
 Open Environmental Sciences, 2007, 1, 9-13 9 

 

 1876-3251/07 2007 Bentham Open 

Open Access 

Processes of Contaminant Removal in “Fe
0
-H2O” Systems Revisited: The 

Importance of Co-Precipitation 

C. Noubactep
*
 

Angewandte Geologie, Universität Göttingen, Goldschmidtstraße 3, D - 37077 Göttingen, Germany 

Abstract: The mechanism of aqueous contaminant removal by elemental iron (Fe
0
) materials (e.g., in Fe

0
-H2O systems) 

has been largely discussed in the “iron technology” literature. Two major removal mechanisms are usually discussed: (i) 

contaminant adsorption onto Fe
0
 oxidation products, and (ii) contaminant reduction by Fe

0
, Fe

II
 or H/H2. However, a 

closer inspection of the chemistry of the Fe
0
-H2O system reveals that co-precipitation could be the primary removal 

mechanism. The plausibility of contaminant co-precipitation with iron corrosion products as independent contaminant re-

moval mechanism is discussed here. It shows that the current concept does not take into account that the corrosion product 

generation is a dynamic process in the course of which contaminants are entrapped in the matrix of iron hydroxides. It is 

recalled that contaminant co-precipitation with iron hydroxides/oxides is an unspecific removal mechanism. Contaminant 

co-precipitation as primary removal mechanism is compatible with subsequent reduction and explains why redox-

insensitive species are quantitatively removed. Adsorption and co-precipitation precede reduction and abiotic reduction, 

when it takes place, occurs independently by a direct (electrons from Fe
0
) or an indirect (electrons from Fe

II
/H2) mecha-

nism. 

INTRODUCTION 

 A concept is proposed for evaluating aqueous contaminant 
removal in the presence of elemental iron or zero-valent iron 
materials (e.g., in Fe

0
-H2O systems) by adsorption, precipita-

tion, co-precipitation, and chemical reduction that is consistent 
with published experimental observations. Adsorption refers to 
the accumulation of solute molecules on the surface of a solid 
(Fe

0
, iron hydroxides/oxides). Precipitation refers to the spon-

taneous formation of precipitates from electrolyte solutions. 
Co-precipitation refers to the entrapment of foreign species in 
the matrix of precipitating compound (e.g. contaminants in 
iron hydroxides/oxides). Chemical reduction refers to a reac-
tion in which a chemical species (contaminant) gains one or 
more electrons (its oxidation number decreases). Co-
precipitation is sometimes referred to a specific chemical reac-
tion in a multi-component system, for example a ternary sys-
tem Fe-Cr-O yielding (CrxFe1-x)(OH)3 (s) or CrxFe1-xOOH (s). 
The specific feature of this co-precipitation is that the chemi-
cal reaction is rendered possible by the similitude between the 
atom radii of the involved metal ions. Co-precipitation as con-
sidered in the present study is an unspecific removal mecha-
nism in which foreign species (contaminants, nutrients, vi-
ruses) are simply entrapped in the matrix of precipitating or 
recrystallizing iron hydroxides/oxides. 

 Evaluating the relative importance of the individual 
mechanisms in the process of contaminant removal is essential 
for the proper engineering of iron remediation technologies. 
For instance, if reduction is the main reaction path and a sur-
face-mediated process, it can reasonably be assumed that 
transport of the contaminant of interest to the iron surface will 
be the rate-limiting step in many treatment scenarios [1]. 
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 The currently widely accepted concept for contaminant 
removal results mostly from Weber’s work [1] who re-
evaluated a seminal work of Matheson & Tratnyek [2]. We-
ber’s main conclusion is that the reductive transformation 
(implicitly considered as main removal path) by Fe

0
 is “a 

surface-mediated process which requires that the substrate 
(Ox in Eq. 1) of interest contact the iron surface for electron 
transfer to take place”. 

 The first problem with this concept (referred to here as 
the MTW concept – Matheson-Tratnyek-Weber concept) is 
that appropriate water-soluble electron mediators must be 
present to guarantee electron transfer. Even though such 
“electron mediators” are likely to be present in soils [1, 3], 
the contaminant of interest is usually not the controlling Fe

0
 

oxidizer [4, 5], as other species (including H2O, Eq. 2) are 
present in greater stoichiometric abundance. 

