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Abstract: Numerous studies have demonstrated that using ecological models is beneficial in recovering species listed un-
der the Endangered Species Act (ESA). In addition, many federal agencies and environmental organizations have recom-
mended using strategic approaches to conservation. One rare species in need of conservation is the American burying bee-
tle (ABB, Nicrophorus americanus). The ABB was listed as endangered in 1989 and conservation efforts need to be tar-
geted and improved to be successful in achieving de-listing. We combined presence/absence ABB surveys (1979- 2011), 
with habitat-based model projections, to identify specific habitats where the ABB is likely to occur. Our habitat based 
range for the ABB was 96.9% accurate in identifying positive ABB surveys (n=485) from 1979 to 2011. Previously, po-
tential ABB habitat was identified using political or county boundaries and was not precise and also included areas that 
were unsuitable for ABB habitat. Using spatial data, known locations, and model projections, we reduced the potential 
habitat range by over 4.5 million acres (1.8 million hectares) from the county delineation, resulting in greater precision for 
conservation of the ABB, more targeted conservation efforts, and reduced costs to other federal agencies and industry that 
are required to have minimal impact to this endangered species under the ESA. Our approach will be useful to other agen-
cies and other states that need to target conservation and recovery efforts for rare invertebrates. 
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INTRODUCTION 

 Congress enacted the Endangered Species Act (ESA) in 
1973, and as of July 2012, 1,398 species were listed as 
threatened or endangered and 55 species were delisted [1]. 
Two of the goals of the ESA, are to prevent extinction of 
listed species and to recover species to the point of delisting 
[2-4]. The National Research Council [4] stated that predic-
tive population models were extremely useful and recom-
mended using models whenever possible to address listing 
and delisting policy decisions for rare species. Williams et 
al. [5] concluded that making any prediction about the effect 
of some action on a species required a model of the system 
or population dynamics. More recently, McGowan and Ryan 
[6] stated that population models were useful tools for evalu-
ating conservation strategies for endangered species.  

 While the ESA is an important legislative tool for the 
protection of threatened and endangered species in the 
United States, it sometimes conflicts with the interests of 
private industry, local governments, or private citizens on 
private and public lands [3, 4]. Given the reality of limited or 
decreased federal funding, increasing needs for accountabil-
ity, and multiple demands for limited natural resources, it is 
necessary and beneficial to use the most effective, efficient, 
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and strategic approaches to conservation for endangered spe-
cies [7-10]. Many environmental organizations have recog-
nized the need to be more strategic in the conservation of 
natural resources [11, 12].  

 As federal budgets decline and demands for energy in-
crease, the U.S. Fish and Wildlife Service (Service) is wit-
nessing ever-increasing challenges to balancing the conser-
vation of rare species with competing demands for develop-
ment [10]. For example, in states such as Oklahoma with 
significant oil and gas resources [13, 14], minerals [15], 
wind farm potential [16], and associated transmission lines, 
the competing interests of private industry often conflict with 
attempts to conserve and recover an endangered invertebrate, 
such as the American burying beetle Nicrophorus ameri-
canus (Olivier). In addition, climate change models indicate 
that temperatures will increase in Oklahoma in the future 
[17] and this may present additional challenges to conserva-
tion of endangered species [18, 19]. 

