mechanisms of their interactions greatly influence their 

dose-dependent effects. The need for replacement of GH in 

GH deficient children is established, but could overdosing 

result in excessive GH entering the CNS? In adults with 

declining GH concentrations in their blood, the question 

becomes more complicated since it is not clear how much, if 

any, of the physiological decrease with age requires 

treatment. Conversely, individuals with GH producing 

tumors, such as acromegaly, may have psychological 

problems such as mood lability, anxiety, and depression that 

may result from increased amounts of GH entering the brain. 

 Though related in their functions, GH, IGF-1, and ghrelin 

represent three different types of mechanisms of BBB  
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interactions. GH crosses the BBB by passive diffusion; this 

means that there would be a direct correlation between the 

amount of GH administered with the amount entering the 

CNS. IGF-1 crosses the BBB by a saturable transport 

system; this indicates that increasing amounts would be rate 

limiting for IGF-1 entry from blood to the CNS. For ghrelin, 

species and structural variation occurs. 

2. PHARMACOKINETICS OF THE SIMPLE 

DIFFUSION OF GH ACROSS THE BBB 

 In regard to the stability of 
125

I-GH (recombinant human 

or rat GH) in mice, high performance liquid chromatography 

(HPLC) showed that approximately 91% of the total 

radioactivity in serum in mice 20 min after intravenous (iv) 

injection remains intact. Acid precipitation showed similar 

results. In the homogenized brain from a mouse 20 min after 

iv injection of 
125

I-GH, 86% of radioactivity (corrected for ex 

vivo degradation seen in the processing control) was acid 

precipitable. Gel autoradiography confirmed the presence of 

22 kDa GH in all samples [8]. The serum half-life of 
125

I-GH 

ranged from 3.8-7.6 min in different experiments in this 

study. The results indicate that after iv delivery, GH remains 

intact for a sufficiently long time to exert its biological 

actions and permeate the BBB. It has been established that a 

small protein’s effect can last considerably longer than its 

half-life [9, 10]. 

 Linear uptake of 
125

I-GH from blood to brain in mice is 

seen 1-30 min after iv injection. The influx transfer constant 

of 0.23 ± 0.07 l/g-min and the initial volume of distribution 

of 15.5 l/g in the initial study [8] are slightly higher than 
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expected for a protein of this size without a saturable 

transport system [11, 12]. Capillary depletion study showed 

that approximately 26.8% of the injected 
125

I-GH reaching 

the whole brain entered brain parenchyma 10 min after iv 

delivery, whereas 10% remained in the cerebral vasculature. 

However, neither in-situ brain perfusion nor multiple-time 

regression analysis [13] showed the presence of a saturable 

transport system for GH crossing the BBB. Nonetheless, 

brain uptake was approximately 0.1%/gram of brain at 20 

min after iv injection of 
125

I-GH, indicating that 6.8 pg of 

GH was present in a gram of brain tissue. It is possible that 

the150-fold excess of unlabeled GH co-administered was 

insufficient to inhibit the permeation of 
125

I-GH across the 

BBB, and there might also be species differences (rat and 

human GH studied in mice since murine GH was not 

available at the time). 

 However, in-situ brain perfusion and cellular uptake 

assays, which should provide higher sensitivity for detection 

of a specific saturable transport system, also failed to 

identify the characteristic feature of self-inhibition by excess 

unlabeled GH [8]. The concentration of GH in the perfusate 

for in-situ brain perfusion was 5 g/ l. The influx transfer 

constant was approximately 0.8 l/g-min and the brain 

parenchyma/perfusate ratio was approximately 12.6 l/g at 

10 min (vs a capillary update of 3.6 l/g) [13]. Estimating 

that 0.03% of GH reaches the brain compartment by the 

infusion method (higher than that after intravenous bolus 

delivery), the concentration in brain capillaries at 10 min 

would be approximately 1.1 g/ l. 