Fe
0

(s) + Ox(s)  Fe
2+

(aq, s) + Red(aq, s)            (1) 

Fe
0

(s) + 2 H2O  Fe
2+

(aq, s) + H2(g) + 2 OH
-              

(2) 

 The second problem with the MTW concept is that it 
differentiates between organics which are removed via re-
ductive degradation and inorganics which are possibly re-
moved by surface adsorption via electrostatic attraction, sur-
face complexation [6], or (co)precipitation. These three re-
moval paths may be coupled to redox reactions for redox-
active species [7]. This segregation between organics and 
inorganics is arbitrary as organics (reactants and products) 
are known to adsorb onto iron oxides [8, 9]. 

 The major problem of the MTW concept is that it can not 
explain why non-reducible species such as zinc [10, 11], 
triazoles [12], and even viruses [13] are quantitatively re-
moved in Fe

0
-H2O systems. 

 The objective of this study is to show that the MTW con-
cept is not stable. Many scientists may accept a concept 
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similar to the one suggested here. However, no published 
literature has been found pointing out the inconsistency be-
tween the MTW concept and quantitative removal of redox-
insensitive contaminants. The revised concept proposed here 
is valid for ionic, neutral, organic, inorganic, reducible and 
non-reducible compounds (including contaminants). Such a 
concept considers Fe

0
 as generator of an oxide film which 

adsorbs all species and entraps them in its structure while 
ageing. Unspecific contaminant co-precipitation as removal 
mechanism enables a better discussion of published data. 

THE MTW CONCEPT AND ITS LIMITATIONS 

 The MTW concept is described in several recent works 
[5, 14, 15]. From the discussion above, the MTW concept 
suggests that Fe

0
 serves as reducing agent for a contaminant 

(direct reduction) and the oxide film serves as catalyst for 
indirect reduction through adsorbed Fe

II
 (structural Fe

II
 or 

Fe
II

(s)) or H2 [2]. It is obvious that the dynamic nature of film 
formation is not considered at all. Hence, the oxide film is 
treated as a coating. However, regardless of the presence of 
any contaminant and the composition of groundwater, an 
oxide film grows, and its porous structure and composition 
changes with time [16]. 

 The MTW concept is widely accepted in current litera-
ture despite four strong features suggesting its instability: (i) 
the concept is derived without demonstration/verification 
from the thermodynamic standpoint (low reduction potential 
of the redox couple Fe

II
/Fe

0
), (ii) a number of publications 

has attempted to point out its instability for individual con-
taminants [17-20], (iii) the MTW concept is inadequate to 
explain some experimental results as will be shown later, and 
(iv) where the concept is believed to have been demonstrated 
the experimental conditions were not appropriate [21-24]. In 
particular, the experimental conditions of Matheson & 
Tratnyek [2], and Weber [1] are not sufficient to allow trace-
able conclusions. 

 Matheson & Tratnyek [2] used a pre-equilibration period 
of 8-12 h during which the Fe

0
-H2O system was shaken on a 

rotary shaker (15 rpm) prior to the contaminant addition. 
During this period iron hydroxides/oxides were quantita-
tively produced to allow catalytic reduction by structural 
Fe

II
. Clearly, in producing iron oxides prior to contaminant 

addition, Matheson & Tratnyek [2] created favourable condi-
tions for a concurrent reaction: the indirect reduction. 

 Weber [1] used an azo dye (4-Aminoazobenzene) to 
demonstrate that the reduction with Fe

0
 is surface-mediated 

at pH 7.2. The reduction of azo dyes by Fe
0
 is industrially 

well-known for the synthesis of aniline after the Béchamp 
reaction [25-28]. The reduction is known to take place in the 
presence of Fe

0
 and dilute acid [27] and the yield of the reac-

tion is commonly less than 92 % of the theoretical amount 
[26, 28]. The investigations of Weber [1] were performed in 
analogy to more recent works on the reductive degradation 
of organic compounds [2, 4, 29, 30] and the 150 years old 
work of Béchamp was not considered. Given the possible 
differences in Fe

0
-H2O systems at pH 4 and pH 7 (e.g., con-

taminant speciation, kinetics of Fe
0
 corrosion), Weber [1] did 

not explained why a reaction, which is not quantitative in 
industrial reactors at pH 4, should be quantitative in the envi-
ronment at pH 7.2. 