 Documentation of habitat use and potential habitat is 
especially crucial in efforts to conserve endangered species 
[20]. Managers may need to examine the quantity and qual-
ity of available habitat for a particular species, and they must 
be able to measure features of the habitat that relate to the 
presence of animals [5, 6]. Habitat models provide a scien-
tific and accurate approach to predict species distributions 
[21-25]. Presence and absence data for a species may be 
combined with predictive models to accurately estimate a 
species habitat range [26, 27].  
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 Listed as endangered in 1989 [28], the American burying 
beetle (ABB), was historically widespread throughout east-
ern North America and occurred in 35 states in the U.S. and 
three Canadian provinces [29]. However, estimates of ABB 
numbers have declined and remnant populations occur in 
only six states [30, 31]. Many endangered species have spe-
cific habitat requirements [3], and unfortunately, this has led 
to the extinction of many of these species despite conserva-
tion and recovery activities [32]. However, not all extinc-
tions can be traced to habitat specificity and some species 
with a wide distribution have still become rare or endangered 
and some have gone extinct [33]. The ABB has been found 
in a variety of habitats including grasslands, open fields, 
oak-pine woodlands, oak-hickory forests, and edge habitats 
[34], and some researchers have stated the ABB is a habitat 
generalist [29, 35]. The ABB spends much of its life-cycle 
underground tending its young during summer months or 
inactive underground during the winter months [34].  

 Previously, delineation of the ABB habitat range was 
based on political boundaries, including state and county 
lines. However, defining the range of this rare species by 
simply using a political boundary is arbitrary and not precise. 
In assessing habitat for rare species, both biotic and abiotic 
factors need to be considered [26, 36-38]. Furthermore, the 
Service has stated that the best available science must be 
used in an adaptive management approach to conserve rare 
species [8, 10]. 

 Recent analyses by Crawford and Hoagland [39] have 
provided innovative ecological approaches that combine 
ABB survey data from 1979 to 2008, with spatial models. 
These models were based on presence/absence data from 
surveys and were correlated to ecological predictors such as 
soils, vegetation, land cover, forest cover, temperatures, pre-
cipitation, geology, elevation, slope and related factors. 
Jaynes [40] developed a probability distribution and statisti-
cal approach to maximum entropy which generated the least 
biased geographic estimate possible given incomplete infor-
mation. Using maximum entropy, Crawford and Hoagland 
[39] tested several modeling techniques to determine which 
produced the best map of potential ABB habitat in eastern 
Oklahoma. Here we applied the best model developed by 
Crawford and Hoagland [39] to modify the predicted range 
for the ABB in support of Strategic Habitat Conservation [8, 
9] and we developed a more precise, biologically based habi-
tat range for the ABB. More accurate information for the 
ABB is important to ABB recovery, survival, and future de-
listing under the ESA. 

 Our objectives were to: 1) combine known occurrences 
of the ABB with predictive models and peer-reviewed litera-
ture, to develop a biologically based habitat range; and 2) 
develop an adaptive management approach to expand or con-
tract ABB habitat range based on future occurrence data or 
changes in habitat features related to climate change or 
changes in other biotic and abiotic factors. 

MATERIALS AND METHODS  

 Using Crawford and Hoagland’s [39] Maximum Entropy 
model (Maxent) and results from ABB field surveys from 
1979-2011 (n = 1,822, 485 positive ABB surveys and 1,337 
negative ABB surveys), we delineated a Habitat Based 

Range (HBR) for the ABB. Our ABB field survey dataset 
contained information from the Oklahoma Biological Sur-
vey, Camp Gruber, and the Oklahoma Ecological Service 
Field Office’s construction related project surveys used to 
detect ABB presence. All ABB presence surveys were con-
ducted for a minimum of three nights in accordance with the 
Service’s ABB presence/absence survey guidelines [41]. 
Survey results were considered positive if one ABB was 
found during the three night survey, and negative if no ABBs 
were found. 

 In 2010, a study was conducted to evaluate multiple habi-
tat predicting models for the ABB in Oklahoma [39]. Craw-
ford and Hoagland [39] used multiple environmental factors 
(e.g. topographic, vegetation and landcover, and climatic) to 
compare multiple modeling techniques and determined the 
Maxent model produced the best results for predicting ABB 
presence in Oklahoma. We chose the Crawford and 
Hoagland’s [39] Maxent model to develop our range. The 
results were spatially displayed as a map of the predicted 
habitat attributed with the percent likelihood of ABB pres-
ence. Predictions from this model were continuous and 
ranged from 1%-99% percent. Several studies have exam-
ined threshold choices from models as species presence indi-
cators [42-47]. Wilson [47] identified several different meth-
ods in which thresholds can be applied to make decisions 
about the likelihood of a species’ presence or absence. We 
used Wilson’s [47] “method 1” approach, that assumed all 
modeled values ≥ 50% represented a species’ presence, to 
determine a threshold for developing our HBR for ABBs. 
This approach, of using model values ≥ 50%, is consistent 
with other invertebrate habitat modeling efforts [48, 49]. 