 Analyses of individual regions (frontal, parietal, and 

occipital cortices, striatum, thalamus, hypothalamus, 

brainstem, and cerebellum) also failed to show region-

dependent transport, although transport in specific regions 

may exist in special cases [14, 15]. It should also be noted 

that there are circulating GH binding proteins [16], but their 

role in GH permeation across the BBB is not clear. 

 Although a saturable transport system for GH across the 

BBB has been sought but not identified, it is clear that GH 

receptors are present in the choroid plexus [6, 17] and in an 

ovine choroid plexus epithelial cell line [18]. The blood-

cerebrospinal fluid (CSF) barrier may also play a role in GH 

transport; the high affinity GH receptor in human brain 

choroid plexus has a Ka of 0.63 nM
-1 

[17]. In the CSF, high 

GH levels were reported in acromegaly and a small increase 

was also found after chronic administration of hGH in 

subjects with GH-deficiency syndromes [19]. This suggests 

the presence of a transport system for GH at the blood-CSF 

barrier. 

 The highest binding of GH in the brain is seen in the 

choroid plexus, hypothalamus, hippocampus, pituitary, and 

spinal cord, whereas a lower binding density is present in the 

cortex [20]. The GH receptor is a single transmembrane 

protein belonging to the cytokine receptor family. Binding of 

GH leads to receptor dimerization, and phosphorylation of 

the receptor itself and Janus kinase (JAK)-2. The 

downstream signaling elements include signal transducers 

and activators of transcription (STAT), mitogen-activated 

protein kinases (MAPK), and others [21]. Since there is a 

lack of sequence and domain homology of the GH receptor 

with that of the IGF-1 and insulin receptors, it is possible 

that there is no cross-inhibition of GH permeation by insulin. 

In the same study, the influx transfer constant of 
125

I-insulin 

was 0.97 ± 0.14 l/g-min, and it was not affected by the 

presence of excess GH [8]. 

3. THE SATURABLE TRANSPORT SYSTEM AT THE 

BBB FOR IGF-1 

 GH stimulates the production of IGF-1 in mammals. 

IGF-1 crosses the BBB by a transport system, and this may 

be complementary to the direct permeation of GH to enhance 

the CNS effects of GH [11]. A unique feature of IGF-1 

permeation across the BBB is its modulation by serum 

binding proteins (IGFBP and others). As a result, the half-

life of IGF-1 is prolonged in the circulation, indicating an 

increase of biostability. Excess unlabeled IGF-1 facilitates 

the influx of 
125

I-IGF-1 from blood to the CNS, explained by 

displacement of the tracer from the binding proteins. In the 

setting of in-situ brain perfusion where IGFBP is absent, 

excess unlabeled IGF-1 significantly inhibits the influx of 
125

I-IGF-1. Therefore, the transport system is saturable. 

There is a progressive increase of IGF-1 over time in brain 

parenchyma rather than accumulation just in the vasculature, 

and intact IGF-1 is detectable in brain by HPLC after iv 

delivery [22]. Receptors for IGF-1 and IGF-2 are present in 

BBB microvessels [23, 24], and they mediate IGF-1 

endocytosis ex vivo [24]. It is most probable that IGF-1 is 

transcytosed across cerebral endothelial cells through a 

receptor-mediated transport system. 

 The BBB of endothelial IGF-1 receptor knockout mice 

functions normally in response to paracellular tracers [25]. 

However, it has not been determined whether these mice 

show a reduction of IGF-1 transport from blood to the CNS. 

Since the system is redundant, it is possible that IGF-1 can 

still reach the CNS by insulin receptor mediated transport, 

and that insulin and other related proteins can compensate 

for the somewhat reduced availability of IGF-1. As potential 

transporters, insulin receptors and IGF receptors might have 

overlapping functions dictated by their differential binding 

affinity to ligands, as well as by receptor density and 

transport kinetics. Neither endothelial overexpression of 

different types of receptors for side-by-side comparison of 

IGF-1 transport, nor the use of receptor-specific gene 

knockdown strategies to compare the relative contributions 

in BBB transport of IGF-1 and insulin have been reported. 