 In summary, the validity of the well-accepted MTW con-
cept has not been demonstrated by any scientific criterion. It 
failed to explain experimental observations in many cases as 
will be shown below. 

EXPERIMENTAL OBSERVATIONS 

 Evidence contradicting the MTW concept is abundant in 
the literature. In this section six relevant examples will be 
considered: 

 In many cases, aqueous contaminant removal has been 
reported to occur after a lag time [18, 31-33]. Such lag time 
is often seen in biological systems if the initial population of 
bacteria is small, or if synthesis of the appropriate enzymes 
must be induced [33]. In Fe

0
-H2O systems the observed lag 

time can be regarded as the time necessary for the generation 
of enough corrosion products for contaminant co-precipit-
ation [18-20]. This explanation is supported by the pH-
dependence of the lag time as reported by Huang et al. [32] 
for nitrate removal. In fact these authors observed a lag time 
of a few minutes at pH 4.0, and no lag time at pH 2.5. Iron is 
essentially more soluble at pH 2.5 than at pH 4.0. In other 
words, iron precipitation and thus contaminant co-precip-
itation is more likely at pH 4.0. 

 Qui et al. [34] investigated the removal of selenium 
(Se

VI
), chromium (Cr

VI
), and uranium (U

VI
) by Fe

0
. Accord-

ing to the MTW concept all these reducible species should 
have been reduced to Se

IV
, Cr

III
 and U

IV
 respectively. Qui et 

al. [33] reported that partially reduced Se
IV

 and Cr
III

 are ad-
sorbed on the Fe

0
 surface, while uranium is deposited with-

out reduction (U
VI

). All species were quantitatively removed 
from the aqueous solution. 

 Lavine et al. [17] investigated the process of nitroben-
zene reduction by Fe

0
 while simultaneously monitoring the 

disappearance of nitrobenzene and the appearance of Fe
II
. 

Their studies proved informative but were unable “to access 
information about crucial mechanistic details on the chemi-
cal processes controlling the reduction of nitrobenzene at the 
Fe

0
 surface” [17]. 

 Rademacher et al. [35] investigated the process of ura-
nium(VI) removal by Fe

0
 by means of isotope fractionation 

and reported that “Fe
0
 reduced U

VI
, but the reaction failed to 

induce an analytically significant isotopic fractionation”. 
This obviously questionable conclusion was consistent with 
the MTW concept and the results of Gu et al. [36] on reduc-
tive precipitation of U

VI
 by Fe

0
. However, other researchers 

[18-20] could demonstrate that U
VI

 removal by Fe
0
 is primar-

ily the result of U
VI

 co-precipitation with iron corrosion 
products. The example of U

VI
 removal by Fe

0
 shows that the 

uncritical acceptance of the MTW concept has led to misin-
terpretations of good experimental results. 

 In an attempt to explain the perchlorate (ClO4
-
) removal 

by Fe
0
, Huang & Sorial [14] referred to their carbon content 

(ca. 3 % in cast iron) in analogy to adsorption onto activated 
carbon. An important feature pointed out by the authors in 
their discussion of ClO4

-
 removal is the differential behav-

iour of breakthrough profiles for activated carbon and Fe
0
. In 

fact, in column experiments with activated carbon [37], once 
ClO4

-
 was detected in the effluent, the effluent concentration 

reached the level of influent concentration immediately. By 
contrast, the effluent ClO4

-
 concentration in Fe

0
 column ex-
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periments remained stable even after 30 days of first per-
chlorate appearance. Huang & Sorial [14] interpreted this 
result as ClO4

-
 reduction by Fe

0
. The next section will show 

that ClO4
-
 co-precipitation (not considered by the authors) is 

an equally plausible removal mechanism. 