 Using 50% as the threshold, we established a two mile 
(3.22 km) buffer for each pixel value ≥ 50%. We chose 3.22 
km since it represented the 1.67 mile (2.69 km) mean nightly 
movement of the ABB rounded to the next higher integer 
[50]. Since little information is known about the ABB’s 
home range, site fidelity, or other life history needs concern-
ing area requirements of habitat, we assumed that ABBs 
would have a tendency to remain within and among 3.22 km 
of the environmental variables that influenced the model’s 
performance. 

 Johnson and Gillingham [51] described how expert-based 
opinion was used effectively in developing predictive habitat 
models. Therefore, we consulted with numerous ABB re-
searchers and incorporated their expert opinions in develop-
ing our habitat range model. In addition, Phillips and Dudik 
[52] stated that it was important to develop guidelines for 
producing the most accurate models of species’ distributions. 
Elith et al. [53] reported that it was important to identify and 
quantify any problems with modeling data that might affect 
the output. We found that buffering pixels produced several 
modeling artifacts. Therefore, we developed a definition for 
each artifact and a set of parameters to use to include or ex-
clude model artifacts (Table 1). We used the 3.22 km dis-
tance statistic in our artifact decision making process. Arti-
facts, for the purposes of this study, were identified as out-
liers, gaps, protrusions, or inlets. The definitions of these 
modeling artifacts were: 1) outliers were buffered pixels that 
were disconnected from the contiguous HBR; 2) gaps were 
hollow areas within the HBR that did not occur within 3.22 
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km of any pixel values ≥ 50% and were approximately 3.22 
km long or 3.22 km wide; 3) protrusions were finger like 
projections extending out from the HBR that were approxi-
mately 6.44 km (buffering width of pixels based on 3.22 km 
ABB movement distance) wide and were approximately 6.44 
km long; and 4) inlets were inward extensions ≤ 3.22 km 
wide and ≥ 3.22 km deep into the HBR. After we defined 
and identified these modeling artifacts, we developed a set of 
parameters for including or excluding information into our 
HBR (Table 1). Artifact types were constructed using on-

screen digitizing through ArcInfo GIS™ver. 10.0 software. 
These parameters were used to finalize our HBR and will 
allow us to either expand or contract the HBR as new ABB 
survey data becomes available. 

 Although a high percentage of the positive ABB survey 
results fell within our initial HBR (i.e. before artifacts were 
adjusted), we wanted to account for ABB mobility; there-
fore, we used our parameters from Table 1 to improve our 
final ABB HBR. For example, we connected isolated buff-
ered pixels (outliers) to the nearest part of the range based on 

Table 1. Decision Making Strategy to Include or Exclude Artifacts in the Development of the Oklahoma American Burying Beetle 
(ABB) Habitat Based Range. 

Positive ABB Surveys 

1) Inclusion Parameter - All positive surveys, within 8.0 km of the modeled range, were buffered 8.0 km and incorporated into the final modeled range 

2) Inclusion Parameter - Exists on usable space (e.g. native vegetation) 

1) Exclusion Parameter - Positive survey record is > 8.0 km from any model value ≥ 50% 

2) Exclusion Parameter - No other positive survey records within 8.0 km 

3) Exclusion Parameter - Negative survey results are within 8.0 km of positive survey record for multiple years 

Outliers 

1) Inclusion Parameter - If outlier is ≤ 3.22 km from the modeled range 

2) Inclusion Parameter - Exists on usable space (e.g. native vegetation) 

1) Exclusion Parameter - Exists on unusable space (e.g. metropolitan area, lake, etc.) 