Nonetheless, results from studies with HUVEC cells suggest 

that IGF-1 receptors play a bigger role than insulin receptors 

based on their higher level of expression and greater binding 

of IGF-1 [26]. Although both IGF-1R and IGF-2R are 

present in BBB microvessels [23], IGF-1R appears to play a 

bigger role in IGF-1 transport. 

 IGF-1 is an important growth factor for the CNS, and can 

relieve signs of acute experimental autoimmune 

encephalomyelitis (EAE) [27]. It is also effective against 

chronic relapsing EAE after subcutaneous delivery, reduces 

BBB defects, and decreases the number and size of 

inflammatory, demyelinating, and demyelinated lesions in 

these SJL/J mice [28]. IGF-1 ameliorates neural damage 
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resulting from traumatic brain injury after 

intracerebroventricular (icv) injection [29], and various 

delivery strategies have been tested for treatment of 

amyotrophic lateral sclerosis (ALS), a devastating motor 

neuron degenerative disorder [30, 31]. This includes delivery 

of IGF-1 by the intrathecal route [32], stem cells [33], and 

viral vectors [34]. Although a clinical trial with a low-dose 

twice daily subcutaneous injection of IGF-1 failed to show a 

beneficial effect after two years [35], much remains to be 

determined about bioavailability based on the interactions of 

IGF-1 in the periphery and with the BBB [36]. 

4. STUDIES OF INTERACTIONS OF GHRELIN 

WITH THE BBB 

 Ghrelin is a peptide mainly produced by the 

gastrointestinal tract that binds to the GH-secretagogue 

receptor. It has a unique primary structure with an octanoyl 

side-chain at Ser
3
; this posttranslational modification appears 

to determine its specific bioactivity [37]. Ghrelin is a strong 

stimulator of GH secretion in man [38, 39]. In the mouse, 
125

I-labeled human ghrelin shows bidirectional transport 

from either blood-to-brain or brain-to-blood. By contrast, 

mouse ghrelin has brain-to-blood efflux but no saturable 

influx from blood to brain, and its permeability coefficient is 

lower than that of human ghrelin. When the octanoyl side-

chain is removed, des-octanoyl ghrelin crosses the BBB by 

nonsaturable diffusion. There is very limited transcytosis as 

most of the des-octanoyl ghrelin is trapped within the 

cerebral vasculature. After icv delivery, des-octanoyl ghrelin 

has a prolonged half-life in the CSF in comparison with 

native ghrelin of human or mouse origin [40]. The animal 

results are consistent with studies in RBE4 rat cerebral 

endothelial cells where 
131

I-labeled human ghrelin showed a 

high level of surface binding and saturable endocytosis, both 

at least 4-folder greater than those of obestatin, a peptide 

reported to be also produced by the stomach but with 

opposite effects from ghrelin, inhibiting food intake [41]. 

 The influx transport of ghrelin across the BBB is 

modified by metabolic factors related to obesity and by 

starvation, and it differs with age. Transport is no longer 

present in aged mice maintained on a high-fat diet. In studies 

involving iv delivery and multiple-time regression analysis, 

there is an inverse correlation between body weight and 

ghrelin permeation. However, serum triglycerides promote 

the transport, and fasting also has a marginal effect of 

increasing the transport in studies by in-situ brain perfusion 

[42]. 

 Desacyl (des-octanoyl) ghrelin can also be biologically 

active. It stimulates adipogenesis and inhibits glucose output 

in hepatocytes, and high concentrations are associated with 

decreased food intake. At least some of its effects may be 

related to its permeation from blood to brain and activation 

of neuronal pathways that regulate feeding [43]. 