 Jia et al. [12] investigated the adsorption of triazoles by 
iron hydroxides/oxides (Fe2O3, ferrihydrites) and elemental 
iron. Their data suggest negligible adsorption of triazoles 
onto Fe2O3 and strong adsorption of triazoles onto ferrihy-
drites. The adsorption onto Fe

0
 was the strongest and re-

ported to be controlled by multi-layer coverage. Interest-
ingly, the used triazoles are redox-insensitive and all tested 
iron hydroxides/oxides are likely to be present in a Fe

0
-H2O 

system. The question arises why reduction through Fe
0
 

should be the major removal reaction path when the con-
taminant is redox-sensitive. 

 The selected experimental evidence indicates that the 
MTW concept is unsatisfactory. A revised concept is de-
scribed below. For this purpose, the process of contaminant 
co-precipitation with corrosion products will be first pre-
sented. 

THE PROCESS OF CONTAMINANT CO-PRECIPITA-
TION WITH CORROSION PRODUCTS 

 Whenever a specie (e.g., iron) precipitates (e.g., as hy-
droxide) in the presence of trace amounts of foreign species, 
the foreign species are entrapped in the mass of precipitates 
(co-precipitation). Co-precipitation is a well-known unspe-
cific specie removal mechanism from the aqueous solution 
[38-40]. 

 Depending on the redox conditions, Fe
0
 aqueous oxida-

tive dissolution yields a large array of porous and highly 
adsorptive iron hydroxides (e.g., Fe(OH)2, Fe(OH)3, ferrihy-
drites), which are further transformed upon dehydration and 
crystallisation into various less porous and less adsorptive 
oxides (e.g., Fe

II
O, Fe

II
Fe

III
O4, Fe

III
OOH, Fe

III
2O3). The pre-

cipitation proceeds by succession and interplay of several 
precipitation processes, i.e., nucleation, growth, aggregation 
(or stabilization), and ageing [39, 40]. In a contaminant-free 
Fe

0
-H2O system (e.g., early phase of barrier installation), 

homogeneous nucleation occurs. Three-dimensional pure 
phase nuclei are formed from a homogeneous parent phase 
in the vicinity of Fe

0
 [16]. In the presence of contaminants, 

heterogeneous nucleation occurs. Here, contaminants are 
progressively incorporated in the structure of growing nuclei. 
The relative extent of homogeneous and heterogeneous nu-
cleation in a Fe

0
-H2O system depends on the contaminant 

concentration and flux (water flow velocity). 

 Since immersion of reactive Fe
0
 always yields an oxide 

film and oxide film formation is a dynamic process [16], Fe
0
 

can be considered a source of continuously growing sub-
strate of iron oxide for contaminant removal. As the sub-
strate contains hydroxides and oxides of various porosity and 
crystalline structure, it possesses at any time variable sorp-
tion vs co-precipitation efficiency for contaminants. How-
ever, at time scales pertinent to laboratory batch experiments 
(hours to a few days), contaminant co-precipitation with pre-
cipitating corrosion is very likely to dominate simple adsorp-
tion. It is rather surprising that co-precipitation as primary 
(and independent) contaminant removal mechanism has not 
been discussed in seminal works [1, 2]. 

 Note that co-precipitation as discussed for example for 
chromium (Cr) (Eq. 3, Eq. 4; cf. ref. [41, 42]) is a specific 
chemical reaction. Co-precipitation as presented in this study 
is an unspecific removal mechanism, which can be schemati-
cally written as shown in Eq. 5, and Eq. 6. 

x Cr
3+

 + (1 - x) Fe
3+

 + 3 H2O  (CrxFe1-x)(OH)3 (s) + 3 H
+
          (3) 

x Cr
3+

 + (1 - x) Fe
3+

 + 2 H2O  CrxFe1-xOOH (s) + 3 H
+
         (4) 

Cr
VI

 + n Fe(OH)x (s)  Cr
VI

-[Fe(OH)x]n (s)          (5) 

Cr
III

 + n Fe(OH)x (s)  Cr
III

-[Fe(OH)x]n (s)          (6) 

 In all the cases Cr is removed from the aqueous solution. 
In Eq. 3, and Eq. 4 Cr

VI
 is first reduced to Cr

III
. Equations 5 

and 6 show that both Cr
III

 and Cr
VI

 may be entrapped in the 
structure of growing iron hydroxides (unspecific mecha-
nism). 