2) Exclusion Parameter - Outlier is > 3.22 km away from the contiguous modeled range and has negative surveys between the outlier and the modeled 
range 

3) Exclusion Parameter - No other positive survey records within 8.0 km 

4) Exclusion Parameter - If by including the outlier, a larger area would have to be filled based on the 3.22 km parameter 

Gaps 

1) Inclusion Parameter - If the width or length of the gap is ≤ 3.22 km across 

2) Inclusion Parameter - Exists on usable space (e.g. native vegetation) 

1) Exclusion Parameter - Exists on unusable space (e.g. metropolitan area, lake, etc.) 

2) Exclusion Parameter - If the width and length of the gap is > 3.22 km across 

3) Exclusion Parameter - Contains only negative survey results for multiple years 

Protrusions 

1) Inclusion Parameter - No surveys conducted within 8.0 km 

2) Inclusion Parameter - Exists on usable space (e.g. native vegetation) 

1) Exclusion Parameter - Contains only negative survey results within 8.0 km of protrusion for multiple years 

2) Exclusion Parameter - Exists on unusable space (e.g. metropolitan area, lake, etc.) 

Inlets 

1) Inclusion Parameter - All inward extensions ≤ 3.22 km wide and ≥ 3.22 km deep into the modeled range 

2) Inclusion Parameter - Exists on usable space (e.g. native vegetation) 

1) Exclusion Parameter - Exists on unusable space (e.g. metropolitan area, lake, etc.) 

2) Exclusion Parameter - All inward extension > 3.22 km wide and < 3.22 km deep into the modeled range 
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inclusion parameters defined in Table 1, and then minimized 
the gaps within the habitat range if the areas were separated 
by approximately 3.22 km [50] because ABBs may travel 
that distance across even unsuitable habitat. However, not all 
outlying buffered pixels were included. For instance, we 
excluded one isolated buffered pixel in Johnston County, if 
by including it; the outcome would have produced a larger 
unsuitable area (i.e. ≥ 3.22 km).  

 For the positive ABB surveys that occurred outside and 
within five miles (8.0 km) of our initial HBR, we applied a 
spatial buffer distance of 8.0 km to these locations and in-
cluded these buffered areas into our HBR. This distance rep-
resented an average maximum ABB movement distance [50] 
rounded to the nearest integer and is a commonly reported 
maximum distance value in Service ABB decisions. A posi-
tive ABB survey result was the strongest evidence of beetle 
presence; therefore, we placed more weight on positive ABB 
survey results than on buffered pixel values in creating our 
HBR. For example, we buffered positive ABB surveys based 
on a maximum beetle movement distance and required that 
all of our exclusionary parameters were met before we ex-
cluded any positive ABB survey result from our final HBR. 
Pixels values ≥ 50% were buffered with a shorter distance 
than positive ABB surveys and we did not require that all 
possible exclusionary parameters be met. For positive ABB 
surveys that occurred within the HBR, we buffered those 
surveys by 8.0 km to fill gaps and inlets on the HBR. How-
ever, we excluded one positive ABB survey in Johnston 
County from the 8.0 km buffer analysis, due to the heavy 
sampling efforts with negative ABB surveys to the north and 
south, and we excluded two positive ABB surveys in north-
east Oklahoma because they met all the exclusionary pa-
rameters in Table 1. Using the parameters established in  
Table 1, along with information from the scientific literature 
and expert opinion, we grouped the model artifacts by cate-
gory for inclusion or exclusion in the final ABB HBR  
(Table 2). Lastly, we averaged the distance of the artifacts 
within each category and reported the means and the ranges 
(Table 2). 