5. THE CONTEXT OF BBB PERMEATION OF GH 

AND RELATED HORMONES ON CNS FUNCTIONS 

 With its peak secretion occurring during sleep, GH has 

long been considered the link between sleep and memory. A 

recent study elegantly showed the modulatory effect of GH 

on hippocampal synaptic function. In rats after 3 days of 

sleep deprivation, NMDA-receptor mediated synaptic 

currents are reduced. Daily GH injection during the period of 

sleep deprivation prevents loss of synaptic currents and 

reduction of long-term potentiation and NMDA receptor 2B 

expression [44]. Similarly, ghrelin plays essential roles in 

CNS function. Ghrelin is involved in food reward and food 

motivation behavior by modulating the mesolimbic circuitry 

[45]. Ghrelin receptor (GHS-R1a) knockout mice show 

deficits in contextual fear conditioning, indicating impaired 

hippocampal emotional dependent memory, although they 

have normal balance, movement, coordination, and pain 

sensation and perform better than wildtype mice in the 

Morris water maze test [46]. Rat studies involving a ghrelin 

receptor antagonist or receptor knockout rats also confirmed 

a role of ghrelin signaling in the induction of locomotor 

sensitization to cocaine, consistent with the prominent role 

of ghrelin in the rewarding circuitry by crossing the BBB 

and acting on ventral tegmental dopamine neurons [47]. 

Ghrelin increases slow wave sleep, shown in elderly men 

though not elderly women [48], and differentially affects 

memory acquisition and retention [49]. During the past 

decade, the role of ghrelin in obstructive sleep apnea, 

circadian rhythm regulation, and wake promoting 

mechanisms has been widely investigated [50-53]. Ghrelin 

has positive effects on learning, memory, reward, 

motivation, anxiety, and depression, and shows 

neuroprotective and neuromodulatory effects [54]. This 

explains why it is implicated in cognitive function in aging 

[55] and Alzheimer’s disease [56]. The effects of IGF-1 are 

also widespread and reviewed extensively elsewhere in this 

Special Issue. 

 Although we did not detect a saturable transport system 

for GH crossing the BBB, it remains possible that future 

studies may identify modulatory factors that influence GH 

permeation across the BBB. By analogy, urocortin does not 

show saturable transport in the basal state, but its transport 

system can be activated by leptin and TNF both in-vivo [57-

60] and in cultured cells [61, 62]. Concentrations of the 

hormones as well as circadian, prandial, and nutritional 

influences [63] might all play a role in the physiology of 

BBB interactions of GH, IGF-1, and ghrelin. 

6. PROSPECTIVES 

 The BBB is a tremendous information exchange 

interface, that allows peptides and proteins from the 

periphery to exert CNS effects. GH, IGF-1, and ghrelin have 

overlapping functions and they also have interactions at the 

BBB, not only during the course of their own transport but 

also in induction of BBB cellular signaling. The most 

pressing questions to be resolved are related to the 

mechanisms of their transport. For example, if there is 

receptor-mediated endocytosis for any of these 

neuroendocrine hormones, how do the transporting receptors 

interact at the luminal surface of the BBB? Does intracellular 

signaling initiated by these hormones affect their own or 

other transport? What are the exocytosis mechanisms? How 

do different cell types contributing to the BBB cooperate 

with each other in the course of delivering these hormones to 
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the CNS target cells in the parenchyma? Further, how does 

neuropathology (such as obesity, neurodegeneration, 

inflammation) regulate the transport systems? 

7. SUMMARY 

 In this review we mainly discussed the interactions of 

interrelated GH, IGF-1, and ghrelin at the level of the BBB. 

GH does not exhibit a saturable transport across the BBB per 

se, but may stimulate the production of IGF-1 that enters the 

brain and spinal cord by a specific, receptor-mediated 

transport system. Ghrelin also shows regulated entry across 

the BBB, and there is a strong species difference and 

possible bidirectional transport. The lack of saturation of the 

low but meaningful permeation of GH indicates that higher 

concentrations of GH can be associated with greater CNS 

effects. However, its interaction with the blood-CSF barrier 

appears to have higher efficacy and is tightly regulated. The 

unique interactions of these three hormones with the BBB 

are part of their neuroendocrine regulation of memory, sleep, 

mood, and many other CNS functions. 
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