 Generally, a co-precipitated oxidized contaminant (e.g., 
Cr

VI
) can be further reduced (e.g., to Cr

III
). The question 

arises whether a reduction precedes co-precipitation or vice 
versa. As available experimental evidence shows that even 
redox-insensible species are co-precipitated, there is no rea-
son why reduction should precede co-precipitation as a rule. 

REVISED CONCEPT 

 The proposed concept treats adsorption and co-
precipitation as the primary removal mechanism of any spe-
cies (ionic, neutral, organic, inorganic, and living) in a Fe

0
-

H2O system and explains why a wide array of species is suc-
cessfully removed from the aqueous phase. A redox-
sensitive specie, can be subsequently reduced by electrons 
from Fe

0
, from structural Fe

II
 or H/H2. Some features of the 

MTW concept are still valid, in particular that the oxide-film 
may serve as catalyst (for indirect reduction) and Fe

0
 as elec-

tron donors (for direct reduction). 

 The key difference between the proposed concept and the 
MTW concept lies in the role of the oxide film on the Fe

0
 

surface. The MTW concept considers the oxide film as elec-
tron mediator [6], limiting indirect reduction to a side effect. 
The revised concept considers the growing oxide film as 
contaminant scavenger, such that contaminant reduction 
should not be necessarily seen as surface-mediated (the sur-
face been that of Fe

0
). Furthermore, it is yet to be discussed 

in the case of contaminant reduction, which mechanism from 
the direct (electrons from Fe

0
) and the indirect reduction 

(electrons from Fe
II
/H2) is likely to be dominant. 

 A logical consequence of the revised concept is that ex-
periments investigating the process of contaminant removal 
should be conducted under conditions favouring the genera-
tion and transformation of oxide films on the Fe

0
 surface. 

Particularly mixing operations (type and intensity) should be 
proven non-disturbing before being employed. 

 Co-precipitation as primary contaminant removal mecha-
nism explains all the above enumerated experimental obser-
vations. In particular, in the columns experiments of Huang 
& Sorial [14] it is likely that the described 30 days stable 
effluent ClO4

-
 concentration corresponds to a steady state 

regime in the process of Fe
0
 oxidation in the column, yield-

ing a constant amount of corrosion products for ClO4
-
 co-

precipitation. 

 



12     Open Environmental Sciences, 2007, Volume 1 C. Noubactep 

CONCLUDING REMARKS 

 A concept providing evidence for quantitative contami-
nant removal by co-precipitation with iron corrosion prod-
ucts is presented. It argues that adsorbed contaminants are 
co-precipitated with aging corrosion products. This concept 
is consistent with many experimental observations and is 
valid irrespective from (i) the redox conditions (oxic or an-
oxic), and (ii) the nature of the contaminant (ionic, neutral, 
organic, inorganic, redox sensitive, redox insensitive). 

 The present work has shown that generated corrosion 
products are primarily responsible for the process of con-
taminant removal in Fe

0
-H2O systems. Thus, a contaminant 

can only migrate across a Fe
0
 bed (or barrier) if the adsorp-

tive capacity of actual available corrosion products is ex-
hausted. In an operative barrier both adsorption onto aged 
corrosion products, and co-precipitation with nascent iron 
oxides occur. Corrosion products form an active physical 
barrier reducing the accessibility of the bare surface of Fe

0
 

materials to contaminants. This assertion is supported by 
experimental evidence from Huang and Zhang [43] who 
showed that dissolved oxygen is mostly consumed by Fe

II
 

rather than the surface of metallic iron (Fe
0
). Therefore, re-

ported contaminant reduction in Fe
0
-H2O systems may 

mostly result from structural Fe
II
 reaction and/or microbial 

activity. The verification of this hypothesis is a challenge for 
the scientific community. Moreover, the discussion of the 
stability of co-precipitated contaminants as influenced by 
relevant environmental factors (groundwater biogeochemis-
try, groundwater flow velocity) is urgently needed to access 
the stability of removed contaminants and the long-term per-
formance of Fe

0
 reactive walls. 
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