RESULTS  

 The previous county based ABB range included 
17,169,096.62 acres (6,948,086.89 hectares) compared to the 
biologically based range of 12,642,904.95 acres 

(5,116,402.11 hectares) or a reduction of 4,526,191.67 acres 
(1,831,684.78 hectares). In addition, our findings indicated 
that the HBR for the ABB should be expanded into portions 
of nine additional counties (e.g. Marshall, Love, Carter, 
Murray, Garvin, McClain, Cleveland, Pottawatomie and 
Adair counties) that were previously not included in the 
county based range (Fig. 1). 

 Using the Maxent model, the predictive strength of our 
initial HBR was verified by the high percentage (96.9%, n = 
470) of positive ABB surveys found within the HBR (Fig. 
2). Out of all the negative ABB surveys (n = 1,337), 64.7% 
(n = 865) were negative findings inside the initial HBR and 
35.3% (n = 472) were outside the initial HBR. Only 3.1% (n 
= 15) of the positive ABB surveys were found outside the 
initial HBR.  

 After we applied our set of inclusionary and exclusionary 
parameters (Table 1) to correct artifacts and to improve our 
final HBR, our predictive ability improved to 99.6% (n = 
483). All positive ABB survey results fell within our final 
HBR except two locations. Three outliers were excluded 
because they were within metropolitan areas and three other 
outliers were excluded because they were on a lake. In addi-
tion, three more outliers were excluded based on exclusion-
ary parameters one and two and one outlier was excluded 
because of exclusionary parameter three in Johnston County 
(Table 1). Of the two protrusions in our HBR, we included 
one protrusion because it met the inclusionary parameters 
one and two and one protrusion was excluded because of 
exclusionary parameters one and two in Rogers County.  

 We included or excluded modeling artifacts based on 
biologically based parameters (Table 2). For example, of all 
positive surveys, two were excluded because they met all 
three exclusionary parameters for positive surveys. When we 
buffered positive locations by 8.0 km, there was overlap with 
the several inlet areas, so we lumped inlet areas and positive 
buffered locations for reporting purposes (Table 2). Nothing 
identified as a gap was excluded from our analysis and every 
area that could be identified as an inlet was included into the 
final HBR. Lastly, based on expert opinion, we connected 
the Osage County HBR with an 8.0 km wide corridor to the 
rest of the HBR because these two parts of the HBR were 
only separated by 8.0 km, adding 8,909.6 ha to the overall 
final HBR. 

Table 2. A Summary of All Identified Modeling Artifacts and Our Determination About Their Inclusion or Exclusion for Okla-
homa's American Burying Beetle Habitat Based Range 

Artifact Type Mean (ha) Area Range (ha) 

8.0 km Buffer Artifacts Included 3,299.1 ± 857.9 (49) 0.0 - 27,037.1 

Gaps Included 1,203.2 ± 468.4 (33) 0.0 - 12,881.6 

Inlets Included 5,247.8 ± 1,112.2 (31) 373.3 - 33,394.0 

Outliers Excluded 4,959.5 ± 768.9 (9) 3,325.5 - 10,414.5 

Outliers Included 4,659.0 ± 638.5 (10) 3,317.1 - 9,404.1 

Protrusions Excluded 10,153.1 ± 2,249.4 (2) 7,903.7 - 12,402.5 

Protrusions Included 12,649.2 ± 1,816.3 (2) 10,832.8 - 14,465.5 
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Figs. (1). Range Maps. A) Previous county based American burying beetle range map in eastern Oklahoma; B) New model based American 
burying beetle Habitat Based Range map in eastern Oklahoma. 

DISCUSSION 

 To conserve endangered species given the challenges of 
climate change, invasive species, wildlife diseases and other 
uncontrollable factors, biologists must employ every avail-
able tool at their disposal to be most effective in their con-
servation efforts [19, 54-56]. Using knowledge of spatial 
distributions of rare species, and the ecological factors that 
affect them, is critical to conservation efforts [57-59]. A key 
tool to predict the effects of various factors to rare species 
are ecological models [60-62] or habitat models [22, 25]. 

 Numerous studies have shown that using Maxent meth-
odology is useful in predicting faunal distributions [40, 52, 
63-65] and aiding conservation activities. For example, 
Baldwin [65] found that Maxent data is relatively insensitive 
to spatial errors associated with location data and performed 
better than using presence-only models. Our approach of 
combining a Maxent model [39], with ABB locations, scien-
tific literature, and expert opinion, allowed us to more pre-
cisely identify areas where federal agencies and private in-
dustry should consider ABB habitat than the previous county 
based approach. The approach we suggest incorporated 
adaptive management and will be re-evaluated as new in-
formation (e.g. new landcover, new literature, additional 
ABB survey data, or climate change impacts) becomes avail-
able. We found that the ABB HBR derived from the Maxent 
model produced reasonable results when verified with Okla-
homa’s ABB presence survey dataset. Most importantly, the 
HBR correctly identified areas where ABBs were found, 
which demonstrated the predictive strength of the Crawford 

and Hoagland’s [39] Maxent model with current knowledge 
of the species in Oklahoma. Additionally, our potential HBR 
helped identify additional areas where new ABB occurrences 
may be found and further prioritized potential survey loca-
tions. 

 Given that the ABB is an annual species and dependent 
on abiotic and biotic factors such as precipitation, soil, and 
temperature [39], having an adaptive approach is important 
and necessary. For example, with climate change, even under 
the lowest projected emissions scenario, it is projected that 
much of eastern Oklahoma will become hotter over the next 
50 years [66]. Using political boundaries to prioritize ABB 
conservation and recovery is not strategic, nor is it the best 
conservation strategy to monitor threats from climate change 
for any species. However, climate change is only one con-
cern. With the increased demands for development, some 
places will lose their ability to support plants and animals 
because of the fragmentation associated with development 
[29]. Our adaptive approach allows scientists to modify habi-
tat predictions for ABB given the uncertainties of climate 
change and increasing development pressures and to target 
conservation and recovery for other threatened and endan-
gered species.  

 Using the ABB HBR that we have developed for Okla-
homa, conservation efforts to protect the ABB can be better 
focused on an ecologically meaningful basis rather than sim-
ply using political boundaries. The county delineation of 
potential habitat for the ABB was approximately 4.5 million 
acres (1.8 million hectares) greater and was neither precise 
nor helpful in targeting conservation or recovery efforts. The 
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Fig. (2). Maxent Model values ≥ 50% (Crawford and Hoagland 2010) and American burying beetle Habitat Based Range map superimposed 
with positive and negative American burying beetle occurrences from 1979-2011 (n = 1,822).  

new HBR provides a more specific delineation of ABB habi-
tat, including the potential impacts from development and 
areas of conservation significance. Numerous federal, state, 
and non-governmental agencies have identified the need for 
strategic and targeted conservation [8, 11, 12]. Our model 
will encourage greater efficiency in ABB conservation in 
Oklahoma by concentrating efforts in locations that are ecol-
ogically relevant to the ABB.  

 Using spatial data and model projections in combination 
identifies more accurate and precise habitat for rare species 
than simply using broad political boundaries such as coun-
ties. Given the economic conditions we currently face, it is 
critical that all parties involved with conserving and mini-
mizing impacts to rare species use the most accurate predic-
tions of species occurrence and habitat to have the greatest 
cost/benefit ratio. 
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 Our study demonstrated that the habitat suitability for an 
endangered invertebrate can be accomplished using GIS ap-
plications and modeling tools. Future research should be 
targeted to determine how climate change and fragmentation 
from various development pressures would impact the re-
covery of the ABB in the face of increasing demands from 
energy development. In addition, to strengthen future predic-
tive models, a random range wide sampling design will be 
advantageous to improve strategic habitat conservation for 
the ABB. We anticipate that improved datasets and more 
spatial analyses will improve our understanding of the con-
servation status of the ABB and will inform conservation 
planners of better strategies for recovery. In the future, 
greater emphasis will need to be placed on improving the 
overall quality of environmental datasets. 
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